当前位置:文档之家› 工作接地与保护接地原理及作用

工作接地与保护接地原理及作用

工作接地与保护接地原理及作用
工作接地与保护接地原理及作用

接地原理及作用

工作接地与保护接地

电力系统和电气设备的接地按作用不同主要分为工作接地和保护接地两类。所谓工作接地是根据电力系统运行的需要,人为地将电力系统的中性点(例如发电机和变压器的中性点)及电气设备的某一部份(例如避雷针和避雷器的接地引下线)直接与大地进行金属性连接,或者通过特殊装置(例如消弧线圈、电阻、保护间隙等)与大地间接相连。其目的是使电力系统在正常工作或事故情况下,保证系统和电气设备可靠的运行,降低人体的接触电压以及有利于快速切断故障设备等。所谓保护接地主要指在10kV以下的供电系统,当电气设备的绝缘出现损坏时,有可能使设备的金属外壳带电,为防止这种电压危及人身安全而人为地将电气设备的金属外壳与大地进行金属性连接。

电力系统的工作接地分为中性点直接接地(又称大电流接地系统)和中性点不接地或经消弧线圈接地(又称小电流接地系统)两种。在高压或超高压电力系统中,一般多采用中性点直接接地,它的优点是能防止系统发生接地故障后引起的过电压,并能避免由于单相接地后系统继续运行而形成的不对称性。工业企业供电系统,采用的电压一般都在35kV以下,接地方式情况较复杂。6~10kV及35kV系统均为中性点不接地系统;380/220V低压系统在多数企业采用中性点接地系统,但矿山企业均采用中性点不接地系统。

保护接地按照中性点是否接地,其方式有所不同,例如保护接地和保护接零等。

不论是那一类接地都必须在地下埋设接地体,由接地体和接地引线组成的装置称为接地装置。接地装置的接地电阻(Rd)值,报据作用(工作接地与保护接地)不同以及系统电压的不同而有不同的要求和规定。

本节将着重讲述有关工作接地与保护接地的基本原则及基本知识,给读者建立一个基本概念。如需要深入学习,可参考有关专著,设计手册和资料。

一、接地装置的散流效应

为使现象直观清楚及分析结论清晰起见,假设接地装置为一半径为r的半球体(如图7-8),并认为接地体周围的土质十分均匀,即土壤电阻率ρ是恒定值。当电流经接地装置(接地体)入地时,电流Id将从半球体表面均匀地散射出去。在接地半球体表面的电流密度(jr)为:

而距半球体球心为x cm处的电流密度(jr)为:

由上式可见,距球心的距离愈远,散流的电流密度愈小。不论入地电流Id有多大,当距离x 超过20m时,则电流密度已很微小,基本上可视为零。

在地中的电场强度为,故在x处的电场强度为。于是可用数学表达式写出散流方向,在dx段内的电压降落为:

(V)

将上式进行(由xA至∞)积分,既能求得对应于地表面任意点A处的电位UA:

(V)(7-7)

根据同理,可写出半球接地体表面处的电位:

(V)(7-8)

从公式(7—7)及公式(7-8)可以得出结论:当Id和ρ为定值时,距接地装置越远处的地表面电位越低,距接地装置越近处的地表电位越高,而以接地体表面处的电位为最高。电位和距离为双曲线函数关系,如图7-9所示。图中曲线称为对地电位分布曲线。当距离接地装置超过20m时,在该处的地表电位基本上等于零。

根据欧姆定律,知土壤在散流时的散流电阻微分表达式为:

故全部散流电阻为:

(7-9)

由式(7-8)及式(7-9)可以得出:

(7-10)

式中Ud称为对地电压,Rd又称为接地电阻。接地电阻与土壤电阻率成正比,与接地体的半径成反比。一般情况下,接地装置的结构型式均比较复杂,其接地电阻值还与结构型式有关。电气设备的外壳一般都和接地体连接,使设备外壳保持和大地同为零电位。例如电气设备内有一相绝缘遭到破坏,则有接地电流入地,在接地体附近地表有对地电位分布,而设备外壳上的对地电压最高(Ud),见图7-9。假如此时人站在1处触摸设备外壳,由于手的电位为Ud,而脚的电位为U1,于是加于人体的电压为:

(V)

这个电压叫做接触电压。对地电位分布越陡,则接触电压越高。接触电压在任何情况下都不允许超过允许接触的安全电压。

如果此时有人向设备走来,虽然人并未接触设备,但由于跨步过程两脚位置不同,前脚电位为U2,后脚电位为U1,因此加于人体的电压为

(V)

这个电压叫做跨步电压。跨步电压同样不允许超过允许接触的安全电压。欲减小接触电压和

跨步电压,通常采取降低接地电阻和打接地均压网等措施,使电位分布曲线的陡度变平缓—些。

二、对工频接地电阻值的规定

十分明显,接地电阻Rd越小时,越安全。但接地电阻值要求越小,则工程投资费将增大,且有时在土壤电阻率很高的地区很难把电阻值降低。在有条件的地方虽然可以利用埋设于地下的各种金属管道(易燃液体,易燃气体或易爆炸气体的管道除外),电缆的金属外皮以及建筑物和构筑物的地下金属结构等作为自然接地体,但在绝大多数情况下,主要还是依靠人工接地装置来满足接地电阻所要求的规定值。下面将接地电阻值的要求简要说明一下。

1.电压为1000V以上的中性点接地系统中的电气设备

这种系统通常称为大接地电流系统。在这种系统中线路电压高,接地电流很大。当发生单相碰壳对地短路时,在接地装置上及接地装置附近所产生的接触电压和跨步电压较高。为了确保安全,这种系统的接地电阻Rd允许等于或小于0.5Ω。

2.电压为1000V以上的中性点不接地系统中的电气设备

这种系统通常称为小接地电流系统。这种系统中电气设备的对地安全电压值应该定为多少,要根据高压侧设备和低压侧设备是否采用共同接地装置而定。如果高低压侧电气设备采用共同接地,由于考虑接地的并联回路很多,对地电压只要不超过安全电压(65V)的一倍就可以了,一般采用125V。如果接地装置只用于1000V以上高压侧设备,则对地电压可以比共同接地情况再提高一倍,即采用250V,原因是这种电气设备分布的范围不如低压设备广,而且一般只有熟练人员才能进行操作和维护。如果经过计算已知单相接地短路电流为I安,当接地装置与1000V以下的电气设备共用时,其接地电阻Rd应为:

(7-11)

如接地装置只用于1000V以上的电气设备时,则

(7-12)

根据以上两式计算Rd值时,故障电流I的计算方法如下:

(7-13)

式中Ue—网路的线电压(kV);

lk—电缆网路的总长度(km);

lB-架空网路的总长度(km)。

如果网路仅为架空网路或仅为电缆网路,则不考虑另一种网路的长度。

按照这个故障电流I计算接地装置的接地电阻时,其值不应大于10Ω。另外,尚应考虑季节变化对接地电阻的影响。上面规定的数值是指在最不利情况下应该具有的接地电阻值。

3.电压在1000V以下的中性点不接地系统中的电气设备

在1000V以下的中性点不接地系统中,当发生单相接地短路时,短路电流(系统对地电容电流)最多不超过十几安培。如果以15A作为计算电流,并将接地电阻限制在4Ω以内,则对地电压不应超过4×15=60V。因此,对于一般电气设备的接地电阻均规定不得超过4Ω。

当由单台容量或并联容量不超过100kV·A的变压器(或发电机)供电时,由于变压器内阻抗较大,且供电网路也不会很长,所以不可能产生较大的单相接地短路电流,因此接地装置的接地电阻值允昨不大干10Ω。根据同理,对于1kW以下的小型电气设备,其接地电阻值电可为10Ω。

如果低压和高压侧(1000V以上)电气设备共用接地装置,则按式(7-11)考虑Rd值。

4.电压在1000V以下的中性点直接接地系统中的电气设备

在这种系统中电气设备的接地电阻不应超过4Ω。

三、人工接地装置的工频接地电阻计算

人工接地装置的类型很多,常用的有垂直埋设的接地体和水平埋设的接地体,它们的接地电阻计算公式分别如下。

1.垂直埋设接地体的接地电阻

垂直埋设的接地体多采用直径为50mm,长度为2~2.5m的铁管制成,其接地电阻值为

(7-14)

式中ρ—土壤电阻率(Ω·cm);

l—接地体的陡度(cm);

d—接地铁管的直径(cm)。

为了尽量防止气候或自然条件对接地电阻值的影响,一般将铁管顶端埋设在地下0.5~

0.7m深处(见图7-10)。垂直接地体有时也采用角钢或扁钢,此时,它们的等效直径如下:等边角钢:d=0.84b

扁钢:d=0.5b

如果用单根垂直接地体接地电阻太大时,则必须打多根垂直接地体(排列成行或排列成环形)并以钢带将它们并联起来。此时多极并联垂直接地体的总接地电阻值为:

(7-15)

式中Rcz-单根垂直接地体的接地电阻(Ω),由公式(7-14)求得;

n-并联的垂直接地体数目;

-接地体的利用系数,它与相邻接地体之间的距离a和接地体的长度l的比值有关。a/l的值越小时,接地体散流时互相屏蔽使散流效应降低得越厉害,这相当于散流电阻增大,于是利用系数减小。如果时,则屏蔽现象消失,=1。值可由图7-11查得。

2.水平埋设接地体的接地电阻

水平埋设的接地体一般可用扁钢、角钢或圆钢等制成,其接地电阻为:

(7-16)

式中L-水平接地体总长度(cm);

h-接地体埋深(cm),一般为0.5以下;

ρ、d-同上;

A-水平接地体的结构型式修正系数。

四、防雷接地及冲击接地电阻值

一切防雷设备的接地装置,在结构型式上和计算方法上均与工频接地时相同。但由于雷电冲击电流数值很大。这个冲击电流在几个μs到几十μs瞬间通过接地装置向大地中散流时,使接地装置表面的电流密度、周围土壤内的电场强度()显著增大,因此接地装置周围的土壤中形成强烈火花放电,火花放电范围内土壤的压降显著降低接近于零。这个效应在工程计算上用冲击系数ac来表达。于是冲击接地电阻Rch和工颊接地电阻Rd之间的关系式可以表达为

(7-17)

冲击系数ac的大小与接地装置的型式、总长度、冲击电流的大小以及土壤电阻率等因素有密切关系。

当雷电流幅值愈大,土壤电阻率愈高时,则冲击系数ac值愈小,ac一般小于1(多在0.3至0.9

范围内),也就是说冲击接地电阻—般都比工频接地电阻小。但也有特殊情况,当接地体很长时,由于电感的作用,电流向接地体较远地段流动时将受到阻碍,从而使雷电流不能沿接地体全长均匀扩散,因此有可能引起冲击接地电阻Rch大于工频接地电阻Rd,这时冲击系数ac大于1。总之,冲击接地电阻与工频接地电阻是有区别的,但是只要知道接地装置的工频接地电阻值Rd及相应的冲击系数ac,就能求出冲击接地电阻值Rch。

例7—1某工厂变电站的独立避雷针要求冲击接地电阻Rch为10Ω。已知雷电流的特征为100kA,4/40μs;该地区的土壤为砂质土,土壤电阻率ρ=5×104Ω·cm。今初步考虑采用三向放射式的复式接地装置(图7—12),每支水平射线长10m,射线用40× 4mm2的扁钢;每支水平射线上焊三支垂直接地体,垂直接地体用外径为50mm,长为2m的铁管。试验证此接地装置能否满足要求。

解:单根垂直接地体的工频电阻按式(7—14)计算:

水平接地体的工频接地电阻按式(7—16)计算:

式中埋深h=50cm,扁钢等值直径d=2cm。

已知Im=100kA,故每支路水平射线泄流约33kA,每支垂直接地体最多泄流11A(水平连线尚

有泄流效应)。冲击系数,水平射线的冲击系数,因而可求得:

单支垂直接地体的冲击接地电阻:

水平接地体的冲击接地电阻:

此接地装置的冲击利用系数=0.65,求得其接地电阻:

接地作用和接地原理方法

l)接地的作用 接地的作用总的步说只有两种:保护人和设备不受损害;抑制干扰;抑制干扰接地在有的书中又叫工作接地,而前者又叫保护接地。 ①保护接地 保护接地是将DCS中平时不带电的金属部分(机柜外壳,操作台外壳等)与地之间形成良好的导电连接,以保护设备和人身安全。原因是DCS的供电是强电供电(220V或11OV),通常情况下机壳等是不带电的,当故障发生(如主机电源故障或其它故障)造成电源的供电火线与外壳等导电金属部件短路时,这些金属部件或外壳就形成了带电体,如果没有很好的接地,那么这带电体和地之间就有很高的电位差,如果人不小心触到这些带电体,那么就会通过人身形成通路,产生危险。因此,必须将金属外壳和地之间作很好的连接,使机壳和地等电位。此外,保护接地还可以防止静电的积聚。 ②工作接地 工作接地是为了使DCS以及与之相连的仪表均能可靠运行并保证测量和控制精度而设的接地。它分为机器逻辑地、信号回路接地、屏蔽接地,在石化和其它防爆系统中还有本安接地。 ·机器逻辑地,也叫主机电源地,是计算机内部的逻辑电平负端公共地,也是+5V等电源的输出地。 ·信号回路接地,如各变送器的负端接地,开关量信号的负端接地等。 ·屏蔽接地(模人信号的屏蔽层的接地)。 ·本安接地,是本安仪表或安全栅的接地。这种接地除了抑制干扰外,还有使仪表和系统具有本质安全性质的措施之一。本安接地会因为采用的设备的本实措施不同而不同,下面以齐纳式安全栅为例,说明其接地内容,如图3.413所示:该图是一个齐纳式安全栅的接地原 理图。

安全栅的作用是保护危险现场端永远处于安全电源和安全电压范围之内。如果现场端短路,则由于负载电阻和安全栅电阻R的限流作用,会将导线上的电流限制在安全范围内,使现场端不至于产生很高的温度,引起燃烧。第二种情况,如果计算机一端产生故障,则高压电信号加入了信号回路,则由于齐纳二级的嵌位作用,也使电压位于安全范围。 值得提醒的是,由于齐纳安全栅的引入,使得信号回路上的电阻增大了许多,因此,在设计输出回路的负载能力时,除了要考虑真正的负载要求以外,还要充分考虑安全栅的电阻,留有余地。 除了上述几种接地外,在很多场合下容易引起混乱的还有一个供电系统地,也叫交流电源工作地,它是电力系统中为了运行需要设的接地(如中性点接地)。 (l)接地要求和方法: 上面介绍了六种接地:供电系统地、保护地、逻辑地、屏蔽地安全栅地、信号回路地。对这六种接地,各家有各家的要求,虽然大都强调一点接地,接地电阻必须小于1欧姆等,但具体内容上差别很大,下面给出几个例子介绍常遇到的接地要求和方法。 ①供电系统地:在很多企业,特别是电厂、冶炼厂等,其厂区内有一个很大的地线网,而通常供电系统的地是与地线网连在一起的。有的厂家强调计算机系统的所有接地必须和供电系统地以及其它(如避雷地)严格分开,而且之间至少应保持15m以上的距离。为了彻底防止供电系统地的影响,建议供电线线路用隔离变压器隔开。这对那些电力负荷很重,而且负荷经常启停的单位是应注意的。从抑制干扰的角度来看,将电力系统地和计算机系统的所有地分开是很有好处的,因为一般电力系统的地线是不太干净的。但从工程角度来看,在有些场合下单设计算机系统地并保证其与供电系统地隔开一定距离是很困难的,这时可以考虑能否将计算机系统的地和供电地共用一个,这要考虑几个因素: ·供电系统地上是否干扰很大,如大电流设备启停是否频繁,对地产生的干扰是否大;·供电系统地的接地电阻是否足够小,而且整个地网各个部分的电位差是否很小,即地网的各部分之间是否阻值很小(<1W) ·DCS的抗干扰能力以及所用到的传输信号的抗干扰能力,例如有无小信号(电偶,热电阻)的直接传输等。 ②所有计算机接线涉及到的接地采用一点接地方式,在这一点上,也有很多争议。有的厂 家系统提出几个地:逻辑地、屏蔽地(又叫模拟地)、信号地、保护地分别自己接地在地上打接地装置,而大部分系统则指出各种地在机柜内部自己分别接地,汇于一点,然后用较粗的导体(铜)将各汇地点朕起来,接到一个公共的接地体上。这里有几点需要注意:DCS 本身是由多台设备组成的,除了控制站以外,还包括很多外设,而且数据也不止一台,这就涉及到了多台设备,多种接地的问题。此外,一般的DCS的供电是各站(控制站,操作站等)用专门一条线单独供电,即彼此之间不相互供电。图3.4.14是一种常用的多站接地图。

风电场接地变烧损原因及处理方法分析

风电场接地变烧损原因及处理方法分析 概要论述了风力发电场35kV 电源系统由于系统存在接地故障造成接地变压器及中性点电阻柜烧损的实际情况,结合基本原理,讨论了接地变压器及中性点电阻柜烧损原因,并提出了消除故障的方法,通过改造处理,成功消除多起故障。 关键词接地故障烧损处理 1前言 国家电网调【2011】974号文件《关于印发风电并网运行反事故措施要点的通知》要求对于“风电场集电线系统单相故障应快速切除,不应采用不接地或经消弧柜接地方式”、“经电阻接地的集电线系统发生单相接地故障时应通相应保护快速切除”。为此大多数风力发电场35KV集电线系统母线采用经电阻接地方式运行,但自投运以来,由于在保护定值不完善、厂家配备及保护不到位等原因,经常发生35KV接地变烧损事故,下面对一起典型的由于35kV集电线系统故障造成接地变烧损事故产生原因及处理方法作具体分析。 2接地变作用 接地变是人为制造一个中性点,用来连接接地电阻,当系统发生接地故障时,对正序、负序电流呈高阻抗,对零序电流呈低阻抗,使接地保护可靠动作。风电场接地变故障大多来自集电线路接地。 3一般情况下集电线系统接地情况分析 3.1风电场集电线路多分布在空旷地区或山顶,遭受雷击概率比较高,极易造成线路侧或箱式变内高、低压侧避雷器(或过电压保护器)动作、损坏接地; 3.2每台风机与集电线路间电缆由于质量或外界破坏接地现象比较频繁; 3.3集电线路落物造成相间短路或接地; 3.4集电线杆倒杆、倒塔或集电线驰度不均等其它原因。 4一般情况下集电线系统接地电压分析 4.1风电场集电线路为35KV中性点不接地系统,当集电线路发生单相接地故障时(如A相),接地相与大地同电位,两正常相的对地电压数值上升为线电压,产生严重的中性点位移。中性点位移电压的方向与接地相电压在同一直线上,与接地相电压方向相反,大小相等,如图1。

接地的作用及分类

接地的作用及分类 时间:2012-03-18来源:https://www.doczj.com/doc/912737447.html, 作者:电工之家 所谓接地,就是把设备的某一部分通过接地装置同大地紧密连接在一起。到目前为止,接地仍然是应用最广泛的并且无法用其他方法替代的电气安全措施之 一。不管是电气设备还是电子设备,不管是生产用设备还是生活用设备,不管是直流设备还是交流设备,不管是固定式设备还是移动式设备,不管是高压设备还是低压设备,也不管是发电厂还是用电户,都采用不同方式、不同用途的接地措施来保障设备的正常运行或是它们的安全。 一、接地的作用 接地的作用主要是防止人身遭受电击、设备和线路遭受损坏、预防火灾和防止雷击、防止静电损害和保障电力系统正常运行。 1.防止人身遭受电击 将电气设备在正常运行时不带电的金属导体部分与接地极之间作良好的金属连接,以保护人体的安全,防止人身遭受电击。 当电气设备某处的绝缘体损坏后外壳就会带电,由于电源中性点接地,即使设备不接地,因线路与大地间存在电容,此时人体接触到设备外壳时也会有电流流经人体;或者线路上某处绝缘不好,如果人体触及此绝缘损坏的电气设备外壳时,电流就会经人体而成通路,从而使人体遭受电击伤害。 有接地装置的电气设备,当绝缘损坏、外壳带电时,接地电流将同时沿着接地极和人体两条通路流过,此时,人体与接地极是并联的关系,流过每一条通路的电流值将与其电阻的大小成反比,接地极电阻越小,流经人体的电流也就越小。通常人体的电阻比接地极电阻大数百倍,所以流经人体的电流献出流经接地极的电流小数百倍。当接地电阻极小时,流经人体的电流几乎等于零,相当于接地极将人体短接,因此,人体就能避免触电的危险。 所以,不论施工还是运行,在一年中的所有季节,均应保证接地电阻不大于设计或规范中所规定的接地电阻值,以免发生电击伤害。 2.保障电气系统正常运行 电力系统接地一般为中性点接地,中性点的接地电阻很小,因此中性点与地间的电位差接近于零。当相线碰壳或接地时,其他两相对地电压, 在中性点绝缘

消弧消谐装置与接地变

消弧消谐装置与接地变

接地变的作用 接地变压器简称接地变,根据填充介质,接地变可分为油式和干式;根据相数,接地变可分为三相接地变和单相接地变。 三相接地变:接地变压器的作用是在系统为△型接线或Y型接线,中性点无法引出时,引出中性点用于加接消弧线圈或电阻,此类变压器采用Z型接线(或称曲折型接线),与普通变压器的区别是,每相线圈分成两组分别反向绕在该相磁柱上,这样连接的好处是零序磁通可沿磁柱流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以Z型接地变压器的零序阻抗很小(10Ω左右),而普通变压器要大得多。按规程规定,用普通变压器带消弧线圈时,其容量不得超过变压器容量的20%。Z型变压器则可带90% ~100%容量的消弧线圈,接地变除可带消弧圈外,也可带二次负载,可代替所用变,从而节省投资费用。 单相接地变:单相接地变主要用于有中性点的发电机、变压器的中性点接地电阻柜,以降低电阻柜的造价和体积。 扩展阅读:我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。 但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果。 1)单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。 2)由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路。 3)产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸。这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。 为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。另外接地变有电磁特性,对正序负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。即当系统发生接地故障时,在绕组中将流过正序、负序和零序电流,该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。由于很多接地变只提供中性点接地小电阻,而不需带负载,所以很多接地变就是属于无二次的。接地变在电网正常运行时,接地变相当于空载状态。但是,

接地装置的种类及作用

接地的种类及作用探讨 电化四段张彬 摘要:在供电系统运行中接地装置起着至关重要的作用。它不仅是电力系统的重要组成部分,而且还是人身安全及保护用电器的主要措施。在日益发生的自然雷害面前我们特别论述防雷的危害性、重要性、必要性。 关键词:供电系统接地防雷、电磁脉冲防护LEMP 电子(逻辑)接地 正文: 通过近一段时间在对现场设备及临时电网的维修与维护,发现许多问题的发生及一些最终的解决方法都是与接地有密切关系的,也让我彻底改变了从前对供电系统及用电设备接地不重视、有时候则有要不要没有关系的想法,让自己总是停留在一个业余者的角度上。通过认真地请教、查询资料等途径,来充实自己。在电力系统运行中接地装置起着至关重要的作用。它不仅是电力系统的重要组成部分,而且还是保护人身安全及用电器的主要措施。供电系统和电气设备的某一部分与大地做金属性的良好接触,称为接地。按接地的目的可分为:工作接地、保护接地、保护接零以及防雷接地。特别论述配电网接地制式与建筑物电气设备的电磁兼容问题;接地网的电阻值及接地网的结构在防雷中的作用;外部防雷和内部防雷两个子系统的放电过程;指出了接地技术中的宣传误导。 一、接地分类及作用 1、工作接地 在正常或异常情况下,为了保证正常且可靠地运行,必须将供电系统中的某点与地做可靠的金属连接,称为工作接地。如变压器的中性点与接地装置的可靠金属连接等。其作用:①降低人体的接触电压,在中性点对地绝缘的系统中,当一相接地,而人体又触及另一相时,人体将受到线电压,但对中性点接地系统,

人体受到的为相电压。②迅速切断故障设备。在中性点绝缘的系统中,一相接地时,接地电流仅为电容电流和泄漏电流,数值很小,不足以使保护装置动作以切断故障设备。在中性点接地系统中,发生碰地时将引起单相接地短路,能使保护装置迅速动作以切断故障。③减轻高压窜人低压的危险。 2、保护接地 在正常工作状态下,各种电器的外壳是不带电的。但由于某些原因,造成设备绝缘损坏后可能使外壳带电,人或动物一旦接触到这种外壳带电的设备就有触电的危险。为了防止这种现象出现时危及人身安全,将电器设备正常时不带电的金属外壳、配电装置的金属部分同大地做良好的电气连接,称作保护接地。图1,设备外壳不接地。当故障时,由于带电线路对地电容存在,将产生电容电流。又因为设备外壳与大地间的接触电阻较大,若忽略其分流作用,则故障电流将全部由地中经人体返回设备外壳。即人体中的电流为:Ir=Ijd。由于人触电的危害程度主要决定于通过人体的电流。人体最小的感觉电流工频约为1mA,直流约为5mA。当工频电流超过10mA时,手已难于摆脱电源;当超过50mA且触电时间超过15~30s,即可致命,所以,在绝缘损坏时,人碰触到电器设备外壳是很危险的。若要使人们触及绝缘损坏的电器设备外壳不遭受触电的危险,关键是减少设备外壳与大地间的接触电阻,使流过人体的电流在安全要求的允许范围内。保护接地的目的就在于此。如图2所示,采用保护接地后,流入人体的电流为:Ir=Ijd*rjd/(r r+r jd)。式中:Ijd----接地电流(A);Ir----流入人体电流(A); rjd----接地电阻(Ω);r r----人体电阻(Ω)。由于人体电阻远大于接地电阻,则上式可以简化为:Ir= rjd/r r。流过人体的电流Ir与接地电阻rjd和接地电流Ijd成正比。因此,为了保证人身安全,应设法尽量减少接地电阻和故障电流的值。

接地变的作用

接地变的作用 接地变专为消弧线圈所设,一般消弧线圈装设在小电流接地系统的变压器三角形侧,用来补偿电网单相接地时的接地电容电流。但变压器的三角形侧没有中性点,接地变就是为安装消弧线圈提供人为中性点的。 我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。由于该运行方式简单、投资少,所以在我国电网初期阶段一直采用这种运行方式,并起到了很好的作用。但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果。1)、单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿,造成重大损失; 2)、由于持续电弧造成空气的游离,破坏了周围空气的绝缘,容易发生相间短路; 3)、产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸。 这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。为了解决这样的办法。接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。 另外接地变有电磁特性,对正序负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵

接地变与普通变压器有何区别

接地变与普通变压器有何区别? 接地变压器的作用是在系统为△型接线或Y 型接线中性点无法引出时,引出中性点用于加接消弧线圈,该变压器采用Z 型接线(或称曲折型接线),与普通变压器的区别是每相线圈分别绕在两个磁柱上,这样连接的好处是零序磁通可沿磁柱流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以Z型接地变压器的零序阻抗很小(10Q左右),而普通变压器要大得多。按规程规定,用普通变压器带消弧线圈时,其容量不得超过变压器容量的20%。而Z 型变压器则可带90%?100%容量的消弧线圈,接地变除可带消弧圈外,也可带二次负载,可代替所用变,从而节省投资费用。 扩展阅读:我国电力系统中,的6kV、1 0kV、35kV 电网中一般都采用中性点不接地的运行 方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A )时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。 但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会 产生以下后果。1),单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U (U 为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。2),由于持续电弧造成空气的离解,拨坏了周围空气的绝缘,容易发生相间短路;3),产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸;这些后果将严重威胁电网设备的绝缘,危 及电网的安全运行。为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。为了解决这样的办法. 接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。另外接地变有电磁特性,对正序负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。接地变的工作状态,由于很多接地变只提供中性点接地小电阻,而不需带负载。所以很多接地变就是属于无二次的。接地变在电网正常运行时,接地变相当于空载状态。但是,当电网发生故障时,只在短时间内通过故障电流,中性点经小电阻接地电网发生单相接地故障时,高灵敏度的零序保护判断并短时切除故障线路,接地变只在接地故障至故障线路零序保护动作切除故障线路这段时间内起作用,其中性点接地电 阻和接地变才会通过IR= (U 为系统相电压,R1 为中性点接地电阻,R2 为接地故障贿赂附加电阻)的零序电路。根据上述分析,接地变的运行特点是;长是空载,短时过载。总之,接地变是人为的制造一个中性点,用来连接接地电阻。当系统发生接地故障时,对正序负序电流呈高阻抗,对零序电流呈低阻抗性使接地保护可靠动作。 。。。。。。。。。。。。 从变压器的原理图看,一般的变压器和隔离变压器的区别是什么?用以对两个或多个有耦合关系的电路进行电隔离的变压器。其变比为1。在电力系统中,为了防止架空输电线路上的雷电波进入室内,需经过隔离变压器联络。即使架空线路电压与室内 电路电压相等,例如发电厂对附近地区的供电电压与厂用电电压就可能相等,此时也需用隔离变压器联络而不直接联接。隔离变压器除变比为 1 外,与普通变压器无其他区别。利用隔

XX风电场1号接地变退出运行期间事故防范措施--风电场、变电站人员必备

XX国际风电开发有限公司 技术工作(方案、措施、汇报、请示、总结)报告 题目:XX风电场1号接地变退出运行期间事故防范措施 编写: 初审: 审核: 审定: 批准: 2012年04月25 日

XX风电场1号接地变退出运行期间事故防范措施 一、引言 XX风电场1号接地变因B相线圈匝间短路于2012年04月24日退出运行,导致风电场35kV系统无中性点接地运行,零序保护被迫退出运行。为保证风电场人身和设备运行安全,特制订此事故防范措施。 二、现状分析 XX风电场35kV A、B组集电线路、14台风机及升压变运行,1号接地变退出运行,35kV系统零序保护退出运行。为保证35kV系统设备安全,在35kV 系统发生单相接地故障情况下有保护动作切除故障点,投入1号主变低压侧零序过压保护(零序电压二次值50V,动作时间9S,动作后果跳开1号主变低压侧35A开关)。 存在异物、电缆屏蔽线被吹到35kV线路上、绝缘子污闪、线路杆塔拉线松动发生碰接导线、导线对树枝放电、雷击线路造成单相接地的可能。 三、安全性分析 接地变是人为制造的一个中性点,用来连接接地电阻。当系统发生接地故障时,对正序负序电流呈高阻抗,对零序电流呈低阻抗性使接地保护可靠动作,切除故障点,保护人身和设备安全,避免事故扩大。 XX风电场1号接地变退出运行期间,若35kV系统发生单相接地,接地电弧不能可靠熄灭,就会产生以下后果。

1、单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿,造成重大损失; 2、由于持续电弧造成空气的游离,破坏了周围空气的绝缘,容易发生相间短路; 3、产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸。 四、事故防范措施 1、立即组织开展一次线路电缆屏蔽线绑扎、杆塔拉线松紧度、沿线有无易被风吹起的杂物、绝缘子污闪状况、树枝与导线的距离是否符合规程要求,发现异常情况并处理使之符合线路安全运行的需要。做好检查记录,签名存档。 责任人:XX 完成时间:04月27日 2、在毛毛细雨、大雾天气组织开展夜间巡线工作,检查绝缘子污闪情况,发现异常情况处理使之符合线路安全运行的需要。做好检查记录,签名存档。 责任人:XX 完成时间:天气符合要求时 3、发生单相接地、母线PT熔断器熔断及谐振过电压时的现场处理方案。 运行人员加强监盘,重点监视35kV母线线电压及相电压变化情况。 1)当监控系统警铃响、报“35kV母线PT断线”、“主变低压侧零序电压保护动作”“1号主变低压侧35A开关分闸”

接地的分类和作用

接地的分类和作用 接地的作用总的步说只有两种:保护人和设备不受损害;抑制干扰;抑制干扰接地在有的书中又叫工作接地,而前者又叫保护接地。 ①保护接地是将DCS中平时不带电的金属部分(机柜外壳,操作台外壳等)与地之间形成良好的导电连接,以保护设备和人身安全。原因是DCS 的供电是强电供电(220V或11OV),通常情况下机壳等是不带电的,当故障发生(如主机电源故障或其它故障)造成电源的供电火线与外壳等导电金属部件短路时,这些金属部件或外壳就形成了带电体,如果没有很好的接地,那么这带电体和地之间就有很高的电位差,如果人不小心触到这些带电体,那么就会通过人身形成通路,产生危险。因此,必须将金属外壳和地之间作很好的连接,使机壳和地等电位。此外,保护接地还可以防止静电的积聚。 保护接地即将高压设备的外壳与大地连接。一是防止机壳上积累电荷,产生静电放电而危及设备和人身安全。如电脑机箱的接地。二是当设备的绝缘损坏而机壳带电时,促使电源的保护动作而切断电源,以便保护工作人员的安全。三是可以屏蔽设备巨大的电场,起到保护作用。 ②工作接地是为了使DCS以及与之相连的仪表均能可靠运行并保证测量和控制精度而设的接地。它分为机器逻辑地、信号回路接地、屏蔽接地,在石化和其它防爆系统中还有本安接地。机器逻辑地,也叫主机电源地,是计算机内部的逻辑电平负端公共地,也是+5V等电源的输出地。信号回路接地,如各变送器的负端接地,开关量信号的负端接地等。 ·屏蔽接地(模人信号的屏蔽层的接地)。本安接地,是本安仪表或安全栅的接地。这种接地除了

抑制干扰外,还有使仪表和系统具有本质安全性质的措施之一。 它是为电路正常工作而提供的一个基准电位。这个基准电位一般设定为零。该基准电位可以设为电路系统中的某一点、某一段等。当该基准电位不与大地连接时,视为相对的零电位。但这种相对的零电位是不稳定的,它会随着外界电磁场的变化而变化,使系统的参数发生变化,从而导致电路系统工作不稳定。当该基准电位与大地连接时,基准电位视为大地的零电位,而不会随着外界电磁场的变化而变化。

保护接地和保护接零有什么区别

低压配电系统的供电方式 低压配电系统按保护接地的形式不同 可分为:IT系统、TT系统和TN系统。 其中IT系统和TT系统的设备外露可导 电部分经各自的保护线直接接地(过去 称为保护接地);TN系统的设备外露可 导电部分经公共的保护线与电源中性点 直接电气连接(过去称为接零保护)。 国际电工委员会(IEC)对系统接地的 文字符号的意义规定如下: 第一个字母表示电力系统的对地关系: T--一点直接接地; I--所有带电部分与地绝缘,或一点经阻抗接地。 第二个字母表示装置的外露可导电部 分的对地关系: T--外露可导电部分对地直接电气连接,与电力系统的任何接地点无关;

N--外露可导电部分与电力系统的接 地点直接电气连接(在交流系统中,接地点通常就是中性点)。 后面还有字母时,这些字母表示中性线与保护线的组合: S--中性线和保护线是分开的; O--中性线和保护线是合一的。 (1)IT系统: IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。即:过去称三相三线制供电系统的保护接地。 其工作原理是:若设备外壳没有接地,在发生单相碰壳故障时,设备外壳带上了相电压,若此时人触摸外壳,就会有相当危险的电流流经人身与电网和大地之间的分布电容所构成的回路。而设备的金属外壳有了保护接地后,由于人体电阻远比接地装置的接地电阻大,在发

生单相碰壳时,大部分的接地电流被接地装置分流,流经人体的电流很小,从而对人身安全起了保护作用。 IT系统适用于环境条件不良,易发生单相接地故障的场所,以及易燃、易爆的场所。 (2)TT系统: TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。即:过去称三相四线制供电系统中的保护接地。 其工作原理是:当发生单相碰壳故障时,接地电流经保护接地装置和电源的工作接地装置所构成的回路流过。此时如有人触带电的外壳,则由于保护接地装置的电阻小于人体的电阻,大部分的接地电流被接地装置分流,从而对人身起保护作用。 TT系统在确保安全用电方面还存在有不足之处,主要表现在:

接地线的作用是什么

接地线的作用是什么??不接地有什么后果??(实验教学法) 接地线的作用是把有可能带电金属壳上的电引到大地中,以免人触到发生触电事故。不接地,一旦设备发生漏电现象,人一旦碰到带电体,就有可能发生触电事故。 接地线可以把泄露的电流分导到地面,避免触电。 接地线主要是为了防止漏电伤人,对机器的本身到没有什么影响 接地线的结构 验电、接地极的深度,挂接要求,拆掉要求。接地线的捆扎方法,(演示教学法) 学生分组练习:情景教学法,角色扮演 评价打分及要求 主题:接地线的作用和使用应注意事项 挂接地线是保护检修人员的一道安全屏障,是电力员工的生命线,可防止突然来电对人体的伤害。但实际工作中,由于接地线使用频繁且操作看似简单,容易使人产生麻痹思想,其重要性也往往被人忽视,经常出现不正确的使用情况,以致降低甚至有时失去了接地线的安全保护作用,必须引起足够重视。 挂接地线是一项重要的电气安全技术措施,其操作过程应该严肃、认真、符合技术规范要求,千万不可马虎大意。因此,要正确使用接地线,规范挂、拆接地线的行为,自觉培养严谨的安全工作作风,提高自身的安全素质,才能拒危险隐患于千里之外,才能避免由于接地线原因引起的电气事故。 现根据实际工作中,接地线的使用应注意以下事项。 1、工作之前必须检查接地线。软铜线是否断头,螺丝连接处有无松动,线钩的弹力是否正常,不符合要求应及时调换或修好后再使用。 2、挂接地线前必须先验电,未验电挂接地线是基层中较普遍的习惯性违章行为,在悬挂时接地线道体不能和身体接触。 3、在工作地点两段两端悬挂接地线,以免用户倒送电、感应电的可能,深受其害的例子不少。

4、在打接地桩时,要拨能借地体能快速疏通事故大电流,保证接地质量。 5、要爱护接地线。接地线在使用过程中不得扭花,不用时应将软铜线盘好,接地线在拆除后,不得从空中丢下或随地乱摔,要用绳索传递,注意接地线的清洁工作。 6、新工作人员必须经过对接地线使用的培训、学习,考核合格后,方能单独从事接地线操作或使用工作。 7、按不同电压等级选用对应规格的接地线。 8、严禁使用其它金属线代替接地线。 9、现场工作不得少挂接地线或者擅自变更挂接地线地点。 10、接地线具有双面性,它具有安全的作用,使用不当也会产生破坏效应,所以工作完毕要及时拆除接地线。带接地线合开关会损坏电气设备和破坏电网的稳定,会导致严重的恶性电气事故。

接地变压器的作用

接地变压器在电力系统中是属于保护设备。它的作用: 我国大多10kV的电压系统,均采用中性点不接地运行方式,以提高供电的可靠性;但随着系统的增大(变压器容量及出线的增多),当发生单相接地时,接地电容电流会很大,可能造成“弧光接地过电压”,伤害设备绝缘,造成设备损坏事故,为此人们想出了在中性点加装“消弧线圈”,当发生单相接地时,用消弧线圈的电感电流来平衡接地点的电容电流,避免形成弧光接地过电压。 但我国电力系统中的电力变压器10kV绕组大多是角形接线,没有中性点,致使消弧线圈没有办法安装;于是人们设计了“接地变压器”,接地变压器就是一个“星形”接线的变压器,通过这个星形接线的变压器,人造了一个“中性点”,就使消弧线圈能够接到这个人造中性点上,解决了10kV电压系统没有中性点的问题。 所以说,接地变压器就是为安装消弧线圈而装设的一个一次线圈为星形接线的,有中性点引出的变压器。它是为电力系统的安全而设置的。 电力变压器在电力系统中是属于电能传输设备,它的作用: 主要作用是变换电压,以利于功率的传输。 在同一段线路上,传送相同的功率, 电压经电力变压器升压后,线路传输的电流减小,可以减少线路损耗,提高送电经济性,达到远距离送电的目的,而降压则能满足各级使用电压的用户需要。 8、接地变压器、消弧线圈容量和额定电流的确定 (1)根据架空线或电缆参数计算公式计算电容电流I c (2)消弧线圈容量的确定(见参考文献3) Q = K×I c×U P/√3(8-1) 式中:K —系数,过补偿取1.35 Q —消弧线圈容量,kVA (3)消弧线圈容量及额定电流的选择 根据最大电容电流I c,确定相应的消弧线圈容量及额定电流,使最大补偿电感电流满足要求。 (4)接地变压器容量选择 接地变除可带消弧圈外,兼作所用变。

保护接地与保护接零的基本原理和不能混用的原因

团队的补充2011-04-14 22:24 以下内容也许对你有帮助 一、保护接地的基本原理和适用范围 在中性点不接地的三相三线制供电系统中,当电气设备的绝缘损坏使外壳带电时,接地短路电流经接地体和人体同时流过。由于人体的电阻RR(1700Ω)要比接地电阻RD(4Ω)大数百倍,流经人体的电流也比流过接地体的电流小数百倍。当接地电阻极小(小于4Ω)时,流过人体电流几乎等于零。另外,由于接地电阻很小,接地短路电流流过时,所产生的压降也很小,故外壳对大地的电压是很低,人站在大地上去碰触外壳时,人体所承受的电压很低,不会有危险。显然,在中性点不接地的系统中,采用保护接地可以有效地防止或减轻间接触电的危险。 在中性点直接接地系统中采用保护接地措施后,一旦电气设备发生碰壳故障,此时故障电流的流经路径为:电源(如U相)——故障设备的外壳——保护接地体RR——大地——中性点接地体RR——回到电源中性点。若此时恰好有人触及故障设备的外壳,就相当于人体电阻RR并联在保护接地电阻RD两端,此时,可求得接地故障电流IG为: 应注意的是,在大多数情况下,27.5A的故障电流是不足以使电路的过流保护装置(如熔断器、自动开关的脱扣器等)动作的,这将使得用电设备外壳上长期存在110V的对地电压,对人体是很不安全的。 二、保护接零的基本原理和适用范围 在广泛使用的三相四线制系统中采用保护接地是不安全的。如上述在大型超市的冷藏柜中采用保护接地,一旦发生漏电事故,冷藏柜上就会长期带有110V的对地电压,形成事故隐患,危及顾客的安全。那么,这种情况下应该采用哪种保护措施才是正确的呢?实际上,我国的低压配电网大多采用中性点直接接地的三相四线制380/220V系统。在这种系统中,应该采

接地线的作用是什么

接地线的作用是什么??不接地有什么后果?? 接地线的作用是把有可能带电金属壳上的电引到大地中,以免人触到发生触电事故。不接地,一旦设备发生漏电现象,人一旦碰到带电体,就有可能发生触电事故。 接地线可以把泄露的电流分导到地面,避免触电。 接地线主要是为了防止漏电伤人,对机器的本身到没有什么影响 主题:接地线的作用和使用应注意事项 挂接地线是保护检修人员的一道安全屏障,是电力员工的生命线,可防止突然来电对人体的伤害。但实际工作中,由于接地线使用频繁且操作看似简单,容易使人产生麻痹思想,其重要性也往往被人忽视,经常出现不正确的使用情况,以致降低甚至有时失去了接地线的安全保护作用,必须引起足够重视。 挂接地线是一项重要的电气安全技术措施,其操作过程应该严肃、认真、符合技术规范要求,千万不可马虎大意。因此,要正确使用接地线,规范挂、拆接地线的行为,自觉培养严谨的安全工作作风,提高自身的安全素质,才能拒危险隐患于千里之外,才能避免由于接地线原因引起的电气事故。 现根据实际工作中,接地线的使用应注意以下事项。 1、工作之前必须检查接地线。软铜线是否断头,螺丝连接处有无松动,线钩的弹力是否正常,不符合要求应及时调换或修好后再使用。 2、挂接地线前必须先验电,未验电挂接地线是基层中较普遍的习惯性违章行为,在悬挂时接地线道体不能和身体接触。 3、在工作地点两段两端悬挂接地线,以免用户倒送电、感应电的可能,深受其害的例子不少。 4、在打接地桩时,要拨能借地体能快速疏通事故大电流,保证接地质量。 5、要爱护接地线。接地线在使用过程中不得扭花,不用时应将软铜线盘好,接地线在拆除后,不得从空中丢下或随地乱摔,要用绳索传递,注意接地线的清洁工作。 6、新工作人员必须经过对接地线使用的培训、学习,考核合格后,方能单独从事接地线操作或使用工作。 7、按不同电压等级选用对应规格的接地线。 8、严禁使用其它金属线代替接地线。 9、现场工作不得少挂接地线或者擅自变更挂接地线地点。 10、接地线具有双面性,它具有安全的作用,使用不当也会产生破坏效应,所以工作完毕要及时拆除接地线。带接地线合开关会损坏电气设备和破坏电网的稳定,会导致严重的恶性电气事故。

接地变压器的作用

接地变压器的作用 我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。 但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果; 1),单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。 2),由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路; 3),产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸;这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。 为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。为了解决这样的办法.接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。 另外接地变有电磁特性,对正序、负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。 该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。接地变的工作状态,由于很多接地变只提供中性点接地小电阻,而不需带负载。所以很多接地变就是属于无二次的。接地变在电网正常运行时,接地变相当于空载状态。但是,当电网发生故障时,只在短时间内通过故障电流,中性点经小电阻接地电网发生单相接地故障时,高灵敏度的零序保护判断并短时切除故障线路,接地变只在接地故障至故障线路零序保护动作切除故障线路这段时间内起作用,其中性点接地电阻和接地变才会通过IR= (U为系统相电压,R1为中性点接地电阻,R2为接地故障回路附加电阻)的零序电路。根据上述分析,接地变的运行特点是;长时空载,短时过载。 总之,接地变是人为的制造一个中性点,用来连接接地电阻。当系统发生接地故障时,对正序负序电流呈高阻抗,对零序电流呈低阻抗性使接地保护可靠动作。 变电站内现在一般采用的接地变压器有两个用途,1.供给变电站使用的低压交流电源,2.在10kV侧形成人为的中性点,同消弧线圈相结合,用于10kV发生接地时补偿接地电容电流,消除接地点电弧,其原理如下: - 1 -

细说--接地变、消弧线圈及自动补偿装置的原理和选择

接地变、消弧线圈及自动补偿装置的原理和选择 1问题提出 随着城市建设发展的需要和供电负荷的增加,许多地方正在城区建设110/10kV终端变电所,一次侧采用电压110kV进线,随着城网改造中杆线下地,城区10kV出线绝大多数为架空电缆出线,10kV配电网络中单相接地电容电流将急剧增加,根据国家原电力工业部《交流电气装置的过电压保护和绝缘配合》规定,3—66KV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式。一般的110/10kV变电所,其变压器低压侧为△接线,系统低压侧无中性点引出,因此,在变电所设计中要考虑10kV接地变、消弧线圈和自动补偿装置的设置。 210kV中性点不接地系统的特点 选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。并直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。 3系统对地电容电流超标的危害 实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下: 3.1当发生间歇弧光接地时,可能引起高达3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。 3.2配电网的铁磁谐振过电压现象比较普遍,时常发生电压互感器烧毁事故和熔断器的频繁熔断,严重威胁着配电网的安全可靠性。 3.3当有人误触带电部位时,由于受到大电流的烧灼,加重了对触电人员的伤害,甚至伤亡。 3.4当配电网发生单相接地时,电弧不能自灭,很可能破坏周围的绝缘,发展成相间短路,造成停电或损坏设备的事故;因小动物造成单相接地而引起相间故障致使停电的事故也时有发生。 3.5配电网对地电容电流增大后,对架空线路来说,树线矛盾比较突出,尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。 4单相接地电容电流的计算 4.1空载电缆电容电流的计算方法有以下两种: (1)根据单相对地电容,计算电容电流(见参考文献2)。 Ic=√3×UP×ω×C×103(4-1) 式中:UP━电网线电压(kV) C━单相对地电容(F) 一般电缆单位电容为200-400pF/m左右(可查电缆厂家样本)。 (2)根据经验公式,计

关于接地变故障反事故措施----风电场、变电站人员必备

1号接地变退出运行期间35kV母线单 相接地控制措施 因1号接地变B相高压绕组匝间短路故障,退出运行,35kV 系统零序电流保护不起作用,制定此措施。 1、当前我场运行方式:110kVXX线15A开关及线路运行;1号主变运行;35kVⅠ段母线运行;35kV A组集电线路310开关及线路运行,35kV B组集电线路330开关及线路运行;1号电容器302开关、2号电容器303开关、1号电抗器304开关检修;1号接地变检修;1-14号升压变运行,1-14号风机运行。 2、接地变退出运行的危害:1)单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿,造成重大损失。2)由于持续电弧造成空气的游离,破坏了周围空气的绝缘,容易发生相间短路。3)产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸。 3、运行人员的控制措施:运行人员在值班监盘时若发现35kV系统三相电压出现一相电压明显降低或为零,其他两相电压明显升高或至线电压(正常情况下相电压为20kV左右),此时很可能为35kV系统出现单相接地,运行人员应立即断开1号主变低压侧35A开关,并汇报长乐县调和福州地调以及现场负责人。 4、点检人员的控制措施:1)加强35kV线路的巡视,检查各塔

架电缆屏蔽线绑扎是否牢固,有无出现屏蔽线悬空或飘起的现象,若有应立即汇报领导及控制室运行值班人员。2)在大风天气时到每台风机与架空线路连接的电缆屏蔽线的绑扎是否牢固,有无出现屏蔽线悬空或飘起的现象,若有应立即汇报领导及控制室运行值班人员。3)在大雾细雨天气时,加强线路瓷瓶放电现象。若发现瓷瓶放电现象,应立即汇报领导及控制室运行值班人员。

相关主题
文本预览
相关文档 最新文档