当前位置:文档之家› 直流电源装置工作原理及接地故障分析

直流电源装置工作原理及接地故障分析

直流电源装置工作原理及接地故障分析
直流电源装置工作原理及接地故障分析

直流电源装置工作原理及接地故障分析

Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

直流电源装置工作原理及系统接地故障案例分析一、直流电源装置工作原理

1高频开关电源工作原理

MK-50智能型高频开关电源采用免维护铅酸阀控蓄电池作为电源,具有寿命长、无污染、体积小等优点。采用高频开关斩波直流变换器和先进的PWM脉宽调制技术,确保电力系统连续稳定供电。供电线路采用充电模块与稳压模块并联运行方式,输入的交流主电源经三相桥整流、滤波后,一路经充电模块对电池进行恒压限流充电,另一路经稳压模块连接到直流母线上。电气原理见图1。

图1直流电源电气原理框图

1QF主电源输入断路器3QF电池充放电断路器

4QF控制母线输出断路器5QF合闸母线输出断路器

1KM主电源输入接触器3KM进线接触器4KM维护旁路接触器

电池与合闸直流母线是永久连接的,在正常工作条件下,它从主电源上获取电能进行充电。对于双路电源进线系统,当主电源停电时,系统可自动切换到备用电源供电;当交流电源停电时,电池经稳压模块或硅堆向负荷供电。手动旁路开关可以将维修旁路与输出负荷直接连接起来,勿需中断对负荷的供电即可维修本直流电源。当主电源恢复正常供电后,系统自动恢复到初始状态。

2监控系统简介

MK-50智能型高频开关电源,采用PLC作为直流电源的监控系统以及和用户之间的通讯接口。监控系统提供了设备的操作、控制、参数测试、运行状态和故障报警的所有信息,主要由智能操作显示单元、微处理器控制单元、模拟量转换单元(A/D、D/A)、紧急断电按钮(SB)等部件组成。

系统简介

智能操作显示单元的触摸式液晶显示屏可进行系统操作,并能显示所有与直流电源有关的信息,包括电气参数显示、直流电源工作状态、故障存储以及报警等。投入使用后,液晶显示屏出现主屏幕信息,按“菜单”键即可进入菜单选择屏幕。

系统的监控功能

2.2.1系统操作在菜单选择屏幕状态下,按“操作”键进入系统操作屏幕,进行充电方式选择及“系统启动”和“系统停止”操作。根据所选择的充电方式自动对充电电压和控制母线输出电压进行设定。

参数设定和参数显示在菜单选择屏幕状态下,按“参数”键进入参数设定和参数显示屏幕。主要参数有:充电电压,充(放)电电流,输出电压,输出电流。

故障存储显示及报警在菜单选择屏幕状态下,按“故障查询”键进入故障存储显示屏幕。按“查询”键,便可查询故障发生的内容及发生时间。

系统状态在菜单选择屏幕下,按“系统状态”键进入系统状态屏幕,又细分为“控制母线”、“合闸母线”和“电源状态”画面,可分别监察电源工作状态及各分路断路器的分合状态。

3直流电源的运行状态

正常运行

采用交流电源供电时,整流器将交流电转变成直流电,经过整流滤波后对电池组进行均衡充电或浮充电的同时,兼对控制母线负荷供电。

旁路电源投入运行

对直流电源进行检修时,可以断开与主电源的联系而不中断对系统供电,也不会影响负荷。维修旁路允许完全停止充电模块和稳压模块的运行并实现电气隔离,在进行设备内部的检修时,不致对技术人员或维修人员造成任何危险。

交流电源断电时的运行

当交流电源断电时,直流控制母线上的电压是靠电池组放电来维持的,电池组经稳压模块对控制母线提供一个稳定的直流电压,此时不会因交流电源断电而影响负荷工作。此外,硅堆在任何非正常的情况下,均会不间断地向控制母线供电。

4主要技术参数及应用效果

输入电压:三相四线制,380V±20%

频率:50Hz±10%

额定输出电压:24V、48V、110V、220V

额定输出电流:15~300A

稳压精度:≤±%

稳流精度:≤±%

稳波电压:≤%

绝缘强度:交流2000V,1min

控制技术:15KHz ,(PWM)脉宽调制技术

二、 直流系统接地故障案例分析

1、直流接地概况

变电所直流系统比较复杂,它需要供给动力、照明、控制、信号、继电保护及自动装置等系统,且还须通过电缆线路与屋外配电装置的端子箱、操作机构箱连接,发生接地机会较多。

直流系统发生一点接地时,由于没有短路电流通过,熔断器不会熔断,仍能继续运行。但是这种故障必须及早发现并予以排除,否则当再发生另一点接地时,构成直流两点接地将会造成信号装置、保护装置及断路器的误动作,同时可能使继电器烧毁。

当系统中某一处发生单相接地时,绝缘监察装置报警,有一极对地电压很低

甚至为零,另一极对地电压升高甚至为全电压。电压降低的极发生接地。

图1输电线路过流保护的直流操作回路一极发生接地的情况

K1—电流继电器;K2—中间继电器;Y2—眺闸线圈

为了使直流系统绝缘保持在良好的情况下,要求:

*每一个二次回路对地绝缘电阻不应小于1兆欧(在比较潮湿的地区允许降低到兆欧)

DL

Y 2

K 1

K 2

DL

*当直流系统的任一极对地绝缘电阻对于

220V系统:R地<15~20kΩ

110V系统:R地<4~6kΩ

48V系统:R地<Ω时,应发出灯光和音响信号。

2、绝缘监察装置

1.1

+_+_

图2

优点:简单、费用省

缺点:(1).直流回路绝缘接地时不能发出信号,只有检查时才能发现。(2).不能反映直流回路绝缘电阻数值。

(3).任一极绝缘不良,经较大电阻接地时,灯亮案较难区分。

(4).

若在中间继电器ZJ前一点D接地,在按下按钮后电流较大,使大部分继电器误动。

.电压表监视装置

+_+_

图45

(2)能测量每极对地的电压值,经过换算可检查对地绝缘电阻状况。

缺点:(1)绝缘低或接地时不能发出报警。

(2)不能直接从电压表上读出绝缘电阻值。

直流电桥监测装置

YA

图5直流电桥监测装置原理图

本装置是根据直流电桥的工作原理构成的(见图其主要组成元件为电阻R1、R2和信号继电器XJJ 。电阻R1和R2数值相等(通常选用R1=R2=1000欧),并与直流系统正负极对地电阻R+与R-组成电桥的四个臂。继电器XJJ 则接于电桥的对角线上,相当于直流电桥中检流计的位置。正常状态下直流母线正负极的对地绝缘电阻R+与R-相等,继电器XJJ 线圈中只有微小的不平衡电流流过,继电器不动作。当某一极的绝缘电阻下降时,电桥失去平衡,继电器的线圈中即有电流通过。当此电流足够大时,继电器XJJ 动作,其常开触点闭合,发出预告信号。 .通用绝缘监视装置

(1)用一只直流电压表2V 和一只转换开关CK 来切换,分别测出正极对地电压或负极对地电压值,如果直流系统绝缘良好且大于1兆欧,则在此两次测量中

电压表2V 的指针几乎停在零点。如果负极绝缘降低,则在测量正极时就有电压指示,负极若完全接地,电压表就指示出直流母线工作电压。

1、概述

发电厂和变电所直流系统比较复杂,而且通过电缆与配电装置的端子箱、操动机构等相连接,发生接地机会较多。直流系统发生一点接地时,由于没有短路电流流过,熔断器不会熔断,仍能继续运行。但如果这种单点接地故障不及时消除,继而发生两点接地,就有可能引起保护拒动或误动作跳闸。我厂三降压站直流系统接地现象也时有发生,以前这几个降压站直流系统虽都装有传

图7绝缘监视部分电气接线图

+

_

统的绝缘监察装置,但当系统发生接地或绝缘电阻低于一定值时,只能发出灯光和音响信号。若要确定接地故障是哪一条回路,必须采用人工分段停电,逐个减小范围的方法进行查找。这种方法不仅繁琐费时,而且在停电过程中,会增加保护误动、开关拒动或信号失灵的危险,容易引发事故。

近年来,国内有关院所已开发了一些直流绝缘监测装置。由于这些装置大多需依靠对直流系统注入一交信号,装置通过电流传感器采入故障信号。因而,这种装置的检测效果往往会受到系统中分布电容的影响。

针对上述存在问题,我们专门成立了技术攻关小组,广泛收集了国内外有关资料,对直流系统中各种接地情况进行了细致的分析,最后探寻了一种不需向被测系统注入任何信号的检测方法,并采用计算机技术对故障信号进行控制和处理,完善地解决了直流系统绝缘监测问题。

本装置只能在某一极绝缘下降到一定数值时自动发出信号,它由电阻1R、2R 和一只内阻较高的继电器XJJ构成,当不测量母线对地电压时,电气接线图如图7所示。

1R和2R与正极对地绝缘电阻R3和负极对地电阻R4组成了电桥,XJJ相当于一个检流计,

如图8所示。通常1R=2R=1千欧,正常时正、负极对地绝缘电阻都较大,可假设R3=R4,故XJJ线圈中没有电流流过,当电流足够大时,继电器动作,自动发出信号。

图8绝缘监视部分的原理分析图9绝缘监视部分使继电器

误动的可能性分析

流过绝缘监视继电器XJJ线圈的电流I O,用有源两端定理,可解得(见图8):

U(R3R1

I

O

=R3+R4R1+R2

R1RR3R4

R1+R2R3+R4

2检测原理

接地故障判别

本装置采用图1所示电路实现直流系统的绝缘监察。图中R1、R2(R1=R2)与直流系统正负极对地绝缘电阻R+和R-组成电桥的四个臂。绝缘监视继电器

K与可调电阻器RP(用来整定绝缘电阻报警值)及中间继电器J

1

常闭触点串联

后接在电桥的对角线上,相当于直流电桥中检流计位置。正常状态下,直流母线正负极的对地绝缘电阻R+与R-都较大,可视为相等,绝缘监视继电器K线圈中只有微小的不平衡电流流过,继电器不动作。当某一极的绝缘电阻下降时,电桥失去平衡,此时,流过继电器K线圈的电流I K,可用有源两端网络定理解

得:

U(-)

I

K

=(2-1)

式中U—直流母线电压;

R j —继电器线圈电阻;

R+

R++R-

R1

R1+R2

R+R-

R1R2

R +、R —直流正负极对地绝缘电阻; RP —可调电阻器; R 1、R 2—桥臂电阻。 当R 1=R 2=R 时,则得:

I K =(2—2)

2R +R -+(2R j +2RP+R)(R ++R -)

从上式可见,直流系统绝缘正常时,R +=R -,I K =0,K 不动作。当系统中任一极的绝缘下降到一定值(在220V 直流系统中,绝缘电阻一般整定在15~20k Ω),且使I K 达到绝缘监视继电器K 的动作电流时,继电器动作,其常开接点K 接通,此时图1右边电路中A 点电位由高电平变为低电平。计算机测试到高速输入口为低电平时,装置即判别系统发生接地故障。

图10绝缘监

察电路 由于装置中设有一人工接地点,这样当直流二次回路中任

一中间继电器

ZJ 一端发生接地时(如图2中的B 点),在绝缘监视继电器K 、中间继电器ZJ 及电源之间构成回路,回路中电流I K 同时流过绝缘监视继电器和中间继电器。为防止中间继电器误动作,其I K 的值应保证绝缘监视继电器能可靠动作,而中间继电器不动作。因此,绝缘监视继电器应选用高灵敏度继电器,其内阻要大于直流系统中任一中间继电器的内阻,以确保装置的可靠性。

+ ―

U (R +-R -)

+R 11

图11

选线方法

前面我们已经阐述了判别直流系统是否有接地故障存在的方法。但当系统发生接地故障后,如何确定是正极接地还是负极接地在哪一回路发生接地接地电阻为多大这些问题尚未解决。

I 0 P PE

图12我们设计了一种可控电子开关,开关的一端与外部接地线相连,另一端经电阻R 2与电源相连接构成回路,如图3所示。图中左半部电子开关可在计算机控制下按一定频率通断直流电源E 的正负端;右半部为直流系统中某一支路N ,在该支路的供电线路上装有电流传感器模块T 。当直流系统正常时,支路中的负载电流I 1=I 2,而流过T 中的合成电流为0(即∑I=0),电流传感器无信号输出。当系统发生接地故障时(如图3中N 支路的正端通过Rx 接地,并且

Rx ≤20k Ω),则电子开关P 动作,从电源正极Rx 地R 2负极形成电流通路,并在N 支路的正极回路中产生一个叠加电流Ix 。此时,电流传感器T 中的∑I ≠0,其二次就会产生一电流信号I 0,此电流信号经装置采集后,根据故障电流的大小和

+ E _

方向,计算机就可算出接地电阻值和确定接地故障的性质(即为正极接地还是负极接地)。接地电阻可根据下式求出:

U—nI

0R 2

Rx=(2—3)

nI

式中n—传感器模块的电流比;

I

—传感器的二次电流(由装置采集);

U—直流系统的电压值;

R

2

—电子开关负载电阻。

如在直流系统的每一支路中都装上电流传感器模块,装置便可进行巡回检测和完成故障线路的选线。

系统控制

本装置是根据计算机高速输入口电平的高低来判别直流系统绝缘是否良好,并通过计算机的高速输出口、以及相应的外围电路完成接地故障检测控制,如图4所示。图中J1为中间继电器;TIL为光电耦合器;D1为保护二极管,限制TIL过电压;R4为限流电阻;G为电子开关P的使能端。当直流系统出现接地故障时,计算机的高速输入口变为低电平。软件控制计算机的高速输出口,延时输出高电平,经光耦TIL驱动继电器J1动作,其常闭接点打开(见图1),以隔离绝缘监察电路对选线回路的影响。再由高速输出口延时输出一高电平,驱动电子开关P工作。装置对直流系统进行巡回检测后,显示故障线路编号、接地电阻值并语音报警。若故障排除,、先后转为“低”电平,J1继电器释放,电子开关P停止工作,装置进入监测高速输入口状态,或响应键盘操作。

1

R 4

图13故障信号监测控制简图 3 装置的特点和技术指标 特点

(1)数字显示:发生接地时可显示直流回路编号,接地电阻值。 (2)时钟功能:正常运行中,可显示时间,做到一机多用。 (3)判线速度快,无需人工干预。

(4)语言报警:发生接地故障时,语音报出接地回路的极性及回路编号。 (5)记忆功能:可记忆故障线路及接地发生时间。 (6)自检功能:可自行检查内部故障。(芯片级) (7)自恢复功能:抗干扰能力强。

(8)STD 标准总线结构:便于装置升级和维修。

(9)装置不向被监测的直流系统施加任何信号,不会对被测系统有任何影响。

(10)装置的检测速度和可靠性与被测系统的对地分布电容无关。 技术指标

(1)母线数:2段

(2)出线数:32路(可扩)

(3)系统数:1~4相同或不同电压等级 (4)接地指示时间≤5秒 (5)电源:交流220±10%V

电子开关

4硬件结构

装置以单片机为核心,组成实时检测系统。考虑到功能的扩展与维修方便,采用标准工业控制总线STDBUS设计。装置主要由五块STD模板组成,系统结构如图5所示。

图14

4.1主控板

为提高装置的实时性和抗干扰能力,选用8098单片机为主控部件,它是一

种高性能的16位单片机,内部无累加器结构,而是采用寄存器—寄存器结构,

消除了累加器的瓶颈效应,操作速度和数据吞吐能力明显提高;另外它具有高

效率的指令系统,最长指令执行时间为,最短只需2us;8098内部还配有自恢复

电路、高速输入/输出口、脉宽调制输出以及10位A/D等,这对满足设计的技术

指标提供了先决条件。

在主控板上设置了8K/16K程序存贮器,8K/16K/32K的数据存贮器,扩展了

一片并行接口电路8155和打印机电路,使该模块具有键盘显示接口及打印机接

口。电路的结构框图见图6。

D0~D

A0~A

A/D 模板的主要功能是:将输入的模拟量转换成数字量,以适应计算机对输入信号的要求。电路由模拟开关、采样保持器、程控放大器、A/D 转换器及各寄存器、控制器、驱动、缓冲、光电隔离器等构成,其结构框图如图7所示。A/D 转换器采用12位AD574芯片,分辨率为1/4096,转换时间为35us ,非调整误差±1LSB ,输入设定为双极性,采用双通道差分输入方式,其共模抑制比高,抗干扰能力强。由于应用了光电隔离技术,使数据总线、地址总线以及控制总线与受测现场的A/D 转换电路进行隔离,保证了STD 总线系统能工作在平稳和安静的环境中;电路中设有程控放大增益1~256倍(可由软件控制),不但调整方便,

信号处理板

信号处理板由绝缘监察、故障信号获取以及信号调理三部分组成。当系统发生接地或绝缘电阻低于规定值时,绝缘监察电路发送一个故障信号至8098单片机的高速输入口,由高速输出口控制信号获取电路中的电子开关,使接地回路中传感器二次产生一个故障信号,经信号调理后送A/D 进行转换。信号处理板结构组成见图8。

8098

D 0~D 7A 0~信号输入

语音报警板

为使仪器的人机对话更直观,有利于值班人员对故障进行处理,设计了语

音报警电路。它与数字显示共同完成故障报警,并具有仪器自检应答功能。报警电路由语音合成器芯片UM5100、语音数据库27512、缓冲锁存器74LS273、音频放大器LM324、LM386构成,其结构如图9所示。先将所有故障语言信息及自检应答语言信息通过UM5100写入EPROM27512中(多片),建立语音数据库(此工作只需做一次,结构图中这部分框图未标出)。装置检测到接地故障时,由主控板控制数据库与语音合成器,将该故障的语音数据信息还原成模拟电压信号,经放大后,由扬声器输出。 图

键盘显示板

这是人机对话的主要部件,设置在仪器的面板上。设计时应充分考虑面板简洁、自动化程度高、操作方便。键盘显示电路采用可编程键盘显示管理芯片8279,硬件实现显示扫描、键盘扫描和键盘去抖动。配合译码器、段选驱动器、位选驱动器、8段LED 及小键盘组成6按键、6位LED 模板(结构见图10)。面板按键少(6只),设计中采用了复合键功能,能实现启动、停止、输出、自检、重检、故障记忆、打印、消音、显示转换、时间(年、月、日、时、分、秒)校正等十几种功能。

主控板 A/D

图16信号处理电路组成框图

主控板

图18键盘显示电路

变电站直流系统是十分重要的电源系统,它是一个独立的系统,不受系统运行方式改变的影响,为控制回路、信号回路、继电保护、自动装置及事故照明等提供可靠稳定的电源,它还为断路器的分、合闸提供操作电源。

1.直流接地的概念及产生的原因

直流电源为带极性的电源,即电源正极和电源负极。直流电源的“地”并不是实际接地,仅仅是个中性点的概念。如果直流电源系统正极或负极对地间的绝缘电阻值降低至某一整定值,这时我们称直流系统有正接地故障或负接地故障。

直流系统由各种保护、控制设备、电缆、端子及箱体等构成,所接设备多、回

路复杂,在长期运行过程中会由于环境的改变、气候的变化、电缆以及接头的老化,设备本身的问题等等,在绝缘老化破损、机械振动、灰尘沉淀、金属生锈、潮湿、漏水等各种因素

的作用下,不可避免的发生直流系统接地。从我们所遇到的直流接地情况看,以端子箱、压力表进水,电缆表皮破损,裸露金属积有灰尘,在空气潮湿时引起直流接地最为常见;备用电缆芯端面没有包扎好而导致接地的现象也时有发生,另外,电缆在金属处拐弯或穿过金属物,由于振动、碰撞下产生绝缘磨损,也会发生直流接地。 2.直流接地的危害

直流系统发生一点接地,不会对系统构成危害。但如果发展成两点接地,就可能造成严重的后果。直流系统发生两点接地故障,便可能构成接地短路,造成继电保护、自动装置误动或拒动,或造成直流保险熔断,使保护及自动装置、控制回路失去电源。

主控板

(1)直流正极接地,有使保护及自动装置误动的可能。因为一般跳合闸线圈、继电器线圈正常与负极电源接通,若这些回路再发生一点接地,就可能引起误动作。如图1所示,由于K1,K2两点接地,使出口跳闸继电器接点J21接通,J1带电,从而出口跳闸,而出现误动。同理,两点接地还可能造成误合闸,误报信号。

(2)直流负极接地,有使保护自动装置拒绝动作的可能。因为跳、合闸线圈、保护继电器会在这些回路再有一点接地时,线圈被接地点短接而不能动作。同时,直流回路短路电流会使电源保险熔断,并且可能烧坏继电器接点,保险熔断会失去保护及操作电源。如图2所示,假设J41是振荡闭锁接点,当有振荡发生时,常闭接点J41断开,J3失电,常闭接点J31断开,此时即使跳闸接点J21合上,J1也不会出口。但当没有发生振荡,J41断开,J31合上,J1本应该出口,由于K1,K2两点接地,导致J3带电工作,J31断开,J1不能正常出口,而发生拒动。

3、查找直流接地故障的方法

(1)查找直流接地故障的一般顺序和方法:

①分清接地故障的极性,分析故障发生的原因。

②若站内二次回路有工作,或有设备检修试验,应立即停止。拉开其工作电源,看信号是否消除。

③用分网法缩小查找范围,将直流系统分成几个不相联系的部分。注意:不能使保护失去电源,操作电源尽量用蓄电池带。

④对于不太重要的直流负荷及不能转移的分路,利用“瞬时停电”的方法,查该分路中所带回路有无接地故障。

⑤对于重要的直流负荷,用转移负荷法,查该分路而带回路有无接地故障。查找直流系统接地故障,后随时与调度联系,并由二人及以上配合进行,其中一人操作,一人监护并监视表计指示及信号的变化。

(2)利用瞬时停电的方法选择直流接地时,应按照下列顺序进行:

①断开现场临时工作电源;②断合事故照明回路;

③断合同信电源;④断合附属设备;

⑤断合充电回路;⑥断合合闸回路;

⑦断合信号回路;⑧断合操作回路;

⑨断合蓄电池回路;

在进行上述各项检查选择后仍未查出故障点,则应考虑同极性两点接地。当发现接地在某一回路后,有环路的应先解环,再进一步采用取保险及拆端子的办法,直至找到故障点并消除。

4.查找直流接地故障时的注意事项:

为了查找直流接地过程中不出现其它事故,查找时应注意以下几项:

①当直流系统一点接地时,禁止在二次回路上工作。

②瞬停直流电源时,应经调度同意,时间不应超过3秒钟,动作应迅速,防止失去保护电源及带有重合闸电源的时间过长。

③为防止误判断,观察接地现象是否消失时,应从信号、光字牌和绝缘监察表计指示情况综合判断。

④防止人为造成短路或另一点接地,导致误跳闸。

⑤按符合实际的图纸进行,防止拆错端子线头,防止恢复接线时遗留或接错;所拆线头应做好记录和标记。

⑥使用仪表检查时,表计内阻应不低于2000欧/伏。

⑦查找故障,必须二人及以上进行,防止人身触电,做好安全监护。

⑧防止保护误动作,必要时在顺断操作电源前,解除可能误动的保护,操作电源正常后再投入保护。

⑨禁止用灯泡查找接地点,以防直流回路短路。

⑩尽量避免在高峰负荷时进行。

10kV系统单相接地故障分析及处理 随着社会经济的快速发展,其中10kV系统经常发生单相接地问题,影响电力系统正常运行。电力企业得到了很大进步,文章通过分析10kV系统发生单相接地故障原因及危害,总结出10kV系统单相接地故障时的处理方法及其注意事项。 标签:单相接地故障;危害;处理;注意事项 1 概述 电力系统在进行分类时常分大电流接地系统和小电流接地系统。采用小电流接地系统有一大优点就是系统某处发生单相接地时,虽会造成该接地相对地电压降低,其他两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统可继续运行1~2小时。10KV系统无论是在供电系统还是配电系统中都应用的比较广泛,故10KV系统是否可靠安全运行直接影响到整个电力系统能否正常运行。然而10kV系统在恶劣天气条件下发生单相接地故障的机率却很大。10kV系统若在发生单相接地故障后未得到妥善处理让电网长时间运行的话,将会致使非故障相中的设备绝缘遭受损坏,使其寿命缩短,进一步发展为事故的可能得到提高,严重影响变电设备和配电网的安全经济运行。因此,工作人员一定要熟知10kV系统发生接地故障的处理方法,一旦10kV系统发生单相接地故障必须及时准确地找到故障线路予以切除,以确保电力系统稳定安全运行。 2 10kV系统发生单相接地故障的原因及危害 导致10kV系统发生单相接地故障的原因有很多,大致可以分为以下五类主要原因: (1)设备绝缘出现问题,发生击穿接地。例如:配电变压器高压绕组单相绝缘击穿或接地、绝缘子击穿、线路上的分支熔断器绝缘击穿等。 (2)天气恶劣等自然灾害所致。例如:线路落雷、导线因风力过大,树木短接或建筑物距离过近等。 (3)输电线断线致使发生单相接地故障。例如:导线断线落地或搭在横担上、配电变压器高压引下线断线等。 (4)飞禽等外力致使发生单相接地故障。例如:鸟害、飘浮物(如塑料布、树枝等。 (5)人为操作失误致使发生单相接地故障等。 10kV系统的馈线上发生单相接地故障的危害除了使非故障两相电压升高以

直流系统接地故障问题分析及排查方法在变电站直流系统为控制、信号、继电保护、自动装置、事故照明及操作等提供可靠的直流电源,其正常与否对变电站的安全运行至关重要。但实际运行中,由于气候环境影响、设备的维护不够恰当、直流回路中混入了交流电、寄生回路存在等原因都可能会引起直流系统接地。直流系统容易发生单点接地。虽然单点接地不引起危害,但若演变成两点接地将造成保护误动或拒动、信息指示不正确、熔断器熔断等严重事件。无论何种原因,直流接地事故都会影响其她电力设备的正常运行,严重者,会导致整个电网系统的瘫痪,造成无法挽回的重大损失保护好直流系统的正常运行就是变电站工作的重中之重,因此,对直流系统接地故障必须采取早发现、早消除、勤防范策略 一、直流系统接地的危害 直流系统一般用于变电所控制母线、合闸母线、UPS不间断电源,也用作其她电源与逻辑控制回路。直流系统就是一个绝缘系统,绝缘电阻达数十兆欧,在其正常工作时,直流系统正、负极对地绝缘电阻相等,对地电压也就是相对平衡的。当发生一点接地时,其正、负极对地电压发生变化,接地极对地电压降低,非接地极电压升高,控制回路与供电可靠性会大大降低,但一般不会引发电气控制系统的次生故障。可就是,当直流系统有两点或多点接地时,极易引起逻辑控制回路误动作、直流保险熔断,使保护及自动装置、控制回路失去电源,在复杂保护回路中同极两点接地,还可能将某些继电器短接,不能动作跳闸,致使越级跳

闸,造成事故扩大。规程严格规定:直流系统多点同极接地,应停止直流系统一切工作,也就是基于其故障性质的不确定因素。 1、直流系统正极接地的危害 当发生直流正极接地时,可能会引起保护及自动装置误动。因为一般断路器的跳合闸线圈以及继电器线圈就是与负极电源接通的,如果在这些回路上再发生另一点直流接地,就可能引起误动作。 如上图所示,A、B两点发生直流接地时,相当于将外部合闸条件全部短接,从而使合闸线圈得电误动作合闸。A、C两点接地时,则外部分闸条件被短接而误动作跳闸。A、D两点,A、F两点接地,同样都能造成开关误跳闸。

单相接地故障的特征及处理 10kV(35kV)小电流接系统单相接(以下简称单相接是配电系统最常见故障,多发生潮湿、多雨天气。树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起。单相接影响了用户正常供电,可能产生过电压,烧坏设备,引起相间短路而扩大事故。,熟悉接故障处理方法对值班人员来说十分重要。 1几种接故障特征 (1)当发生一相(如A相)不完全接时,即高电阻或电弧接,这时故障相电压降低,非故障相电压升高,它们大于相电压,但达不到线电压。电压互感器开口三角处电压达到整定值,电压继电器动作,发出接信号。 (2)发生A相完全接,则故障相电压降到零,非故障相电压升高到线电压。此时电压互感器开口三角处出现100V电压,电压继电器动作,发出接信号。 (3)电压互感器高压侧出现一相(A相)断线或熔断件熔断,此时故障相指示不为零,这是此相电压表二次回路中经互感器线圈和其他两相电压表形成串联回路,出现比较小电压指示,但该相实际电压,非故障相仍为相电压。互感器开口三角处会出现35V左右电压值,并启动继电器,发出接信号。 (4)系统中存容性和感性参数元件,特别是带有铁芯铁磁电感元件,参数组合不匹配时会引起铁磁谐振,继电器动作,发出接信号。 (5)空载母线虚假接现象。母线空载运行时,也可能会出现三相电压不平衡,发出接信号。但当送上一条线路后接现象会自行消失。 2单相接故障处理 (1)处理接故障步骤: ①发生单相接故障后,值班人员应马上复归音响,作好记录,迅速报告当值调度和有关负责人员,并按当值调度员命令寻找接故障,但具体查找方法由现场值班员自己选择。 ②详细检查所内电气设备有无明显故障迹象,不能找出故障点,再进行线路接寻找。 ③将母线分段运行,并列运行变压器分列运行,以判定单相接区域。 ④再拉开母线无功补偿电容器断路器以及空载线路。对多电源线路,应采取转移负荷,改变供电方式来寻找接故障点。 ⑤采用一拉一合方式进行试拉寻找故障点,当拉开某条线路断路器接现象消失,便可判断它为故障线路,并马上汇报当值调度员听候处理,同时对故障线路断路器、隔离开关、穿墙套管等设备做进一步检查。 (2)处理接故障要求: ①寻找和处理单相接故障时,应作好安全措施,保证人身安全。当设备发生接时,室内不接近故障点4m以内,室外不接近故障点8m以内,进入上述范围工作人员必须穿绝缘靴,戴绝缘手套,使用专用工具。 ②减小停电范围和负面影响,寻找单相接故障时,应先试拉线路长、分支多、历次故障多和负荷轻以及用电性质次要线路,然后试拉线路短、负荷重、分支少、用点性质重要线路。双电源用户可先倒换电源再试拉,专用线路应先行通知。若有关人员汇报某条线路上有故障迹象时,可先试拉这条线路。 ③若电压互感器高压熔断件熔断,不用普通熔断件代替。必须用额定电流为0.5A装填有石英砂瓷管熔断器,这种熔断器有良好灭弧性能和较大断流容量,具有限制短路电流作用。 3结束语 减少单相接故障给电网运行带来不良影响,要求值班人员熟悉有关运行规程,了解设备运行状况,实践中不断总结经验,提高处理问题能力,还要积极改善设备运行条件,及时消除设备缺陷,保持设备清洁,提高设备绝缘水平。同时,还要加强配电线路检修、维护管理,提高配电线路检修人员技术水平,缩短查找处理接故障时间,尽快恢复对用户供电。

直流系统接地故障的分析与处理 发表时间:2019-11-28T10:07:51.430Z 来源:《云南电业》2019年6期作者:滕飞[导读] 直流系统是控制及信号系统、继电保护及自动装置的工作电源,直流系统的可靠性直接影响整个发电机组系统的安全。 滕飞 (大唐长春第二热电有限责任公司吉林长春 130031) 摘要:直流系统是控制及信号系统、继电保护及自动装置的工作电源,直流系统的可靠性直接影响整个发电机组系统的安全。通过对直流系统接地故障的原因及危害进行分析,从现场实际出发,提出了处理原则及可行的处理方法,同时就几种直流系统接地故障检测方法及存在的问题进行了分析。 关键词:直流系统接地;危害;处理方法;监测装置 直流电源作为电力系统的重要组成部分,是发电厂主要电气设备的保安电源,是一个十分庞大的多分支供电网络。它是一个独立的电源,不受发电机、厂用电以及系统运行方式改变的影响,为一些重要的常规负荷、电力系统的控制回路、信号回路、继电保护、自动装置等提供可靠稳定的不间断电源,并提供事故照明电源,同时它还为断路器的分、合闸提供操作电源。直流系统发生一点接地,不会产生短路电流,则可继续运行。但是必须及时查找接地点并尽快消除接地故障,否则当发生另一点接地时,就有可能引起信号装置、继电保护及自动装置、断路器的误动作或拒绝动作,有可能造成直流电源短路,引起熔断器熔断,或快分电源开关断开,使设备失去操作电源,引发电力系统严重故障乃至事故。 1.直流系统故障接地的原因 发电厂直流系统分布范围广、所接设备多、回路复杂,在长期运行过程中会由于环境的改变、气候的变化、电缆以及接头的老化,设备本身的问题等,使得直流系统某些元件绝缘性能降低,而不可避免的发生直流系统接地。特别在发电厂机组大小修或机组扩建过程中,由于施工及安装的种种问题,难以避免的会遗留电力系统故障的隐患,直流系统更是一个薄弱环节。投运时间越长的系统接地故障的概率越大。 1.1 人为因素 人为因素即由于工作人员疏忽所造成的接地。如在带电二次回路上工作将直流电源误碰设备外壳,此种情况多为瞬间接地;较严重的情况如在电缆沟施工将带电控制电缆损伤造成接地;再如检修人员清扫设备卫生时不慎将直流回路喷上水等。,检修人员检修质量的不过关也会留下接地隐患。如室外设备未加防雨罩、二次回路漏接线头、误将控制电缆外皮绝缘损伤等,使二次回路及设备严重污秽和受潮、接线盒进水、汽,使直流对地绝缘严重下降。此时接地信号不一定立刻发出,但具备一定外部条件如潮湿或操作设备时就可能引起直流接地。 1.2 设备因素 二次回路绝缘材料不合格、绝缘性能低,或年久失修、严重老化。或存在某些损伤缺陷、如磨伤、砸伤、压伤、扭伤或过流引起的烧伤等,可能造成直流接地现象。直流回路在运行中常常受到多种不利因素的影响,如设备传动过程中的机械振动、挤压、设备质量不良、直流系统绝缘老化等都可引起接地或成为一种接地隐患。气候因素造成接地是一种最常见的情况,如雨天或雾天可能直接造成直流接地或引发直流接地。 1.3 其他因素 小动物进入或小金属零件掉落在元件上造成直流接地故障,;某些元件有线头、未使用的螺丝、垫圈等零件,掉落在带电回路上也会造成直流系统接地。 2 直流系统接地故障的危害 直流系统接地一般包括直流系统一点接地和直流系统两点接地。 2.1直流一点接地的危害 在直流系统中,直流正、负极对地是绝缘的,在发生一极接地时由于没有构成接地电流的通路而不引起任何危害。但一极在接地情况下长期运行是不允许的,因为在同一极的另一处又发生接地时,就可能造成信号装置、继电保护或控制回路的不正确动作。直流系统发生正极接地有造成保护误动作的可能。直流负极接地与正极接地同一道理,如果回路中再有一点发生接地,就可能使跳闸或合闸回路短路,造成保护或断路器拒绝动作,使事故扩大,甚至烧毁继电器或使熔断器熔断等。 2.2直流两点接地的危害 发生一点接地后再发生另一极接地就将造成直流短路。两极两点同时接地将跳闸或合闸回路短路,不仅可能使熔断器熔断,还可能烧坏继电器的接点直流系统发生两点接地故障,便可能构成接地短路,造成继电保护、信号、自动装置误动或拒动,或造成直流保险熔断,使保护及自动装置、控制回路失去电源。在复杂的保护回路中同极两点接地,还可能将某些继电器短接,不能动作于跳闸、致使越级跳闸。直流系统接地故障,不仅对设备不利,而且对整个电力系统的安全构成威胁。 3 直流系统接地故障的处理 排除直流接地故障,首先要找到接地的位置,这就是我们常说的接地故障定位。直流接地大多数情况不是一个点,可能是多个点,真正通过一个金属点去接地的情况是比较少见的。更多的会由于空气潮湿,尘土粘贴,电缆破损,或设备某部分的绝缘降低,或外界其它不明因素所造成。大量的接地故障并不稳定,随着环境变化而变化。因此在现场查找直流接地是一个较为复杂的问题。 3.1 处理原则 查找直流系统接地故障,由两人及以上配合进行,其中一人操作(切断时间为1-2秒),一人监护并监视表计指示及信号的变化。操作前应与有关值班人员联系,准备好安全工具,如绝缘鞋、绝缘手套、相关仪器等。如一点接地时,在查找过程中,防止人为造成短路或另一点接地,导致误跳闸。如需瞬间停电,应先拉合闸电源,后拉操作、信号电源。

高压线路单相接地故障分析 一、高压线路接地故障的确定 1、接到值班调度员关于高压线路接地通知时,要询问清楚是哪条线路哪相接地,各相接地电压数值是多少,变化情况如何(数值是不断变化还是比较稳定),以便于对接地情况进一步分析。 2、排除变电所(发电厂)绝缘监视装置本身故障。 如果是一相对地电压为零值,另两相对地电压正常,这可能是绝缘监视装置本身故障引起。如果是一相对地电压为零或很低,另两相电压升高,或一相对地电压升高,另两相对地电压降低,这都表明是高压线路接地或一相断相。 3、排除高压用户内部高压接地故障。 ⑴向高压用户说明接地线路名称,接地相名称,责成高压用户对高压设备进行详细巡察,以查明是否有接地故障。 ⑵电缆进户的高压用户可用钳型电流表测全电缆电流。如等于零值或接近零值,则此高压用户无接地可能,如测电缆三相电流之和接近高压系统接地电流,则说明接地故障点在该用户内部。 ⑶对负荷性质不甚重要又极为可疑用户,可要求其暂停电1分钟(核准时间),用验电器检验开关电源三相电压,就可以确定该用户内部是否有接地故障。 ⑷要将高压线路缺相与接地故障很好区别。 高压线路上的跌落式熔断器熔断一相或高压发生断线,被断开的线路又较长,绝缘监视装置中的三相对地电压表也会发生指示数值不平衡,且类似接地情况。 如果三相对地电压表指示数值虽然不平衡,但又无明显的接地特征时,应当设法与该线路末端用户联系,如果用户三相电压正常,说明没发生高压断相而是接地所引起。 二、高压线路接地状态分析 1、一相对地电压接近零值,另两相对地电压升高3倍,这是金属性直接接地。 ⑴如果在雷雨时发生,可能是绝缘子被击穿,避雷器因受潮绝缘被击穿,或导线被击断电源侧落在比较潮湿的地面上引起的。 ⑵如果在有风天发生此类接地,可能是金属物被刮到高压带电体上;也可能是仍在高压设备上的金属物被风刮成接地;也有可能是避雷器、变压器,跌落式熔断器引线被刮断形成稳定性接地。 ⑶如果是在良好的天气里发生,可能是外力破坏扔金属物或吊车等撞断一相高压线落在接地较良好的物件上,也有可能是高压电缆击穿接地。 2、一相对地电压降低,但不是零值,另两相对地电压升高,但没升高到3倍。这是属于非金 属性接地特征。有以下几种可能: ⑴如果在雷雨天发生,可能是一相导线被击断电源侧落在不太潮湿的地面上;如伴有大风,也有可能是比较潮湿的树枝搭在导线与横担之间形成接地。 ⑵配变变压器高压绕组烧断后碰到外壳上或内层严重烧损主绝缘击穿而接地。 3、一相对地电压升高,另两相对地电压降低,这是非金属性接地和高压断相特征。 ⑴高压断一相但电源侧没落地,负荷侧导线落在潮湿的地面上,没断线的两相通过负载与已接地导线相连,构成非金属性直接接地。没断相对地电压降低,断线相对地电压反而升高。 ⑵高压断线没落地或落在导电性能不好的物体上,或者装在线路上的高压熔断器熔断一相。假如被断开线路较长,造成三相对地电容电流不平衡,促使三相对地电压也不平衡,断线相对地电容电流变小,对地电压相对升高,其它两相相对较低。

安全管理编号:YTO-FS-PD548 单相接地故障的特征及处理通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

单相接地故障的特征及处理通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 10kV(35kV)小电流接地系统单相接地(以下简称单相接地)是配电系统最常见的故障,多发生在潮湿、多雨天气。由于树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起的。单相接地不仅影响了用户的正常供电,而且可能产生过电压,烧坏设备,甚至引起相间短路而扩大事故。因此,熟悉接地故障的处理方法对值班人员来说十分重要。 1 几种接地故障的特征 (1)当发生一相(如A相)不完全接地时,即通过高电阻或电弧接地,这时故障相的电压降低,非故障相的电压升高,它们大于相电压,但达不到线电压。电压互感器开口三角处的电压达到整定值,电压继电器动作,发出接地信号。 (2)如果发生A相完全接地,则故障相的电压降到零,非故障相的电压升高到线电压。此时电压互感器开口三角处出现100V电压,电压继电器动作,发出接地信号。 (3)电压互感器高压侧出现一相(A相)断线或熔断件熔

配电网单相接地故障原因分析 发表时间:2018-08-17T13:40:38.403Z 来源:《河南电力》2018年4期作者:赵明露 [导读] 当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 (新疆光源电力勘察设计院有限责任公司新疆乌鲁木齐 830000) 摘要:配电网在电网中使用广泛,其运行的可靠性和安全性对促进社会的发展和提高人民的生活质量有着很大的作用。但是配电网也常出现单相接地故障,对社会经济发展和人民生活质量造成很大的影响。因此本文主要对配电网单相接地故障及处理进行探析,重点分析配电网单相接地故障原因及对电网的影响,同时也提出针对故障处理的一些措施及方法。通过对配电网单相接地故障定位及应用实例的探析指出,当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 关键词:配电网;单相接地故障;原因分析 导言 针对小电流接地系统过电压等弊端,特别是故障线路选择、故障点定位、测距的困难性,有专家建议我国配电网改用小电阻接地方式。但这样不仅要花费巨额的设备改造费,还丧失了小电流接地系统供电可靠性高的优点。随着社会的发展,对供电质量的要求越来越高,小电流接地方式无疑具有独特的优点。如果能够解决小电流接地故障的可靠检测问题,及时发现接地故障线路,找到故障点,并采取相应的处理措施,减少甚至避免接地故障带来的不良影响,小电流接地方式将是一种理想的模式。因此,研究中低压配电网的单相接地故障特征很有必要。 1配电网单项接地故障的影响 1.1线路影响 配电网发生单项接地故障时,故障点的位置会出现弧光接地,在附近的线路中形成谐振过电压,与正常配电网运行时相比,过电压要高出几倍,超出线路的承载范围,直接烧毁线路,或者是击穿绝缘子引起短路。单项接地故障对配电网线路的影响是直接性的,线路多次处于电压升高的状态,就会加速绝缘老化,配电网线路运行期间,有可能发生短路、断电的情况。 1.2设备影响 单项接地故障产生零序电流,容易在变电设备周围形成零序电压,不仅增加设备内的励磁电流,也会引起过电压的现象,导致设备面临着被烧毁的危害。例如:某室外配电网发生单项接地故障后,击穿变电设备的绝缘子,此时单项接地故障对变电设备的影响较大,导致该地区停电一天,引起了较大的经济损失,更是增加了设备维护的压力。 1.3人为因素造成单相接地故障 由于部分线路沿公路侧架设,道路车流量大,部分驾驶员违章驾驶,造成车辆撞倒、撞断杆塔的事件时有发生。城市转型升级建设步伐加快,伴随着三旧改造,大量的市政施工及基建项目不断涌现,基面开挖伤及地下敷设的电缆,施工机械碰触线路带电部位。因为不法分子这些贪图私利的窃盗行为引发电网故障,造成大规模大范围停电,给社会发展和人们生活带来了极大的影响。 2配电网系统单相接地故障的检测技术应用分析 在对单相接地故障进行检测过程中,传统的故障检测方法因为自身的局限性比较多,因此,需要全新的检测技术开展故障检测。本次研究过程中主要提出了S型注入法和TY型小电流接地系统单性接地选线和定位装置在配电网单项接地故障检测中的应用。 在实际故障检测过程中,首先将处于运行状态下的TV向接地线中注入相应的信号,并通过信号追踪和定位原理直接检查到故障点。设备和技术在实际应用过程中,该装置的原理和传统的故障检测方法存在很大的区别,在具备选线功能的前提下,还应该具备故障定位功能,这项技术在单相接地故障中有着广泛的应用前景。从这种故障诊断装置的组成分析,主要包括了主机、信号电流检测器等几个部分。在检测过程中,主机在信号发出之后,利用TV二次端子接入到故障线路中,从而通过自身的接地点达到回流的目的,主机内部要安装好信号检测器,当配电网系统中出现了接地故障之后,主机中的信号检测器就会自动启动,并向着故障相中输入特殊的故障信号,此时工作人员可以根据这个信号判断出故障点在哪一个位置上。如果配电网系统中某一个线路存在单相接地故障,变电站母线TV二次开口三角绕组输出电压将装置启动,这时装置就会对存在单相接地故障故障点进行自动判断,同时,在与之相对应的TB二次端口中注入220Hz的特殊信号,并利用TV将其转变转化后体现在整个配电网系统中。故障相和大地形成一个完成的回路,并使用无线检测设备对这种信号进行跟踪检测,从而就能实现对故障位置的精确定位。 3处理方法 3.1精准快速查找出故障区间 当发生单相接地故障后,工作人员第一时间要做的是精准快速查找出故障区间,以便后面故障处理行动的开展。因此,如何能精准快速查找出成了重要的问题。针对传统方法很难精准快速查找出故障区间的问题,本文提出的是一种小电流接地系统单相接地故障定位的方法。在供电线路干线和分支线路的出口处均布置零序电流测点,编号各个测点,测量数据。当某条出线线路发生单相接地时,故障相线对地的电压将降低,若是金属性的完全接地甚至能降为0kV,非故障相线对地电压将升高,若是金属性的完全接地甚至能升为线电压。此时利用小电流接地系统单相接地时所产生的零序电流,能准确判断出发生故障的线路及故障区间。利用测点确定故障支路,为后面故障处理工作提供依据。 3.2做好管理层面的预防工作 3.2.1在日常做好线路检修和巡视工作,采用定期和不定期的巡视方式,及时排出线路中可能存在的隐患,尤其是要注意高大建筑物、树木和线路之间的安全距离,做好绝缘子加固、更换工作,保证线路达到标准化程度,做好防雷击保护工作。 3.2.2在不同的运行环境应该采用合适的运行和维修措施,尤其是在容易受到污染的区域,要保证绝缘设备的绝缘能力,提高绝缘子的抗电压水平,这样才能更好地促进整个电网绝缘性能的提升。 3.3严谨快速抢修 当工作人员找出精准故障区间后,在天气晴朗条件允许的情况下,供电部门应及时派出有经验的工作人员快速到达故障地进行抢修。

变电站线路单相接地故障处理及典型案例分析 [摘要] 在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大比例.本文通过对某地区工典型故障案例进行分析,介绍了处理方法,并对相关的知识点进行阐述,为现场运行人员正确判断和分析事故原因提供了借鉴。 [关键词]大电流接地系统;小电流接地系统;判断;分析 我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。 为帮助运行人员正确判断和分析大电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV线路单相瞬时接地故障,并对相关的知识点进行分析。 说明,此案例分析以FHS变电站为主。 本案例分析的知识点: (1)大电流接地系统与小电流接地系统的概念。 (2)单相瞬时性接地故障的判断与分析。 (3)单相瞬时性接地故障的处理方法。 (4)保护动作信号分析。 (5)单相重合闸分析。 (6)单相重合闸动作时限选择分析。 (7)录波图信息分析。 (8)微机打印报告信息分析。 一、大电流接地系统、小电流接地系统的概念 在我国,电力系统中性点接地方式有三种: (1)中性点直接接地方式。 (2)中性点经消弧线圈接地方式。 (3)中性点不接地方式。 110kV及以上电网的中性点均采用中性点直接接地方式。 中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。 大电流接地系统与小电流接地系统的划分标准是依据系统的零序电抗X0与正序电抗X1的比值X0/X1。 我国规定:凡是X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统则属于小接地电流系统。事故涉及的线路及保护配置图事故涉及的线路和保护配置如图2-1所示,两变电站之间为双回线,线路长度为66.76km。

变电站直流系统接地故障分析及对策 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

变电站直流系统接地故障分析及对策1.引言 直流电源作为电力系统的重要组成部分,为一些重要常规负荷、继电保护及自动装置、远动通讯装置提供不间断供电电源,并提供事故照明电源。直流系统发生一点接地,不会产生短路电流,则可继续运行。但是必须及时查找接地点并尽快消除接地故障,否则当发生另一点接地时,就有可能引起信号装置、继电保护及自动装置、断路器的误动作或拒绝动作,有可能造成直流电源短路,引起熔断器熔断,或快分电源开关断开,使设备失去操作电源,引发电力系统严重故障乃至事故。因此,不允许直流系统在一点接地情况下长时间运行,必须加强在线监测,迅速查找并排除接地故障,杜绝因直流系统接地而引起的电力系统故障。 2.造成变电站直流系统接地的几种原因 (1)雷雨季节,室外端子箱或机构箱内潮湿积水导致直流二次回路中的正电源或负电源对地绝缘电阻下降,严重者可能到零,从而形成接地。

(2)部分型号手车开关的可动部分与固定部分的连接插头或插座缺少可靠的绝缘隔离措施,手车来回移动导致其中导线破损,从而使直流回路与开关金属部分相接触,从而导致接地。 (3)部分直流系统已运行多年,二次设备绝缘老化、破损,极易出现接地现象。 (4)因施工工艺不严格,造成直流回路出现裸线、线头接触柜体等,引起接地。 3.查找接地故障的基本原则和方法 (1)一般处理原则:根据现场运行方式、操作情况、气候影响来判断可能接地的地点,按照先室外后室内,先合闸后控制,由总电源到分路电源,逐步缩小范围的原则,采取拉路寻找、处理的方法。应注意:切断各专用直流回路的时间不要过长(一般不超过3秒钟),不论回路接地与否均应合上。 (2)具体处理方法:首先,了解现场直流电源系统构成情况,通过直流系统绝缘监测装置或接地试验按钮初步判断是直流正极接地还是负极接地(以下假设绝缘监测可靠,并假设正接地)。然后,瞬时切除所有合闸电源开关,如接地信号消失,说明接地点在合闸回路,应对站内

小电流接地系统 单相接地故障分析与检测 为了提高供电可靠性,配电网中一般采取变压器中性点不接地或经消弧线圈和高阻抗接地方式,这样当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,因而这种系统被称为小电流接地系统。 小电流接地系统中单相接地故障是一种常见的临时性故障,当该故障发生时,由于故障点的电流很小,且三相之间的线电压仍保持对称,对负荷设备的供电没有影响,所以允许系统内的设备短时运行,一般情况下可运行1-2个小时而不必跳闸,从而提高了供电的可靠性。但一相发生接地,导致其他两相的对地电压升高为相电压的倍,这样会对设备的绝缘造成威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起去系统过压。然而当系统发生单相接地故障时,由于构不成回路,接地电流是分布电容电流,数值比负荷电流小得多,故障特征不明显,因此接地故障检测仍是一项世界难题,很多技术有待克服。 单相接地故障分析 当任意两个导体之间隔着绝缘介质时会形成电容,因此在简单电网中,中性 ,在相电压作用下,点不接地系统正常运行时,各相线路对地有相同的对地电容C 每相都有一个超前于相电压900的对地电容电流流入地中,然而由于电容的大小与电容极板面积成正比而与极板距离成反比,所以线路的对地电容,特别是架空线路对地电容很小,容抗很大,对地电容电流很小。 系统正常运行时,如图1,由于三相相电压U A、U B、U C是对称的,三相对地电容电流I co.A、I co.B、I co.C也是平衡的,因此,三相的对地电容电流矢量和为0,没有电流流向大地,每相对地电压就等于相电压。

图1中性点不接地电力系统电路图与矢量图 当系统中某一相出现接地故障后,假设C相接地,如图2所示,相当于在C 相的对地电容中并联了一个大电阻,由于故障电流I C没有返回电源的通路,只能通过另外两项非故障A、B相线路的对地电容返回电源。此时C相线路的对地电压为U C’ = U CD = 0,而A相对地线电压即U A’ = U AD = U AC = -U CA = -U C∠-300 = U B∠-900,而B相对地线电压即U B’ = U BC = U B∠-300,则U A’和U B’相差600。非故障相中流向故障点的电容电流I AC= U A’jwC0,I BC= U B’jwC0,且I AC、I BC超前U A’和U B’ 900,I AC、I BC大小相等为I co.A之间相差600。 图2中性点不接地电力系统发生C相接地故障电路图与矢量图由此可见,C相接地时,不接地的A、B两相对地电压U A’和U B’由原来的相电压升高到线电压,即值升高到原来的倍,相位由原来的相差1200变为相差600。此时,从接地点流回的电流I C应为A、B两相的对地电容电流之和,即I C = I AC + I BC。

10kV单相接地故障的分析 贺红星贵州省榕江县电力局调度所(557200) 榕江县电力局调度所在调度运行日志记录中出现10kV单相接地信号62次,每次均发信号,但所测10kV每相电压却各不相同,这是为什么呢 1 故障分析 目前各县级电力企业,都是以110kV变电所为电源点,以35kV输电线为骨架,以10kV配电线为网络,以小水电站为补充的一个网架结构。由于电压等级较低,输配电线路不长,对地电容较小,因此,属于小接地电流系统。当小接地电流系统发生单相接地时,由于没有直接构成回路,接地电容电流比负载电流小得多,而且系统线电压仍然保持对称,不影响对用户的供电。因此,规程规定允许带一个接地点继续运行不超过2h。但是由于非故障相对地电压的升高,对绝缘造成威胁。因此,对已发生接地的线路,应尽快发现并处理。这就要借助系统中设置的绝缘监察装置,来对故障作出准确的判断和处理。 对于绝缘监察装置,我们通常采用三相五柱式电压互感器加上电压继电器、信号继电器及监视仪表构成。它由五个铁芯柱组成,有一组原绕组和二组副绕组,均绕在三个中间柱上,其接线方式是:ynynd。这种接线的优点是第一副绕组不仅能测量线电压,而且还能测相电压;第二副绕组接成开口三角形,能反映零序电压。当网络在正常情况下,第一副绕组的三相电压是对称的,开口三角形开口端理论上无电压,当网络中发生单相金属性接地时(假设A相),网络中就出现了零序电压。网络中发生非金属性单相接地时,开口两端点间同样感应出电压,因此,当开口端达到电压继电器的动作电压时,电压继电器和信号继电器均动作,发出音响及灯光信号。值班人员根据信号和电压表指示,便可以知道发生了接地并判定接地相别,然后向调度值班员汇报。但必须指出,绝缘监察装置是一段母线共用的,它必竟不是人脑,不可能选择鉴别故障类型,由于实际情况要比书本上的理论复杂得多,恶劣天气、网络中高压熔丝熔断、电网中的高次谐波及电压互感器本身的误差等一系列问题,都可能使电压互感器二次侧开口三角形绕组感应出不平衡电压,使电压继电器、信号继电器动作,发出虚假接地信号。 2 故障现象类型 根据运行经验及现场处理人员反馈的情况分析,把62例接地故障现象分为以下几种类型:

电力系统接地故障与处理分析 发表时间:2018-08-17T10:15:26.937Z 来源:《电力设备》2018年第15期作者:李晓宏[导读] 摘要:改革开放以来,随着国家的不断发展,社会城市化进程的不断加快,人民生活水平的日益提升,我国电力需求量逐年增加,这就进一步加大了我国电力系统的压力。 (内蒙古霍煤鸿骏铝电有限责任公司电力分公司内蒙古通辽 029200)摘要:改革开放以来,随着国家的不断发展,社会城市化进程的不断加快,人民生活水平的日益提升,我国电力需求量逐年增加,这就进一步加大了我国电力系统的压力。电力系统与人们的日常生活息息相关,一旦出现故障,不但会影响系统的正常运转,还会进一步干扰正常的生产生活,甚至埋下巨大的安全隐患。因此,如何查明并处理电力系统接地故障,是目前需要解决的一个问题。本文就主要介绍 了电力系统接地故障的原因与处理措施,希望可以提供一些参考,进一步推动我国电力行业的发展。 关键词:电力系统;接地故障;处理分析 1 电力系统接地故障的原因判断 1.1 常见故障问题 在电阻性单点接地的情况下,导致接地电阻值逐步降低甚至低于直流系统预定值。此时电力系统绝缘监测装置发出报警信号,为保证接地故障诊断的准确性,可运用绝缘检测仪对支路接地进行检查,并结合故障范围排除接地故障。在多点经高阻接地条件卜,电力系统总接地电阻会逐渐下降甚至低于电力系统预定值,此时电力系统绝缘检测装置发出报警信号,应对不同支路接地电阻进行详细检测,对比分析电阻值情况,以确保接地故障排查的可靠性。电力系统运行中多分支接地故障往往与多个电源点存在密切联系,导致正负电源出现接地故障,且断开一条支路后其他支路仍存在接地故障。为保证接地故障排查的整体效果,检查人员应从整个电力系统入手解列直流系统,循序渐进排查故障点,以确保电力系统接地故障得到妥善解决。 1.2 气候原因 发电厂直流系统中造成接地故障的主要原因与影响因素进行分析,其中最常见的就是气候的原因。通常情况下,恶劣的天气很容易造成直流系统接地故障的产生。在发电厂厂工程的施工过程中如果出现了发电厂内部的设备密封出现问题,就会在工作中出现渗水的现象,如果发生了霜雪更或者渗透的现象就会导致直流系统的节抵扣与导线的文职出现严重的腐蚀。时间一长,腐蚀的部位就会影响发电厂系统的正常运行。 1.3 野生动物原因 在电力系统的运行中的发电厂直流系统中的接线盒需要长期的暴露在外面。所以长时间就会受到多种动物的伤害,这一装置有没有专门的人员看守,因此在野外的环境中会被老鼠不断的啃食。被破坏的接线盒就会将电缆暴露在外面,还会影响发电厂直流接地系统的正常运行。根据相关统计,我国目前很多的很多的发电厂中直流系统的接地故障都是受到动物的伤害。所以,相关部门的管理人员需要制定相关的预防方案,减少这一系统中接地故障的发生概率。 1.4 开关使用发生变形 火力发电厂电力系统接地中,由于全封闭开关的小木柜体在系统运行中开关频率较高,导致其出现严重的变形情况,使得开关柜体产生接地电流,导致接地故障。部分开关把手的设置不规范,固定部位与开关部位之问并未进行绝缘保护,开关变形促使电流与金属导体相互接触,导致电力系统接地故障。 2 电力系统接地故障防护措施 2.1 严格做好日常检查 为有效防范火力发电厂电力系统接地故障,电力工作者应严格做好日常检查工作,确保三相变电的电流与电压保持正常状态,定期做好电源电流值输出的检查工作,确认满足相关标准值范围,并密切监测电力系统运行状态,确认运行中无噪音。不同模块输出电流应保持正常流向,尤其是正负极对接电流绝缘处理应规范,以免埋卜故障隐患。电力检查人员应随时检查通讯设备的功能,发现问题及行处理。定期检查充电模块的供电监控系统运行状态,准确记录检测结果,并以充电模块相关检查为充电电流与电压工况检查提供可靠数据支持,从而保证火力发电厂电力系统日常检查的规范性和有效性,降低电力系统接地故障的发生几率。 2.2 及时查找故障原因 2.2.1 利用绝缘监测装置判断 在安装设备时通常会直接将绝缘监测装置安装在直流母线上。当其处于止常运行状态下时,绝缘监测装置会以数字的形式显示出母线电压,并对直流系统正极和负极母线绝缘情况、母线的运行情况实时监测,并对接地故障进行报告。当前微机选线型直流绝缘监测装置在变电站中应用较为广泛,其不仅能够实时监测直流系统,而且能够对直流系统止负极和支路的对地绝缘状况等信息进行直接测量。应用绝缘监测装置时,在不切断直流同路负荷的情况下即能够寻找故障点。但当平衡桥电阻和切换电阻参数等设计中存在不合理情况时,直流系统止负极对地电压波动会较大,部分时候一点接地还会有误动作发生。 2.2.2 拉回路法进行判断 在电力系统的运行中对于发电厂的直流系统接地故障的查找方法有很多中,这些问题中最常见的就是拉回路法。这种方法的优势就是操作比较的简单,在实际的工作中应用比较的普遍。使用这一方法需要注意的是:第一,需要将照明的回路电源与操作回路的电源进行切断。这样可以保证工作人员的安全,然后在对发电厂中的直流系统进行注意的检查。在这一过程中需要工作人员具备专业的知识与技能。只有具有丰富知识的技术人员才可以在较短的时间内找到故障的主要问题,并及早的解决问题。 2.2.3 便携式定位装置检测法判断 与上述的两种方法相比较,便携式定位装置检测的方法具有的优势就是,使用效率更高,具有更多的优势。因为这种方法的使用可以利用先进的技术方法,便于更快的找到故障的问题,还不用将回路电源进行切断。这是便携式定位装置检测方法的优势,这在发电厂系统的故障检测中具有重要的作用。有利于可持续发展目标的实现,该可以从根本上解决故障问题。对发电厂直流系统的正常运行起到保障的作用。 2.3 有效维护监控系统设备

直流系统接地故障问题分析及排查方法 在变电站直流系统为控制、信号、继电保护、自动装置、事故照明及操作等提供可靠的直流电源,其正常与否对变电站的安全运行至关重要。但实际运行中,由于气候环境影响、设备的维护不够恰当、直流回路中混入了交流电、寄生回路存在等原因都可能会引起直流系统接地。直流系统容易发生单点接地。虽然单点接地不引起危害,但若演变成两点接地将造成保护误动或拒动、信息指示不正确、熔断器熔断等严重事件。无论何种原因,直流接地事故都会影响其他电力设备的正常运行,严重者,会导致整个电网系统的瘫痪,造成无法挽回的重大损失保护好直流系统的正常运行是变电站工作的重中之重,因此,对直流系统接地故障必须采取早发现、早消除、勤防策略 一、直流系统接地的危害 直流系统一般用于变电所控制母线、合闸母线、UPS不间断电源,也用作其他电源和逻辑控制回路。直流系统是一个绝缘系统,绝缘电阻达数十兆欧,在其正常工作时,直流系统正、负极对地绝缘电阻相等,对地电压也是相对平衡的。当发生一点接地时,其正、负极对地电压发生变化,接地极对地电压降低,非接地极电压升高,控制回路和供电可靠性会大大降低,但一般不会引发电气控制系统的次生故障。可是,当直流系统有两点或多点接地时,极易引起逻辑控制回路误动作、直流保险熔断,使保护及自动装置、控制回路失去电源,在复杂

保护回路中同极两点接地,还可能将某些继电器短接,不能动作跳闸,致使越级跳闸,造成事故扩大。规程严格规定:直流系统多点同极接地,应停止直流系统一切工作,也是基于其故障性质的不确定因素。 1、直流系统正极接地的危害 当发生直流正极接地时,可能会引起保护及自动装置误动。因为一般断路器的跳合闸线圈以及继电器线圈是与负极电源接通的,如果在这些回路上再发生另一点直流接地,就可能引起误动作。 如上图所示,A、B两点发生直流接地时,相当于将外部合闸条件全部短接,从而使合闸线圈得电误动作合闸。A、C两点接地时,则外

6kV系统单相接地故障分析及查找电力系统可分为大电流接地系统(包括直接接地、经电抗接地和低阻接地)、小电流接地系统(包括高阻接地,消弧线圈接地和不接地)。我国3~66kV电力系统大多数采用中性点不接地或经消弧线圈接地的运行方式,即为小电流接地系统。在小电流接地系统中,单相接地是一种常见故障。6kV配电线路在实际运行中,经常发生单相接地故障,特别是在雨季、大风和雪等恶劣天气条件下,单相接地故障更是频繁发生。发生单相接地后,故障相对地电压降低,非故障两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统可运行1~2 h,这也是小电流接地系统的最大优点;但是,若发生单相接地故障后电网长时间运行,会严重影响变电设备和配电网的安全经济运行。 1 单相接地故障的特征及检测装置 1.1 单相接地故障的特征 中央信号后台报警,绝缘监察电压表指示:故障相电压降低(不完全接地)或为零(完全接地),另两相电压升高,大于相电压(不完全接地)或等于线电压(完全接地),稳定性接地时电压表指针无摆动,若电压表不停地摆动,则为间歇性接地;中性点经消弧线圈接地系统,装有中性点位移电压表时,可看到有一定指示(不完全接地)或指示为相电压值(完全接地时)消弧线圈的接地报警灯亮;发生弧光接地时,产生过电压,非故障相电压很高,电压互感器高压保险可能熔断,甚至可能烧坏电压互感器。 1.2 真假接地的判断 电压互感器一相高压熔断器熔断,发出接地信号。发生接地故障时,故障相对地电压降低,另两相升高,线电压不变。而高压熔断器一相熔断时,对地电压一相降低(不为零),另两相不会升高,线电压则会降低。用变压器对空载母线充电时,断路器三相合闸不同期,三相对地电容不平衡,使中性点位移,三相电压不对称,发出接地信

起小电流接地系统单相断线故障分析 摘要:本文对一起小电流接地系统35kV 线路单相断线故 障进行了理论计算分析,得出了单相断线后的变压器各侧母线电压变化规律,对今后类似故障的判断及处理具有一定的借鉴作用。 关键词:小电流接地系统;单相断线;电压近几年,随着城市 建设步伐加快,不接地系统线路接地和断相的现象有所增加,或是负载原因,或是外力破坏在本地区近年的配网线路中发生过几起。文章针对一起35kV 系统单相断线故障,进行深入分析及研究。 1故障情况 变电站一次接线如图1所示,正常运行时,35kV B站由甲线供电。某日10:06 A站35kV I母电压不平衡,A相20kV, B相 20kV,C相23kV°35kV B站低压侧电压不平衡:A相6kV,B相 3kV,C相3kV。令值班员现场检查。10:15发现B站负荷从23MW 急剧下降至2MW 。 2处理过程 考虑故障侧10kV母线两相电压下降到正常相电压的一半,与正常侧10kV母线存在电压差,若采用10kV侧合解环调电方法,合环时将导致较大的不平衡电流,并且影响到主变的正常运行和负荷供电。因此,不宜采用10kV 合解环方法调电。也考虑到35kV B站进线有备自投,且大量负荷已甩掉,所以决定直接将断线线路拉停,B

站负荷靠自投恢复[1] 。10:25 拉停甲线后A 站、B 站电压恢复正常。 3事故现象分析中性点电压的大小与断线线路对地电容在系统中的所 占份额有关,当母线上只有唯一一条线路且缺相运行时,=+0N=。实际运行时,各相对地电容不完全对称,且A站35kV I 段母线上有多条线路运行,断线相对地电容电流变化不大,所以ONv,<<,、略为减小。所以A站35kV母线电压现象为断线相电压升高,正常相电压略为降低。 对于B站(负荷侧)、正常运行时、10kV母线相电压三相平衡、均在6kV左右。以A相为参考相、甲线C相断线后、负荷端高压线圈上的电压为=Ue、=Ue, =0。其中、U为相电压数值。根据对称分量法、有: 从计算结果可以看出、35kV甲线C相断线时、B站10kV 侧母线电压变化情况为一相(A相)对地电压正常、两相(B、C相)相电压降低至正常相电压的一半。 4结论 ①小电流接地系统线路单相断线时、如果断线相对地电容减小不多、则电源侧中性点不平衡电压不大、故障特征不明显、反映到电压互感器开口三角上电压达不到继电器的动作值时,不会发信号,但三相对地电压仍有差别,断线相电压升高,非断线相电压略降。②对于负荷侧,由于电源缺相,三相对称性被破坏,三相动力负载将

相关主题
文本预览
相关文档 最新文档