当前位置:文档之家› 普通快滤池计算

普通快滤池计算

普通快滤池计算
普通快滤池计算

滤池工作时间为24h,冲洗周期为1h,滤池实际工作时间为:

h T 6.211

24

1.024=?

-= 式中:0、1代表反冲洗停留时间

该滤池采用石英砂单层滤料,其设计滤速为8~10m/h,本设计取1v =8h m /,滤池面积为:2147.36

.218600m T v Q F =?==

根据设计规范,滤池个数不能少于2个,即N ≥2个,根据规范中得表如下: 本设计采用滤池个数为2个,其布置成对称单行排列。每个滤池面积为: 2735.12

47.3m N F f ===

式中:f —每个滤池面积为(2

m ), N —滤池个数N ≥2个,取2个 F —滤池总面积(2

m )

设计中采用滤池尺寸为:则L=1、5m,B=1、5m,故滤池得实际面积为2、252

m 实际滤速1v =600/(21、6*2*2、25)=6、17m/h,基本符合规范要求:滤速为8~10m/h 。 校核强制流速2v 为:当一座滤池检修时,其余滤池得强制滤速为

h m N Nv v /34.121

217.62112=-?=-=

,符合规范要求:强制滤速一般为10~14 m/h 2、滤池高度:

H=1H +2H +3H +4H

式中:H---滤池高度(m),一般采用3、20-3.60m; 1H ---承托层高度(m); 2H --滤料层厚度(m);

3H ---滤层上水深(m);一般采取1、5~2.0m 4H ---超高(m);一般采用0.3m

设计中取1H =0.40m,2H =0、50m,3H =1、20m,4H =0.30m; m H 40.230.020.150.040.0=+++=

4.5.2每个滤池得配水系统

1、最大粒径滤料得最小流化态流速

54

.0031

.2054.031.131

.1)

1(34.12m m d V mf

-???=μφ mf V ---最大粒径滤料得最小流化态流速(m/s);

d---滤料粒径(m);

φ---球度系数;

μ---水得动力粘度[(N 、S)/ 2m ]

0m ---滤料得孔隙率。

设计中取d=0.0012m,φ=0、98,0m =0、38,水温200时μ=0、001(N 、S)/ 2

m s cm V mf

/09.1)38.01(38.0001.098.00012.034.1254

.031.254.031.131.1=-???=

2、反冲洗强度 q=10KVmf

q---反冲洗强度[L/(s/2

m )],一般采用12~15L/(s/2

m ); K---安全系数,一般采用1、1~1、3、 设计中取K=1、3

q=10*1、3*1、09=14、2L/(s/2

m ) 3、反冲洗水流量

g q =f ·q

式中g q —反冲洗干管流量(L 、s)。

g q =2、25 x 14、2=32、0L/s

4、干管始端流速 2

3

.10*4D q V g g π-?=

式中 Vg —干管始端流速(m/s),一般采用1、 0-1.5 m/s ; g q —反冲洗水流量(L/s); D —干管管径(m)。 设计中取D=0.8m

s m V g /07.08

.0.103242

3

=??=-π 5、配水支管根数

j n =a

L ?

2 式中j n ---单池中支管根数(根);

L---滤池长度(m);

A---支管中心间距(m),一般采用0、25~0.30m 。 设计中取a= 0.30m

j n =根1030

.05

.12=?

单格滤池得配水系统如图所示。

图4-8 单格滤池配水系统布置图

6、单根支管人口流量

j q =

j

g n q

式中 j q ---单根支管入口流量(L/s)、

j q =

s L n q j

g /2.310

.32==

7、支管入口流速

2

3

.4

10j

j j D q V π

-?=

式中 j V ---支管入口流速(m/s),一般采用1、50~2.0m/s j D ---支管管径(m)。 设计中取j D =0.10m

s m V j /08.410.0.4

102.32

3

=?=

8、单根支管长度

)(2

1

D B l j -=

式中 j l ---单根支管长度(m); B---单个滤池宽度(m); D---配水干管管径(m)。 设计中取B=1、5m,D=0.80m;

m l j 35.0)80.05.1(2

1

=-=

9、配水支管上孔口总面积

k F =K*f

式中k F ---配水支管上得孔口面积(2

m )

K---配水支管上孔口总面积与滤池面积f 之比,一般采用0、2%~0、25%,设计中取K=0、2%

则k F =0、0045 2

m 10、配水支管上孔口流速

k V =5、6m/s

式中k V ---配水支管上得孔口流速,一般采用5、0~6、0m/s 11、单个孔口面积

2

4

k k d f π

=

式中 k f ---配水支管上单个孔口面积(2

mm );

k d ---配水支管上孔口得直径(mm),一般采用9~12mm 。 设计中取k d =9mm

225.6394

mm f k =?=

π

12、孔口总数

个2215

.6314000

==

k N 13、每根支管上得孔口数

j

k

k n N n =

式中k n ---每根支管上得孔口数(个)。

个2310

221

==

k n 支管上孔口布置成二排,与垂线成45°夹角向下交错排列,如右图所示 14、孔口中心距

2

k

j k n l a =

式中 k a ---孔口中心距(m)。 设计中取j l =0、35m,k n =23个

m a k 03.02

2335

.0==

15、孔口平均水头损失

2

1021???

?

???=K q g h k μ 式中k h ---孔口平均水头损失(m); q---冲洗强度[L/(s/2

m )];

μ---流量系数,与孔口直径与壁厚δ得比值有关;

K---支管上孔口总面积与滤池总面积之比,一般采用0、2%~0、25%。 设计中取δ=5mm,k=0、25;则孔口直径与壁厚之比8.15

9

==

δ

k

d ,选用流量系数μ=0、68

m K q h k 5.325.068.010146.191108.9212

2

=??

?

?????=???? ???=μ 16、配水系统校核

对大阻力配水系统,要求其支管长度j l 与直径j d 之比不大于60

5.310

.035

.0==

j

j d l <60 对大阻力平配水系统,要求配水支管上孔口总面积k F 与所有支管横截面积之与得比值小于0、5

j j k

f n F .<0、5 j f =

2

.4

j D π

式中 j f ---配水支管得横截面积(2

m )。

045.010.04

100035.0.2

=??

j

j k

f n F <0、5,满足要求。

4.5.3、 洗砂排水槽

1、洗砂排水槽中心距

0a =l/1n

式中:0a —洗砂排水槽中心距

1n —每侧洗砂排水槽数(条)

因洗砂排水槽长度不宜大于6m,故在设计中将每座滤池中间设置排水渠,在排水渠两侧对称布置洗砂排水槽,每侧洗砂排水槽数1n =2条,池中洗砂排水槽总数为2n =4条

0a =7、5/2=3、75m

2、每条洗砂排水槽长度为

m b B l 35.02

8

.05.120=-=-=

式中:0l —每条洗砂排水槽长度(m)

b —中间排水渠宽度(m) 取b=0.8m 3、每条洗砂排水槽得排水量

s L n q q g /8.04

2

.32

0==

=

式中:0q —每条洗砂排水槽得排水量

g q —单个滤池得反冲洗水量

2n —洗砂排水槽总数

4、洗砂排水槽断面模数

洗砂排水槽采用三角形标准断面,如图: 洗砂排水槽断面模数:

m v

q x 012.06.010000.85.010005.05

.05

.0≈?

?

?

????=???

? ??=

式中:x —洗砂排水槽断面模数

0v —槽中流速(m/s) 一般采用0.6 m/s

5、洗砂排水槽顶距砂面高度

m c x eH H e 36.008.005.0012.05.25.0%405.22=++?+?=+++=δ

式中:He —洗砂排水槽顶距砂面高度

e —砂层最大膨胀率,石英滤料一般采用30%~50%,取40% δ—排水槽底厚度 取0.05m

2H —滤料厚度 取0、5m

c —洗砂排水槽得超高,取0.08m 6、洗砂排水槽总面积为:

22023.15.180.0435.0012.022m bL n l x F =?+???=+??=

7、中间排水渠

中间排水渠选用矩形断面,渠底距洗砂排水槽底部得高度为:

m gb

q H g e 23.073.13

2

=?=

4.5.4滤池反冲洗

滤池反冲洗水可由高位水箱或专设冲洗水泵供给,本设计采用水泵供水反冲洗 1、单个滤池得反冲洗用水总量

234.111000

60

625.2141000m qft W =???==

式中:W —单个滤池得反冲洗用水总量 t —反冲洗时间,一般为7~5min 取6min

表4-8 水冲洗强度及冲洗时间(水温20℃时)

2、高位水箱冲洗

(1)高位冲洗水箱得容积

3101.171000

360

25.2145.11000..5.15.1m t f q W W =???=?

== 式中1W ---高位冲洗水箱得容积(3

m )。设计中取t=360s 。 (2)承托层得水头损失

m q H h w 12.01440.0022.0.022.013=??=?=

式中3w h ---承托层得水头损失(m);

1H ---承托层得厚度(m)。设计中取1H =0.40m (3)冲洗时滤层得水头损失

()()m h w 49.05.041.01110002650.H m 1.1204

=?-???? ??-=-???

? ??-=水砂ρρ 式中 4w h ---冲洗时滤层得水头损失(m);

砂ρ---滤料得密度(Kg/3

m ),石英砂密度一般采用2650Kg/3

m ; 水ρ--水得密度(Kg/3

m ); 0m ---滤料未膨胀前得孔隙率; 2H ---滤料未膨胀前得厚度(m)。

设计中取0m =0、41,水ρ=1000Kg/3

m ,砂ρ=2650Kg/3

m , 2H =0.7m 。 (4)冲刺水箱高度

54321t H w w w w w h h h h h ++++=

式中 t H ---冲洗水箱得箱底距冲洗排水曹顶得高度(m);

1w h ---水箱与滤池间得冲洗管道得沿程与局部水头损失之与(m); 2w h ---配水系统得水头损失(m);

5w h ---备用水头(m),一般采用1、5~2.0m 。 设计中取1w h = 1.0m,2w h =k h =3.5m,5w h =1.5m

t H =1、0+3、5+0、12+0、49+1、5=6、61m 3、水泵反冲洗 (1)水泵流量

q f Q .,=

式中 ,

Q ---水泵流量(L/s)。

s L Q /5.311425.2,=?=

(2)水泵扬程:

543210h h h h h H H w w w +++++=

式中:H---水泵扬程(m);

0H —排水槽顶与池最低水位高差(m),一般采用7m 左右; 1h ---水泵压水管路与吸水管路得水头损失(m); 5h ---安全水头(m),一般采用1~2m 。

设计中取0H =7m,1h =2.0m,2w h =k h =3.5m,3w h =0.12m,4w h =0、49m,5h =1.5m 。 H=7、0+2、0+3、5+0、12+0、49+1、5=14、61m

普通快滤池设计计算书

普通快滤池设计计算书 1. 设计数据 1.1设计规模近期360000/m d 1.2滤速8/v m h = 1.3冲洗强度215/s m q L =? 1.4冲洗时间6min 1.5水厂自用水量5% 2.设计计算 2.1滤池面积及尺寸 设计水量31.056000063000m /Q d =?= 滤池工作时间24h ,冲洗周期12h 滤池实际工作时间24240.123.812 T h =-? =(式中只考虑反冲洗停用时间,不考虑排放初滤水) 滤池面积263000330.88823.8Q F m vT ===? 采用滤池数8N =,布置成对称双行排列 每个滤池面积2330.8841.368F f m N = == 采用滤池尺寸1:2=B L 左右 采用尺寸9L m =, 4.6B m = 校核强制滤速889.14/181 Nv v m h N ?===--强 2.2滤池高度 支承层高度10.45H m = 滤料层高度20.7H m = 砂面上水深32H m = 超高(干弦)40.3H m = 滤池总高12340.450.720.3 3.45H H H H H m =+++=+++=

2.3配水系统(每只滤池) 2.3.1干管 干管流量· 41.3615620.4/g q f g L s ==?= 采用管径800g d mm =(干管埋入池底,顶部设滤头或开孔布置) 干管始端流速 1.23/g v m s = 2.3.2支管 支管中心间距0.25z a m = 每池支管数922720.25z z L n a =? =?=根(每侧36根) 每根支管长 4.60.80.3 1.752 z l m --== 每根支管进口流量620.48.62/72 g z z q q L s n = == 采用管径80z d mm = 支管始端流速 1.72/z v m s = 2.3.3孔口布置 支管孔口总面积与滤池面积比(开孔比)0.25%α= 孔口总面积20.25%41.360.1034k F f m α=?=?= 孔口流速0.62046/0.1034 k v m s == 孔口直径9k d mm = 每个孔口面积225263.6 6.36104k k f d mm m π-= ?==? 孔口总数250.103416266.3610 k k k F N m f -==≈?个 每根支管孔口数16262372k k z N n n = =≈个 支管孔口布置设两排,与垂线成045夹角向下交错排列 每根支管长 4.60.80.3 1.752 z l m --== 每排孔口中心距 1.750.150.50.523z k k l a m n = ==??

普通快滤池计算

滤池工作时间为24h ,冲洗周期为1h ,滤池实际工作时间为: h T 6.211 241.024=?-= 式中:0.1代表反冲洗停留时间 该滤池采用石英砂单层滤料,其设计滤速为8~10m/h ,本设计取1v =8h m /,滤池面积为:2147.36 .218600m T v Q F =?== 根据设计规范,滤池个数不能少于2个,即N ≥2个,根据规范中的表如下: 本设计采用滤池个数为2个,其布置成对称单行排列。每个滤池面积为: 2735.12 47.3m N F f === 式中:f —每个滤池面积为(2m ), N —滤池个数N ≥2个,取2个 F —滤池总面积(2 m ) 设计中采用滤池尺寸为:则L=1.5m ,B=1.5m ,故滤池的实际面积为2.252m 实际滤速1v =600/(21.6*2*2.25)=6.17m/h ,基本符合规范要求:滤速为8~10m/h 。 校核强制流速2v 为:当一座滤池检修时,其余滤池的强制滤速为 h m N Nv v /34.121 217.62112=-?=-=,符合规范要求:强制滤速一般为10~14 m/h 2.滤池高度: H=1H +2H +3H +4H 式中:H---滤池高度(m ),一般采用3.20-3.60m ; 1H ---承托层高度(m ); 2H --滤料层厚度(m ); 3H ---滤层上水深(m);一般采取1.5~2.0m 4H ---超高(m );一般采用0.3m 设计中取1H =0.40m ,2H =0.50m ,3H =1.20m ,4H =0.30m ;

m H 40.230.020.150.040.0=+++= 4.5.2每个滤池的配水系统 1、最大粒径滤料的最小流化态流速 54.0031 .2054.031.131.1)1(34.12m m d V mf -???=μφ mf V ---最大粒径滤料的最小流化态流速(m/s); d---滤料粒径(m ); φ---球度系数; μ---水的动力粘度[(N.S)/ 2m ] 0m ---滤料的孔隙率。 设计中取d=0.0012m ,φ=0.98,0m =0.38,水温200时μ=0.001(N.S)/ 2m s cm V mf /09.1) 38.01(38.0001.098.00012.034.1254.031.254.031.131.1=-???= 2、反冲洗强度 q=10KVmf q---反冲洗强度[L/(s/2m )],一般采用12~15L/(s/2 m ); K---安全系数,一般采用1.1~1.3. 设计中取K=1.3 q=10*1.3*1.09=14.2L/(s/2m ) 3、反冲洗水流量 g q =f ·q 式中g q —反冲洗干管流量(L.s)。 g q =2.25 x 14.2=32.0L/s 4、干管始端流速 23 .10*4D q V g g π-?= 式中 Vg —干管始端流速(m/s),一般采用1. 0-1.5 m/s ;

钢便桥设计计算详解

某大桥装配式公路钢便桥工程专项施工方案之一 设计计算书 二〇一六年三月六日

目录 1、工程概况 (4) 1.1 **大桥 (4) 1.2 钢便桥 (5) 2、编制依据 (5) 3、参照规范 (5) 4、分析软件 (5) 5、便桥计算 (5) 5.1 主要结构参数 (5) 5.1.1 跨度 (6) 5.1.2 便桥标高 (6) 5.1.3 桥长 (6) 5.1.4 结构体系 (6) 5.1.5 设计荷载 (6) 5.1.6 材料 (8) 5.2 桥面计算 (8) 5.2.1 桥面板 (8) 5.2.2 轮压强度计算 (9) 5.2.3 桥面板检算 (9) 5.3 桥面纵梁检算 (10) 5.3.1 计算简图 (10) 5.3.2 截面特性 (10) 5.3.3 荷载 (11) 5.3.4 荷载组合 (13) 5.3.5 弯矩图 (14) 5.3.6 内力表 (14) 5.3.7 应力检算 (15) 5.3.8 跨中挠度 (16) 5.3.9 支座反力 (17) 5.4 横梁检算 (17) 5.4.1 计算简图 (17) 5.4.2 装配式公路钢桥弹性支承刚度 (17) 5.4.3 横梁模型 (18) 5.4.4 作用荷载 (18) 5.4.5 计算结果 (19) 5.4.6 截面检算 (20) 5.4.7 挠度检算 (20) 5.5 主桁计算 (21) 5.5.1 分配系数计算 (21) 5.5.2 计算模型 (22) 5.5.3 截面特性 (22) 5.5.4 作用荷载 (24) 5.5.5 荷载组合 (25)

5.5.6 主要杆件内力及检算 (26) 5.5.7 支座反力 (33) 5.6 桩顶横梁计算 (33) 5.6.1 上部恒载计算 (33) 5.6.2 作用效应计算 (34) 5.6.3 荷载分配系数计算 (34) 5.6.4 荷载分配效应 (37) 5.6.5 横梁计算模型 (37) 5.6.6 横梁作用荷载 (37) 5.6.7 横梁荷载组合 (38) 5.6.8 横梁弯矩图 (38) 5.6.9 横梁应力图 (38) 5.6.10 横梁挠度 (39) 5.7 钢管桩计算 (39) 5.7.1 钢管桩顶反力 (39) 5.7.2 钢管桩材料承载力检算 (40) 5.7.3 钢管桩侧土承载力检算 (40) 6、钻孔平台计算 (41) 5.8.1 桥面板计算 (41) 5.8.2 纵向分配梁计算 (42) 5.8.3 墩顶横梁 (45) 5.8.4 平台钢管桩检算 (49) 7、剪力支承设计 (50) 7.1 水平支承系 (50) 7.1.1 2.3m水平支承检算 (50) 7.1.2 2.5m水平支承检算 (50) 7.1.3 5m水平支承检算(双根对肢) (51) 7.2 斜支承系 (51)

底盘的设计计算书

底盘设计计算书 目录 1.计算目的 2.轴载质量分配及质心位置计算 3.动力性计算 4.稳定性计算 5.经济性计算 6.通过性计算 7.结束语 1.计算目的 本设计计算书是对陕汽牌大客车专用底盘的静态参数,动力性,经济性,稳定性及通过性的定量分析。旨在从理论上得到整车的性能参数,以便评价该大客车专用底盘的先进性,并为整车设计方案的确定提供参考依据。 2.轴载质量分配及质心位置计算 在此处仅对大客车专用底盘进行详细准确的分析计算,而对整车改装部分(车身)只做粗略估算。(车身质量按340KG/M计算或参考同等级车估算)。计算整车的最大总质量,前轴轴载质量,后桥轴载质量及质心位置可按以下公式计算。 M=ΣMi M1=ΣM1iM1=Σ(1-Xi/L) M2=ΣM2iM2=Σ(Xi/L) hg=Σ(Mi·hi/M) A=M2·L/M

式中: M——整车最大总质量 M1——前轴轴载质量 M2——后桥轴载质量 Mi——各总成质量 Xi——各总成质心距前轴距离 Hi——各总成质心距地面距离 M1i——各总成分配到前轴的质量 M2i——各总成分配到后桥的质量 hg——整车质心距地面距离 L——汽车轴距 A——整车质心距前轴距离 2.1各总成质量及满载时的质心位置 序号名称质量质心距前轴M1I质心距地面HI。MI距离XI距离HI KGMMKG。MMKG。MM1前轴前轮前悬挂 2后桥后轮后悬挂 3发动机离合器 4变速箱 5传动轴 6散热器附件 7膨胀箱支架

8空滤器气管支架 9消音器气管支架 10油箱支架 11电瓶支架 12方向盘xx 13转向机支架 14转向拉杆 15换档杆操纵盒 16贮气筒支架 17操纵踏板支架 18前后拖钩 19全车管路附件 20车架 底盘 21车身 空车 22乘客 23行李 24司机 满载 2.2水平静止时轴载质量分配

刚便桥设计计算方案书

乐昌至广州高速公路——乳源河大桥 钢栈桥设计计算方案书 一、钢便桥设计要点 (一)刚便桥设计结构体系 钢便桥拟采用梁柱式钢管贝雷梁简支结构设计,跨径设计9m,横向钢管间距为3m,每排3根,采用直径529mm钢管。桥面宽6m设计,在钢管上横向布置2根I36b工字钢,纵向布置3组6排贝雷简支纵梁。贝雷纵梁上横向铺设20#槽钢,槽钢间距为7cm,槽钢上铺设5mm防滑板做桥面系。 (二)支架纵梁 纵向布置3组6排贝雷简支纵梁(布置图见附图),纵梁跨径为9m,纵梁端头剪切力最大,端头竖向采用20#槽钢或工字钢1.5m范围进行加固处理。54m阶段设置一个制动墩,间距为2m,6根钢管组成。 (三)跨径9m验算 1、竖向荷载计算 A、机械自重考虑:W=60t=600KN;即W1=600KN/9m=66.6 KN/m B、钢板自重: W2=94.2/10*0.008=0.075KN/m2 C、I36b工字钢自重:W3=65.689*1.0=0.65689 KN/m D、贝雷梁自重:W4=0.3*10/3=10KN/m E、人群及机具工作荷载:Q5=2.0 KN/m 2、竖向荷载组合:

A 、q=机械荷载+钢板自重+贝雷梁自重+人、机具荷载 =66.6 KN/m+6.0*0.075 KN/m 2+6*10 KN/m+2.0*6 =139.05 KN/m 3、贝雷纵梁验算 9m 9m 9m 9m 四跨等跨连续梁静载布置图q 四跨等跨连续梁活载布置图 9m 跨选用3组6排国产贝雷,最大跨按9m 计算为最不利荷载,贝雷片布置间距布置110cm 为一组,其力学性质: I=250500 cm 4 [M]=78.8 t.m [Q]=24.5 t (1)贝雷片在荷载作用下最大弯矩: Mmax=qL 2/8=139.05*92/8=1407.8813KN.m 单片贝雷片承受弯矩: M=1407.8813/8=175.9852KN.m <[M]=788KN.m 满足要求。 注:[M]单片贝雷片容许弯矩。

普通快滤池的设计计算书

3.12普通快滤池的普通快滤池的设计设计设计 3.12.1设计参数设计参数 设计水量Qmax=22950m3/d=0.266m3/ 采用数据:滤速)m (s /14q s /m 10v 2?==L ,冲洗强度 冲洗时间为6分钟 3.12.2普通快滤池的普通快滤池的设计计算设计计算设计计算 (1) 滤池面积及尺寸:滤池工作时间为24h ,冲洗周期为12h ,实际工作时间T= h 8.2312241.024=×?,滤池面积为 2m 968.231022950v =×==T Q F 采用4个池子,单行行排列 2m 244 96N F f === 采用池长宽比 L/B=1.5左右,则采用尺寸L=6m 。B=4m 校核强制滤速m 3.131-41041-N Nv v =×== ‘ (2) 滤池高度: 支撑层高度:H1=0.45m 滤料层高度:H2=0.7m 砂面上水深: H3=1.7m 保护高度: H4=0.3m 总高度: H=3.15m (3)配水系统 1.干管流量:s /3361424fq q g L =×== 采用管径s /m 19.1v mm 600d g g ==,始端流速 2.支管: 支管中心距离:采用,m 25.0a j = 每池支管数:根480.2562a 2n j =×=× =L m/s 6.1mm 75L/s 04.784/336n q q j g j ,流速,管径每根支管入口流量:==

3.孔眼布置: 支管孔眼总面积占滤池总面积的0.25% 孔眼总面积:2k mm 6000024%25.0Kf F =×== 采用孔眼直径mm 9d k = 每格孔眼面积:22 k mm 6.634d f ==π 孔眼总数9446 .6360000f F N k k k === 每根支管空眼数:个2048/944n n j k k === N 支管孔眼布置成两排,与垂线成45度夹角向下交错排列, 每根支管长度:m 7.16.042 1d 21l g j =?=?=)()(B 每排孔眼中心数距:17.020 5.07.1n 21l a k j k =×=×= 4.孔眼水头损失: 支管壁厚采用:mm 5=δ 流量系数:68.0=μ 水头损失:h m 5.3K 101g 21h 2k ==(μ 5.复算配水系统: 管长度与直径之比不大于60,则6023075 .07.1d l j j <== 孔眼总面积与支管总横面积之比小于0.5,则 33.1075.0464d 4f n g 2j j k =×=)()(π π F 孔眼中心间距应小于0.2,则2.017.0a k <=

给水厂混凝沉淀过滤消毒设计计算书

第二章:总体设计 2.1水厂规模的确定 水厂的设计生产量Q 包括以下两项:供应用户的出厂量Q 1和水厂的自用水量Q 2,一般Q 2只占Q 1的5-10%,所以水厂设计生产量可按下式计算: Q=KQ 1 (式中K=1.05-1.10 ) 水厂设计计算水量Q 1=50000m 3/d 即 Q=KQ 1=50000 1.0552500?= m 3/d=2187.5 m 3/h=0.61 m 3/s 根据水厂设计水量2万m 3/d 以下为小型水厂,2万~10万m 3/d 为中型水厂,10万m 3/d 以上为大型水厂的标准可知水厂为中型水厂。 2.2净水工艺流程的确定 玉川集聚区是以工业项目为主,从目前情况看用户对水质的要求不高,完全可以靠供给原水满足企业需求。但从长远来看,一方面不同的企业对水质的要求不同,尤其是夏季的洪水季节,当源水水质发生较大的变化时,可能会因为水质的变化影响企业的生产。 所以水厂以地表水作为水源,且水量充沛水质较好,则主要以取出水中的悬浮物 和杀灭致病细菌为目标,经过比较后采用地面水的常规处理工艺系统。工艺流程如图1所示。 原水 混 合 絮凝沉淀池 滤 池 混凝剂消毒剂清水池 二级泵房 用户 图1 水处理工艺流程 2.3处理构筑物及设备型式选择 (1) 药剂溶解池 设计药剂溶解池时,为便于投置药剂,溶解池的设计高度一般以在地平面以下或半地下为宜,池顶宜高出地面0.20m 左右,以减轻劳动强度,改善操作条件。

溶解池的底坡不小于0.02,池底应有直径不小于100mm的排渣管,池壁需设超高,防止搅拌溶液时溢出。 由于药液一般都具有腐蚀性,所以盛放药液的池子和管道及配件都应采取防腐措施。溶解池一般采用钢筋混凝土池体,若其容量较小,可用耐酸陶土缸作溶解池。 投药设备采用计量泵投加的方式。采用计量泵(柱塞泵或隔膜泵),不必另备计量设备,泵上有计量标志,可通过改变计量泵行程或变频调速改变药液投量,最适合用于混凝剂自动控制系统。 (2)混合设备 根据快速混合的原理,实际生产中设计开发了各种各样的混合设施,主要可以分为以下四类:水力混合、水泵混合、管式混合和机械混合。 在本次设计采用管式混合器对药剂与水进行混合。管式混合是利用原水泵后到絮凝反映设施之间的这一段压水管使药剂和原水混合的一种混合设施。主要原理是在管道中增加一些各种结构的能改变水流水力条件的附件,从而产生不同的效果。 在混合方式上,由于混合池占地大,基建投资高;水泵混合设备复杂,管理麻烦,机械搅拌混合耗能大,管理复杂,相比之下,管式混合具有占地极小、投资省、设备简单、混合效果好和管理方便等优点而具有较大的优越性。管式混合器采用管式静态混合器。 (3)反应池 反应作用在于使凝聚微粒通过絮凝形成具有良好沉淀性能的大的絮凝体。 目前国内使用较多的是各种形式的水力絮凝及其各种组合形式,主要有栅条(网格)絮凝、折板絮凝和波纹板絮凝。这三种形式的絮凝池在大、中型水厂中均有使用,都具有絮凝效果好、水头损失小、絮凝时间短、投资小、便于管理等优点,并且都能达到良好的絮凝条件,从工程造价来说,栅条造价为折板的1/2,为波纹板的1/3,因此采用栅条(网格)絮凝。 (4)沉淀池 原水经投药、混合与絮凝后,水中悬浮杂质已形成粗大的絮凝体,要在沉淀

钢便桥计算书正文(最终)

本计算内容为针对沭阳县新沂河大桥拓宽改造工程钢便桥上、下部结构验算。 二、验算依据 1、《沭阳县新沂河大桥拓宽改造工程施工图》; 2、《沭阳县新沂河大桥拓宽改造工程钢便桥设计图》; 3、《装配式公路钢桥使用手册》; 4、《公路钢结构桥梁设计规范》JTGD64-2015; 5、《钢结构设计规范》GBJ50017-2003; 6、《路桥施工计算手册》; 7、《公路桥涵地基与基础设计规范》JTG D63-2007; 8、《沭阳县新沂河大桥拓宽改造工程便道便桥工程专项施工方案》。 三、结构形式及验算荷载 3.1、结构形式 北侧钢便桥总长60m,南侧钢便桥总长210m,上部均为6排单层多跨贝雷梁简支结构,跨径不大于9m;下部为桩接盖梁形式,盖梁采用45A双拼工字钢,桩基采用单排2根采用529*8mm钢管桩。见下图: 立 面形式横断面形式

钢便桥通行车辆总重600KN,重车车辆外形尺寸为7×2.5m,桥宽6m,按要求布置一个车道。 横向布载形式 车辆荷载尺寸 四、结构体系受力验算 4.1、桥面板 桥面板采用6×2m定型钢桥面板,计算略。 4.2、25a#工字钢横梁(Q235) 横梁搁置于6排贝雷梁上,间距1.5m。其中:工字钢上荷载标准值为1.18KN/m;25a#工字钢自重标准值0.38KN/m。计算截面抗弯惯性矩I、截面抗弯模量分别为:I =50200000mm4;W =402000mm3。

(1)计算简图: (2) 强度验算: 抗弯强度σ=Mx/Wnx=46580000/402000 =115.9Mpa<[f]=190Mpa;满足要求! 抗剪强度τ=VSx/Ixtw=167362×232400/(50200000×8)=96.8Mpa<ft =110Mpa;满足要求! (2) 挠度验算: f=M.L2/10 E.I =35.8*1.32/10*2.1*5020*10-3 =0.57mm

普通快滤池设计计算

普通快滤池设计计算 1.已知条件 设计水量Qn=20000m 3/d ≈833m 3/h.滤料采用石英砂,滤速v=6m/h,10d =,80K =,过滤周期Tn=24h ,冲洗总历时t=30min=;有效冲洗历时0t =6min=。 2.设计计算 (1)冲洗强度q q[L/(s*m 3)]可按下列经验公式计算。 632 .0632.145.1)1()35.0(2.43v e e dm q ++= 式中 dm ——滤料平均粒径,mm ; e ——滤层最大膨胀率,采用e=40%; v ——水的运动黏度,v=2 mm s (平均水温为15℃)。 与10d 对应的滤料不均匀系数80K =,所以 dm=80 K 10d = 632 .0632.145.114.1)4.01()35.04.0(702.02.43?++??=q =11[L/(s*m 3)] (2)计算水量Q 水厂自用水量主要为滤池冲洗用水,自用水系数α为 v qt t Tn Tn 0 6.3)(- -= α= 6 1 .0116.3)5.024(24 ??- -= Q=αQn==875(m 3/d) (3)滤池面积F 滤池总面积F=Q/v=875/8=109㎡ 滤池个数N=3个,成单排布置。 单池面积f=F/N=109/3=(㎡),设计采用40㎡,每池平面尺寸采用B×L=× (约40㎡),池的长宽比为=1. (4)单池冲洗流量冲q 冲q =fq=40×11=440(L/s)=(m 3/s) (5)冲洗排水槽 ①断面尺寸。两槽中心距a 采用,排水槽个数 1n =L/a==≈4个 槽长l=B=,槽内流速v 采用s 。排水槽采用标准半圆形槽底断面形式,其 末端断面模数为6 .045700 .22.5114570???== v qla x =

高速公路高坡便桥设计方案和计算书

高坡拌合站便道横跨隧道便桥施工方案和力学检算书 编审批日制:核:准:期:

目录 第1章概述 (1) 1.1工程概况 (1) 1.2设计说明 (2) 1.3 设计依据 (3) 1.4 技术标准 (3) 1.5 便桥钢材选用及设计参数 (4) 第2章荷载计算 (4) 2.1上部结构恒重 (4) 2.2 车辆荷载 (5) 2.3人群荷载 (6) 第3章纵梁计算 (7) 3.1 纵梁最不利荷载确定 (7) 3.2 纵梁计算 (7) 第4章横梁计算 (10) 4.1横梁最不利荷载确定 (10) 4.2砼罐车荷载下横梁检算 (11) 第5章24M跨贝雷架计算 (14) 5.1 荷载计算 (14) 5.2 挂车-80级荷载下贝雷架计算 (14) 第6章M IDAS空间建模复核计算 (17) 6.1 Midas空间模型的建立 (17) 6.2 工况一计算 (17) 6.3 工况二计算 (24) 第7章桥台地基承载力验算 (30) 第8章细部构造计算 (30) 8.1 销子和阴阳头计算 (30) 8.2端部支座钢板下砼局部承压计算 (32) 8.3桥台砼抗冲切计算 (34) 第9章结论 (35) 第10章施工方案 (35) 10.1 10.2 10.3 10.4 10.5 10.6桥台施工 (35) 贝雷架安装 (36) 横梁安装 (36) 纵梁及钢板安装 (36) 通车试验 (36) 施工安全及保证措施 (36)

第 1 章 概 述 1.1 工程概况 高坡拌合站设置于线路里程 DK417+400 处横向 200 米一平坦旱地范围 内(见附图),设办公生活区、搅拌楼、砂石料场、道路、绿化带,占地面 积合计 270000m ,拌合站下埋深 27.03 米处有高坡隧道通过,隧道宽 14m ;拌 和站门前有便道一条,由原来的乡道改建而成,便道处纵断面根据线路纵断 面图确定,如图 1-1 所示;便道在 DK417+313 处与高坡隧道立体交叉,交叉 处地下岩层稳定,无溶洞,约 4 米的表层地质结构为第四系全新统坡洪积层, 土石工程等级为Ⅱ级,表层 4 米以下为白云质灰岩,土石工程等级为Ⅴ级, 层理产状为:N45W/45°SE (73°),风化等级为弱风化岩;我单位在此处进 行地质钻探,钻探结果如图 1-2 所示,与设计资料相符。由于该便道上将来 经常要通行混凝土罐车等重型车辆,为了确保重型车辆的通行不对隧道施工 产生影响,保证隧道施工安全。特设置跨径 24 米,长 25.66 米,净宽 3.8m 的临时便桥于该便道上,桥位详见附图。 图 1-1 线路纵断面在高坡拌合站处截图 2

贝雷架便桥设计计算书样本

K37+680红岩溪特大桥 贝雷架便桥计算书 湖南省路桥建设集团 龙永高速公路第十一合同段 4月1日

目录 第1章设计计算说明...................................... 错误!未定义书签。 1.1 设计依据 ......................................... 错误!未定义书签。 1.2 工程概况 ......................................... 错误!未定义书签。 1.3.1 主要技术参数 ................................ 错误!未定义书签。 1.3.2 便桥结构 .................................... 错误!未定义书签。第2章便桥桥面系计算.................................... 错误!未定义书签。 2.1 混凝土运输车作用下纵向分布梁计算................. 错误!未定义书签。 2.1.1 计算简图 ................................... 错误!未定义书签。 2.1.2.计算荷载 .................................... 错误!未定义书签。 2.1. 3. 结算结果 ................................... 错误!未定义书签。 2.1.4 支点反力 ................................... 错误!未定义书签。 2.2 履带吊作用下纵向分布梁计算 ...................... 错误!未定义书签。 2.2.1. 计算简图................................... 错误!未定义书签。 2.2.2 计算荷载.................................... 错误!未定义书签。 2.2.3 计算结果................................... 错误!未定义书签。 2.2.4. 支点反力.................................. 错误!未定义书签。 2.3 分配横梁的计算.................................. 错误!未定义书签。 2.3.1.计算简图 .................................... 错误!未定义书签。 2.3.2. 计算荷载 .................................. 错误!未定义书签。 2.3.3. 计算结果 ................................... 错误!未定义书签。第3章贝雷架计算....................................... 错误!未定义书签。 3.1 混凝土运输车作用下贝雷架计算...................... 错误!未定义书签。 3.1.1最不利荷载位置确定........................... 错误!未定义书签。 3.1.2 最不利位置贝雷架计算模型 .................... 错误!未定义书签。

XX市给水厂设计计算书

摘要 E市给水工程,是为了满足该区近期和远期用水量增长的需要而新建的。该工程分为两组,最终的供水设计规模为3.1万m3/d, 整个工程包括取水工程,净水工程和输配水工程三部分。其工艺流程如下: 水源取水头自流管一级泵房自动加药设备 机械搅拌澄清池普通快滤池清水池配水池 二级泵房配水管网用户 同时,本设计课题还包括:水厂占地面积,人员配备,厂内建筑物布置和管线定位等。 整个工艺流程中主要构筑物的设计时间为 机械搅拌澄清池池:1.28h 普通快滤池冲洗时间:6min 普通快滤池的滤速为:13.3m/h

目录 第一章设计水量计算 第一节最高日用水量计算 第二节设计流量确定 第二章取水工艺计算 第一节取水头部设计计算 第二节集水间设计计算 第三章泵站计算 第一节取水水泵选配及一级泵站工艺布置 第二节送水泵选配及二级泵站工艺布置 第四章净水厂工艺计算 第一节机械搅拌澄清池计算 第二节普通快滤池计算 第三节清水池计算 第四节配水池计算 第五节投药工艺及加药间计算 第六节加氯工艺及加氯间计算 第七节净水厂人员编制及辅助建筑物使用面积计算第八节检测仪表

第一章 设计水量计算 第一节 最高日用水量计算 一、各项用水量计算 1、 综合生活用水量1Q 1Q d m d l N q f 33411108.81.1.200104?=???=??=人 m d l N q f Q 344111/10408.11.1.200104.6?=???=??=人 2、 工业企业生产用水量2Q ()()d m m d n N q Q d m m d n N q Q 3 4 3 222 /3432221076.11.180********.11.11001201?=??=-??=?=??=-??=万元万元万元 3、 未预见水量和管网漏失水量3Q ()d m Q Q Q 34213104.02.0?=+= 4、 消防用水量x Q d m s l N q Q x x X 3410432.0252?=?=?= 二、最高日用水量d Q m Q Q Q Q d 34321106.2?=++= 由于总用水量较小和消防水量相差不大则d m d m Q d 3434101.310072.3?≈?= d m Q d 34/104?= 第二节 设计流量确定 一、确定设计流量 1、 取水构筑物、一级泵站、原水输水管、水处理构筑物设计流量 s l d m T Q a Q s l d m T Q a Q d I d I 11.4863600 2410405.173.3763600 24101.305.134/ /34=???=?==???=?=

便桥设计及计算书

工字钢便桥设计及荷载验算书 一、工程概况 为保证通往炸药库及主洞洞口施工便道畅通,并保证五里沟河排水的需要,决定在五里沟河上修建2座跨河便桥。 从结构可靠性、经济性及施工工期要求等多方面因素综合考虑,炸药库方向8m跨径,宽4m便桥采用30片I32b工字钢满铺作为主梁;洞口方向10m 跨径,宽5m便桥采用22片I32b工字钢,间距10cm铺设作为主梁;每片工字钢分别由Ф22钢筋横向连接为一整体,保证工字钢整体受力,工字钢上铺5mm厚防滑钢板,便于安全行车。 二、炸药库方向便桥受力分析及计算 荷载分析 根据现场施工需要,便桥承受荷载主要由桥梁自重荷载q,及车辆荷载P 两部分组成,其中车辆荷载为主要荷载。如图1所示: 图1 为简便计算方法,桥梁自重荷载按均布荷载考虑,车辆荷载按集中荷载考虑。以单片工字钢受力情况分析确定q、P值。 1、q值确定 由资料查得I32b工字钢延米重57.7kg,重力常数g取10N/kg。 q=57.7*10/1000=0.6KN/m,加上护栏和连接钢筋,单片工字钢承受的力按1.0 KN/m ,即q=1.0KN/m。

根据施工需要,并通过调查,便桥最大要求能通过重50吨的大型车辆,即单侧车轮压力为500KN 。 单侧车轮压力由5片梁同时承受,其分布如图3: 单侧车轮压力非平均分配于5片梁上,因此必须求出 车轮中心点处最大压力max f ,且车轮单个宽25cm , 32b 工字钢翼板宽13.2cm ,工字钢满铺,因此单侧车 轮至少同时直接作用于两片工字钢上。而f 按图3 所示转换为直线分布,如图4: max 图4 由图4可得到max f =F/2,单片工字钢受集中荷载为max f /2=125KN 。 由于便桥设计通过车速为5km/小时,故车辆对桥面的冲击荷载较小,故取冲击荷载系数为0.2,计算得到P=125*(1+0.2)=150KN 。 结构强度检算 由图1所示单片工字钢受力图示,已知q=1KN/m ,P=150KN ,工字钢计算跨径l =8m ,根据设计规范,工字钢容许弯曲应力[]w σ=210MPa ,容许剪应力 []τ=120MPa 。 1、计算最大弯矩及剪力 最大弯距(图1所示情况下): 图3

普通快滤池计算.doc

滤池工作时间为24h,冲洗周期为 1h,滤池实际工作时间为: 24 T 24 0.121.6h 1 式中: 0.1 代表反冲洗停留时间 该滤池采用石英砂单层滤料,其设计滤速为8~10m/h ,本设计取v1 =8 m / h,滤池面积 为: F Q 600 3.47m2 v1T 8 21.6 根据设计规范,滤池个数不能少于 2 个,即 N≥ 2 个,根据规范中的表如下: 本设计采用滤池个数为 2 个,其布置成对称单行排列。每个滤池面积为: f F 3.47 1.735m 2 N 2 式中: f —每个滤池面积为(m2), N—滤池个数N≥ 2 个,取 2 个 F—滤池总面积(m2) 设计中采用滤池尺寸为:则L=1.5m , B=1.5m ,故滤池的实际面积为 2.25 m2 实际滤速 v1=600/(21.6*2*2.25)=6.17m/h,基本符合规范要求:滤速为8~10m/h。 校核强制流速 v2为:当一座滤池检修时,其余滤池的强制滤速为 Nv1 6.17 12.34m / h ,符合规范要求:强制滤速一般为10~14 m/h v2 2 N 1 2 1 2.滤池高度: H= H1+H2+H3+H4 式中: H--- 滤池高度( m),一般采用 3.20-3.60m; H 1---承托层高度(m); H 2--滤料层厚度(m); H 3---滤层上水深(m);一般采取 1.5~2.0m H 4---超高(m);一般采用0.3m 设计中取 H 1=0.40m, H 2=0.50m, H 3=1.20m, H 4=0.30m;

—H0.40 0.50 1.20 0.30 2.40m 4.5.2 每个滤池的配水系统 1、最大粒径滤料的最小流化态流速 V mf 12.34 d 1. 31 m0 2.31 1.31 0.54 (1 m0) 0.54 V mf ---最大粒径滤料的最小流化态流速(m/s); d--- 滤料粒径( m); --- 球度系数; ---水的动力粘度 [(N.S)/ m2 ] m0 --- 滤料的孔隙率。 设计中取 d=0.0012m ,=0.98 ,m0 =0.38,水温200 时 =0.001(N.S)/ m2 V mf 12.34 0.00121.31 0.382 .31 1.09cm/ s 0.981.31 0.0010.54 (1 0.38)0 .54 2、反冲洗强度 q=10KVmf q--- 反冲洗强度 [L/(s/ m2 )], 一般采用 12~15L/(s/ m2 ); K--- 安全系数,一般采用 1.1~1.3. 设计中取K=1.3 q=10*1.3*1.09=14.2L/(s/m2) 3、反冲洗水流量 q g=f·q 式中 q g—反冲洗干管流量(L.s) 。 q g=2.25 x 14.2=32.0L/s 4、干管始端流速 4 * q g 10 3 V g 2 .D 式中Vg —干管始端流速(m/s) ,一般采用 1. 0-1.5 m/s ;

快滤池工艺计算书

●滤池间设计 过滤是三级处理的重要环节,是确保出水达到高级标准的必要处理单元。过滤可以除大部分悬浮物和胶体,在降低出水SS 的同时,还可以有效的降低出水的COD 、BOD 、NH 3-N 和TP 。污水三级处理中常用的过滤设施按过滤介质不同可分为成床过滤(也称为深层过滤)和表面过滤。 普通快滤池的布置,根据其规模大小,采用单排或双排布置、是否设中央渠、反冲洗方式、配水系统形式以及所在地区房东要求等,可布置成许多形式。应使阀门集中、管路简单、便于操作管理和安装检修。 已知:设计水量:20000m 3/d 日变化系数:1.2 冲洗强度:15L/(m 2.s) 冲洗时间:6min 1、滤池工作时间 滤池工作时间24h ,冲洗周期24h ,滤池实际工作时间: 9.2324240.1-24=?=T h (式中0.1代表反冲洗停留时间;只考虑反冲洗停用时间,不考虑排放初滤水时间) 2、设计处理水量 Q=2×104 m 3/d=0.231 m 3/s 日变化系数1.2 Q max =1.2×Q=24000 m 3/d=0.278 m 3/s=1000 m 3/h 3、滤池面积及尺寸 由《室外给水设计规范》: 《污水再生利用工程设计规范》:

《污水过滤处理工程技术规范》: 综合比较,本次设计滤池采用石英砂单层滤料,设计滤速取v1=6m/s 滤池面积为: F=Q max / (v1× T)=1.2×Q /(v1× T) =24000/(6×23.9)=167.36 m2≈168 m2由手册3,表9-16得到 滤池个数N=4格,每个滤池面积f= F/N=42(m2) 由手册3,表9-11,采用滤池长宽比L/B=2:1~4:1 取L/B=2左右,L=7,B=6,实际滤池面积L×B=42 m2 实际滤速v1=24000 m3/d ×24 h / ( 23.9h ×4×40m2) =5.98m/h(基本符合7-9m/h) 校核强制滤速v'= N×v1 /(N-1)=6.98 m/h

钢便桥设计计算

钢便桥设计计算 This manuscript was revised by the office on December 10, 2020.

某大桥装配式公路钢便桥工程专项施工方案之一 设计计算书 二〇一六年三月六日

目录

**大桥工程专项施工方案 装配式公路钢便桥设计计算书 1、工程概况 1.1 **大桥 **大桥工程位于福建省**。**位于东溪中游,新建**大桥距离**大坝约5km。桥梁建成后,将代替既有**成为跨越**的主要通道,往西方向可通往**和**,往东途经县道**可通往**和**市区。 **大桥桥梁中心桩号为K0+,桥跨布置为(5x35)m,起始桩号: K0+009,终止桩号: K0+196,桥梁全长187m。本桥平面位于直线上,纵断面纵坡%。上部横断面采用4片预应力混凝土后张T梁布置,先简支后连续结构,梁墩正交,梁高。 桥梁单幅布置,宽度为8m,双向二车道,横断面布置1m(人行道)+7m(行车道)+1m(人行道)。桥面铺装采用12cmC50防水混凝土。 该桥桥墩采用双柱式桥墩,柱径,中间设置柱间系梁,墩上接高的盖梁,桥墩基础采用钻孔桩,直径为;两侧桥台均采用U型台,扩大基础,两侧桥台各设一道D160型伸缩缝。 桥梁于人行道处设置单侧路灯,以方便居民和车辆的夜间通行。桥梁设计洪水频率按百年一遇进行设计,并考虑以后水库扩容后库水位提升对桥梁的影响。根据《***大桥防洪影响评价报告》,**大坝百年一遇水位为,按水面坡降换算到桥址处为,水库扩容后库水位提升,因此百年一遇设计水位为,本设计梁底最低高程。 桥梁详细情况参见附件1: **大桥桥型布置图。

普通快滤池计算90419

4.5 普通快滤池工艺设计与计算 4.5.1.滤池面积和尺寸 滤池工作时间为24h ,冲洗周期为12h ,滤池实际工作时间为: h T 8.231224 1.024=? -= 式中:0.1代表反冲洗停留时间 由于该水厂引用水库里面的水,其水质比较好,故该滤池采用石英砂单层滤料,其设计滤速为 8~10m/h ,本设计取1v =10h m /,滤池面积为: 219.1498 .231005.16.33986m T v Q F =??== 根据设计规范,滤池个数不能少于2个,即N ≥2个,根据规范中的表如下: 本设计采用滤池个数为4个,其布置成对称单行排列。每个滤池面积为: 24.374 9 .149m N F f === 式中:f —每个滤池面积为(m2), N —滤池个数N ≥2个,取4个 F —滤池总面积(m2) 设计中采用滤池尺寸为:则L=6m ,B=6m ,故滤池的实际面积为6*6=36m2 实际滤速v1=3600*1.05/(23.8*4*36)=10.41m/h ,基本符合规范要求:滤速为8~10m/h 。 校核强制流速2v 为:当一座滤池检修时,其余滤池的强制滤速为 h m N Nv v /88.131 441.104112=-?=-= ,符合规范要求:强制滤速一般为10~14 m/h

2.滤池高度: H=H1+H2+H3+H4 式中:H---滤池高度(m),一般采用3.20-3.60m; H1---承托层高度(m);一般可按表(1)确定; H2---滤料层厚度(m);一般可按表(2)确定; H3---滤层上水深(m);一般采取1.5~2.0m H4---超高(m);一般采用0.3m 设计中取H1=0.40m,H2=0.70m,H3=1.80m,H4=0.30m; .0 40 .0= + + + = 80 70 m .3 H20 .1 .0 30 表4-6 大阻力配水系统承托层材料、粒径与厚度 表4-7 滤池滤速及滤料组成

人行便桥设计方案样本

人行便桥架设方案 一、概述 人行便桥位于S215道路钢构桥下游100米处,该地段河床宽度34米, 水深约 1 米左右。便桥长36米, 宽2米, 设计5个桥墩, 共四跨,每跨跨径为9米,墩与墩采用三根(I 200 X 100 X 7)的工字钢作为主梁, 设计人群荷载为2KN/m。 二、施工方案 1 、便桥桥墩施工方法 先用挖掘机清理河道让便桥2#、3# 墩基础露出水面, 再依次 挖掘5X4m深2m的基坑,然后采用①12螺纹钢焊接成长3m,宽2m,高6m的钢筋笼骨架放如基坑中,在骨架内人工填筑片石到顶部, 最后回填各墩墩基础。待2#、3# 施工完成后再用挖掘机清理 河道让4#、5# 墩基础露出水面, 用同样的方法对4#、5# 墩进行施工。在施工便道旁的河床挡墙可设为便桥1#墩, 以挡墙顶面高 程控制各墩的顶面高程, 该挡墙顶面高程为2780.32, 根据了解当地居民九龙河近十年最高水位为2778.92, 因此最高水位距便桥墩定距离为1.4米,由于桥墩埋深2m,河水最大冲刷深度为1m,且桥墩埋深满足要求。根据桥墩形状和最大流水速度得出最大流水压力为 1.24KN。 ① 便桥桥墩图:

②便桥桥墩钢筋图 立面图: -i ---- ------ … ---- .1 - ■ . --------------- - ? -------- ? ------- ”. ----------------------- -_i -_l i ^l -i ^^^i _^l ^i ^i ^ i —B a m B i __H _B i -■■■■_ _ 1 -■■■i -H B B B ^i ^i ”04 I ■ 9 * - ?- - - - ? i - J 5 ■ - ? - i dl — -~"w~" ■11■11 1— 1— 1— 门 J ■ - ■ .1 E BI ? ???■■ I ?-■ !— ■ I — 「■!「 -I - —I E 「 ;--■ I ■ - ■ J ■I ■■ i ■ > - " J .1 ■ ^i a l ^i — .^^1 ^^1 I - r _________ - ____ - _______ _______ _____ - _ - _____ - ________ 1 -______ ■ I L _______ _________ ■ I “ -^ ^11 ^ ^ 1 - - .^^ - ?^^~ T i _I ^M . -M M > - - - * - ■ j - ■ ___ - ____ _______ I ____ - p ___________ L _______ - __________ ? ____ - _____ - ____ - ■ L 1■- ______ B _ - ___ - - ? -■, ^—^1 * ^― ■ ? 一 ■ ■ — -^1 ^1 -—^1 .H -^1- ---------------- ^n ?^l H —^— .—-^^—. ------------------------------------- .1 — -—“— .H .-U -H .H H ? ■ - __ - ____________________ - __ ? ___ , _ - __ _ ? .___ - ___ ?'■ _ - __ - 一 --” - - ___ - - __ - _ - - ____________________ - __ ? ____ - 一 ., ” ? “^~~T ? “ ” " ? ? - ■ 「 一 ■■■■_ _■■■■- .1■■1_■■ ■■1■■■■■■ ■■- ■■1■■■_■■ _^^^i _-B ■1■■1 —a B I B l I — …_B I B i ■-■■■ —-—-i 2 -I B I B B -B - ^^^^1 ^1■-■1 1_■■1 a -B i B -I B d i B i -■■- --, ■ ____ * _______ - ______ - - ____ __ - H r ____ - - ____ T ________ __________________________________ . |? --;8 .?.— ? -H - ■ _____ 厂■ _ -,>" - L — —? - __ _ .1^ __ . ?■-”?'■ ■ - _________________ - ■ - - ,- ■ 亠 - > *- - U - .? - *1^ ■11 -I — -■ - S - \ ; ■ ■- - ________________ L i ; - ::;-1 !■.■ ;; - - “ -I ! . . ■ - ■ ■ n 1 . I , - -a l . ■ ?f - _____________________________________________________________________________________________________________________________________________________________ 1 ” ■ ? I ? F l I 1>? I ? *4- ■ I ! I ■ > I

相关主题
文本预览
相关文档 最新文档