当前位置:文档之家› 三相异步电机变频调速的工作原理

三相异步电机变频调速的工作原理

三相异步电机变频调速的工作原理
三相异步电机变频调速的工作原理

三相异步电动机变频调速的原理及发展

(1)三相异步电动机变频调速的发展

随着变频调速异步电动机在国内外市场上日益扩大应用。自90年代中期以来,我国有众多电动机生产企业设计、研制和生产适用于不同应用的各种系列变频调速三相异步电动机,例如:通用变频调速电动机系列、起重冶金变频调速电动机系列、隔爆变频调速电动机系列、电梯变频调速电动机系列、辊道变频调速电动机系列、牵引变频调速电动机系列等。从目前情况看,这些系列电动机能基本满足国内市场的需求。

据资料显示,我国对于变频凋速三相异步电动机的品种不断扩大,产品设计也不断改进。为了适应不同用途、不同工作条件和使用环境、不同工况等各种要求,专用系列和改型系列变频调速电动机产品不论现在和将来,都在迅速发展。

变频器供电电源会存电动机端子和各相绕组的前几匝线圈上产生高频瞬间脉冲峰值电,因此,如果不对绝缘系统采用增强措施.将会使绕组存高电压应力作用下过早失效,从而引起绝缘击穿故障。据资料报道,佳木斯电机股份有限公司已在新一代变频捌速电动机上开始采用专用电磁线、槽绝缘、相问绝缘以及浸渍漆等措施。

变频渊速是改变电动机定子电源的频率,从而改变其同步转速的渊速方法。随着电力电子技术的飞速发展,变频调速三相交流异步电动机的应用越来越广泛,它已在诼步替代其它各种调速电动机,而变

频调速三相异步电动机因其结构简单、制造方便、易于维护、性能良好、运行可靠等优点而在工业领域得到广泛应用。

变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。

变频器选型:

变频器选型时要确定以下几点:

1) 采用变频的目的;恒压控制或恒流控制等。

2) 变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。

3) 变频器与负载的匹配问题;

I.电压匹配;变频器的额定电压与负载的额定电压相符。

II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。

III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。

4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。

5) 变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。

6) 对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。

变频器控制原理图设计:

1) 首先确认变频器的安装环境;

I.工作温度。变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0~55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。

II. 环境温度。温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。必要时,

必须在箱中增加干燥剂和加热器。在水处理间,一般水汽都比较重,如果温度变化大的话,这个问题会比较突出。

III.腐蚀性气体。使用环境如果腐蚀性气体浓度大,不仅会腐蚀元器件的引线、印刷电路板等,而且还会加速塑料器件的老化,降低绝缘性能。

IV. 振动和冲击。装有变频器的控制柜受到机械振动和冲击时,会引起电气接触不良。淮安热电就出现这样的问题。这时除了提高控制柜的机械强度、远离振动源和冲击源外,还应使用抗震橡皮垫固定控制柜外和内电磁开关之类产生振动的元器件。设备运行一段时间后,应对其进行检查和维护。

V. 电磁波干扰。变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰。因此,柜内仪表和电子系统,应该选用金属外壳,屏蔽变频器对仪表的干扰。所有的元器件均应可靠接地,除此之外,各电气元件、仪器及仪表之间的连线应选用屏蔽控制电缆,且屏蔽层应接地。如果处理不好电磁干扰,往往会使整个系统无法工作,导致控制单元失灵或损坏。

2) 变频器和电机的距离确定电缆和布线方法;

I.变频器和电机的距离应该尽量的短。这样减小了电缆的对地电容,减少干扰的发射源。

II. 控制电缆选用屏蔽电缆,动力电缆选用屏蔽电缆或者从变频器到电机全部用穿线管屏蔽。

III.电机电缆应独立于其它电缆走线,其最小距离为500mm。同时应避免电机电缆与其它电缆长距离平行走线,这样才能减少变频器输出电压快速变化而产生的电磁干扰。如果控制电缆和电源电缆交叉,应尽可能使它们按90度角交叉。与变频器有关的模拟量信号线与主回路线分开走线,即使在控制柜中也要如此。

IV. 与变频器有关的模拟信号线最好选用屏蔽双绞线,动力电缆选用屏蔽的三芯电缆(其规格要比普通电机的电缆大档)或遵从变频器的用户手册。

3) 变频器控制原理图;

I.主回路:电抗器的作用是防止变频器产生的高次谐波通过电源的输入回路返回到电网从而影响其他的受电设备,需要根据变频器的容量大小来决定是否需要加电抗器;滤波器是安装在变频器的输出端,减少变频器输出的高次谐波,当变频器到电机的距离较远时,应该安装滤波器。虽然变频器本身有各种保护功能,但缺相保护却并不完美,断路器在主回路中起到过载,缺相等保护,选型时可按照变频器的容量进行选择。可以用变频器本身的过载保护代替热继电器。

II. 控制回路:具有工频变频的手动切换,以便在变频出现故障时可以手动切工频运行,因输出端不能加电压,固工频和变频要有互锁。

4) 变频器的接地;

变频器正确接地是提高系统稳定性,抑制噪声能力的重要手段。变频器的接地端子的接地电阻越小越好,接地导线的截面不小于4mm,长度不超过5m。变频器的接地应和动力设备的接地点分开,不能共

地。信号线的屏蔽层一端接到变频器的接地端,另一端浮空。变频器与控制柜之间电气相通。

变频器控制柜设计:

变频器应该安装在控制柜内部,控制柜在设计时要注意以下问题1) 散热问题:变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热我们通常采用风扇散热;变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行;大功率的变频器还需要在控制柜上加风扇,控制柜的风道要设计合理,所有进风口要设置防尘网,排风通畅,避免在柜中形成涡流,在固定的位置形成灰尘堆积;根据变频器说明书的通风量来选择匹配的风扇,风扇安装要注意防震问题。

2) 电磁干扰问题:

I.变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰,而且会产生高次谐波,这种高次谐波会通过供电回路进入整个供电网络,从而影响其他仪表。如果变频器的功率很大占整个系统25%以上,需要考虑控制电源的抗干扰措施。

II.当系统中有高频冲击负载如电焊机、电镀电源时,变频器本身会因为干扰而出现保护,则考虑整个系统的电源质量问题。

3) 防护问题需要注意以下几点:

I.防水防结露:如果变频器放在现场,需要注意变频器柜上方不的有管道法兰或其他漏点,在变频器附近不能有喷溅水流,总之现场柜体防护等级要在IP43以上。

II. 防尘:所有进风口要设置防尘网阻隔絮状杂物进入,防尘网应该设计为可拆卸式,以方便清理,维护。防尘网的网格根据现场的具体情况确定,防尘网四周与控制柜的结合处要处理严密。

III.防腐蚀性气体:在化工行业这种情况比较多见,此时可以将变频柜放在控制室中。

变频器接线规范:

信号线与动力线必须分开走线:使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。

信号线与动力线必须分别放置在不同的金属管道或者金属软管内部:连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。

1) 模拟量控制信号线应使用双股绞合屏蔽线,电线规格为

0.75mm2。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm

左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。

2) 为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。

变频器的运行和相关参数的设置:

变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。

控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。

最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。

最高运行频率:一般的变频器最大频率到60Hz,有的甚至到400 Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。

载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。

电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。

跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。

常见故障分析:

1) 过流故障:过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。

2) 过载故障:过载故障包括变频过载和电机过载。其可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。

3) 欠压:说明变频器电源输入部分有问题,需检查后才可以运行。

普通三相异步电动机与变频电动机的区别

普通三相异步电动机与变频电动机的区别 普通的三相异步电动机可以用变频器驱动吗? 普通的三相异步电动机与变频调速的三相异电动机有何区别? 普通异步电机与变频电机的区别——普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。 以下为变频器对电机的影响: 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗

三相异步电动机变频调速课程设计

目录 1三相异步电动机基本原理 (1) 1.1电动机的结构及原理 (1) 1.1.1 电动机的结构 (1) 1.1.2工作原理 (3) 2异步电动机的机械特性 (4) 2.1 固有机械特性 (4) 2.2 人为机械特性 (5) 2.2.1降低定子电压的人为特性 (5) 2.2.2增加转子电阻时的人为特性 (5) 2.2.3改变定子频率时的人为特性 (5) 3电动机的调速指标 (7) 4 异步电机的变频调速 (8) 5具体调速的设计 (10) 6结论 (11) 7设计体会 (12) 参考文献 (13)

摘要 原理是当定子三绕组通三相对称电流后,定转子产生旋转磁场,根据右手定则,转子绕组产生感应电动势,由于绕组是闭合的,所以产生感应电流,根据左手定则,转子绕组相当于空间绕组,进而产生电磁转距,合成磁转距大于阻转距时,电机起动 重点是三相异步电动机变频调速,一方面当f1<fN时,为恒转矩调速,转矩不变,额定转速降低,增大起动转矩Tst,另一方面当f1>fN时,为恒功率调速,调速前后功率不变,额定转速升高,减小启动转矩Tst。变频调速可以实现宽范围内的平滑调速,变频调速电机以简单的结构、优良的调速性能、较高的调速比,应用越来越广泛 关键字:恒转矩调速;恒功率调速;三相异步电动机。

1.三相异步电动机的基本原理 当定子三绕组通三相对称电流后,定转子产生旋转磁场,根据右手定则,转子绕组产生感应电动势,由于绕组是闭合的,所以产生感应电流,根据左手定则,转子绕组相当于空间绕组,进而产生电磁转距,合成磁转距大于阻转距时,电机起动。 1.1电动机的结构及原理 1.1.1结构 三相异步电动机的种类很多,可是三相异步电动机结构基本是相同的,它们都由定子和转子这两大基本部分组成,在定子和转子之间具有一定的气隙。此外,还有端盖、轴承、接线盒、吊环等其他附件 结构如下图: 图1-1-1-1 封闭式三相笼型异步电动机结构图 1—轴承;2—前端盖;3—转轴;4—接线盒;5—吊环;6—定子铁心; 7—转子;8—定子绕组;9—机座;10—后端盖;11—风罩;12—风扇 (1)、定子 定子铁芯:导磁和嵌放定子三相绕组:0.5mm硅钢片冲制涂漆叠压而成;内圆均匀开槽;槽形有半闭口、半开口和开口槽三种:适用于不同电机。 定子绕组:定子绕组是三相电动机的电路部分,三相电动机有三相绕组,通入三相

三相异步电动机变频调速

一、三相异步电动机变频调速原理 由于电机转速n 与旋转磁场转速1n 接近,磁场转速1n 改变后,电机转速n 也 就随之变化,由公式1 160f n p =可知,改变电源频率1f ,可以调节磁场旋转,从 而改变电机转速,这种方法称为变频调速。 根据三相异步电动机的转速公式为 ()()1 16011f n s n s p = -=- 式中1f 为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s 为异步电动机的转差率。 所以调节三相异步电动机的转速有三种方案。异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。 改变异步电动机定子绕组供电电源的频率1f ,可以改变同步转速n ,从而改变转速。如果频率1f 连续可调,则可平滑的调节转速,此为变频调速原理。 三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为 1111m 4.44m U E f N k φ≈= 式中1E 为气隙磁通在定子每相中的感应电动势;1f 为定子电源频率;1N 为定子每相绕组匝数;m k 为基波绕组系数,m φ为每极气隙磁通量。 如果改变频率1f ,且保持定子电源电压1U 不变,则气隙每极磁通m φ将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。因此,降低电源频率1f 时,必须同时降低电源电压,已达到控制磁通m φ的目的。 .1、基频以下变频调速 为了防止磁路的饱和,当降低定子电源频率1f 时,保持 1 1 U f 为常数,使气每极磁通m φ为常数,应使电压和频率按比例的配合调节。这时,电动机的电磁转 矩为()()222 2111 111 212222*********p r r m pU f m U s s T f r r f r x x r x x s s ππ?? ???? ? ?? ??? ????? ''??== ?''????'+++'+++ ??? [1][8]

三相异步电动机的结构与工作原理

三相异步电动机的结构与工作原理 5.1 三相异步电动机 实现电能与机械能相互转换的电工设备总称为电机。电机是利用电磁感应原理实现电能与机械能的相互转换。把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。 在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。 对于各种电动机我们应该了解下列几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和基本方法;(5)应用场合和如何正确使用。 5.1.1 三相异步电动机的结构与工作原理 1.三相异步电动机的构造 三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。此外还有端盖、风扇等附属部分,如图5-1所示。 图5-1 三相电动机的结构示意图 1).定子 三相异步电动机的定子由三部分组成:

2).转子 三相异步电动机的转子由三部分组成: 鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用 得最广泛的一种电动机。 为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm 之间。 2.三相异步电动机的转动原理 1).基本原理 为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。 图 5-2 三相异步电动机工作原理

(1).演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。 (2).现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。 转子转动的方向和磁极旋转的方向相同。 (3).结论:欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组。 2).旋转磁场 (1).产生 图5-3表示最简单的三相定子绕组AX 、BY 、CZ ,它们在空间按互差1200的规律对称排列。并接成星形与三相电源U 、V 、W 相联。则三相定子绕组便通过三相对称电流:随着电流在定子绕组中通过,在三相定子绕组中就会产生旋转磁场(图5-4)。 00sin sin(120)sin(120)U m V m W m i I t i I t i I t ωωω=??=-??=+? 图 5-3 三相异步电动机定子接线 当ωt=00时,0A i =,AX 绕组中无电流;B i 为负,BY 绕组中的电流从Y 流入B 1流 出;C i 为正,CZ 绕组中的电流从C 流入Z 流出;由右手螺旋定则可得合成磁场的方向如图5-4(a )所示。 当ωt=1200时,0B i =,BY 绕组中无电流;A i 为正,AX 绕组中的电流从A 流入X 流出;C i 为负,CZ 绕组中的电流从Z 流入C 流出;由右手螺旋定则可得合成磁场的方向如图5-4(b )所示。 当ωt=2400时,0C i =,CZ 绕组中无电流;A i 为负,AX 绕组中的电流从X 流入A 流出;B i 为正,BY 绕组中的电流从B 流入Y 流出;由右手螺旋定则可得合成磁场的方向如图5-4(c )所示。 可见,当定子绕组中的电流变化一个周期时,合成磁场也按电流的相序方向在空间 旋转一周。随着定子绕组中的三相电流不断地作周期性变化,产生的合成磁场也不断地 B

实验五三相异步电机变频调速(精)

实验五三相异步电机变频调速 一、实验目的 1.了解变频器外部控制端子的功能。 2.了解变频器端子的接线方法。 3.掌握变频器面板操作和常用参数的访问与设置。 4.了解三相异步电机变频调速在不同运行模式下的参数配置及操作方法。 二、实验原理 1.ATV31变频器的选型 2).转子 1 200~240V 单相,0.18~2.2kW ; 2 200~240V 三相,0.18~15kW ; 3 380~500V 三相,0.37~15kW ; 4 525~600V 三相,0.75~15kW 。 ATV31变频器具有丰富的端子和通信接口:

鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用

可以根据使用电动机的功率、额定电压来选择合适的变频器,一般变频器选型要大一个型号。例如:使用三相线电压380V ,功率是0.37kW ,可以选0.55kW 对应的变频器ATV31HU55N4,这样可以保证电动机更有效的运行。 2.变频器I/O端子的连接 ATV31变频器端子的接线方式如图4-1所示。 1).基本原理 为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。 图 5-2 三相异步电动机工作原理

L 1 L 2 L 3 (1.演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。 (2.现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。 转子转动的方向和磁极旋转的方向相同。

(完整版)异步电动机变频调速系统..

《自动控制元件及线路》 课程实习报告 异步电动机变频调速系统 1.4.1 系统原理框图及各部分简介 本文设计的交直交变频器由以下几部分组成,如图1.1所示。

图1.1 系统原理框图 系统各组成部分简介: 供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单相220V,中大功率的采用三相380V电源。因为本设计中采用中等容量的电动机,所以采用三相380V电源。 整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。在本设计中采用三相不可控整流。它可以使电网的功率因数接近1。 滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。 逆变电路:逆变部分将直流电逆变成我们需要的交流电。在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。 电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护信号。控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。这些信号经过光电隔离后去驱动开关管的关断。 1.4.2 变频器主电路方案的选定 变频器最早的形式是用旋转发电机组作为可变频率电源,供给交流电动机。随着电力半导体器件的发展,静止式的变频电源成为了变频器的主要形式。静止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。 1.交-交型变频器:它的功能是把一种频率的交流电直接变换成另一种频率可调电压的交流电(转换前后的相数相同),又称直接式变频器。由于中间不经过直流环节,不需换流,故效率很高。因而多用于低速大功率系统中,如回转窑、轧钢机等。但这种控制方式决定了最高输出频率只能达到电源频率的1/3~1/2,所以不能高速运行。 2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直流,然后再直流变换成频率电压可调的交流,又称间接变频器,交-直-交变频器是目前广泛应用的通用变频器。它根据直流部分电流、电压的不同形式,又可分为电压型和电流型两种:(1)电流型变频器 电流型变频器的特点是中间直流环节采用大电感器作为储能环节来缓冲无功功率,即扼制电流的变化,使电压波形接近正弦波,由于该直流环节内阻较大,故称电流源型变频器。 (2)电压型变频器 电压型变频器的特点是中间直流环节的储能元件采用大电容器作为储能环节来缓冲无功功率,直流环节电压比较平稳,直流环节内阻较小,相当于电压源,故称电压型变频器。 由于电压型变频器是作为电压源向交流电动机提供交流电功率,所以其主要优点是

YZP、YZPF起重专用变频调速三相异步电动机

YZP、YZPF系列起重专用变频调速三相异步电动机 一、概述 YZP、YZPF系列起重专用变频调速三相异步电动机是本公司总结YZPB、YZPBF系列冶金及起重用变频调速三相异步电动机的成功经验而开发的起重机专用变频调速三相异步电动机。充分吸收了近年来国内外变频调速方面的先进技术,特别适用于起重机高起动转矩和频繁起动的要求。能与国内外各种变频装置配套,构成交流调速系统,具有较高的精度和高的动态性能。电动机基本技术要求符合IEC34-1和GB755国际和国家标准要求,安装尺寸符合IEC72国际标准。 二、型号说明 异步电动机极数 起重用铁芯长度代号 变频调速机座长度代号 强迫风冷中心高(㎜) 三、使用条件 海拔小于1000M,环境温度小于40℃,相对湿度小于90%,对不同环境温度及安装海拔高度按下表选取电机功率。

四、电机的工作制、冷却方式、防护等级及安装型式 1.YZP系列电机的基准工作制为S3,负载持续率为40%;YZPF系列电机的工作制为S3,负载持续率为60%。 不同工作制下功率折算表 YZP系列电机 YZPF系列电机 2.YZP系列冷却方式为IC411(全封闭、自带风扇冷却);YZPF系列冷却方式为IC416(全封闭,轴向风冷却)。 3.电机的防护等级为IP54,也可根据用户要求制成IP55、IP56。

五、电动机结构及安装型式 电动机的结构及安装型式为IMB3、IMB6、IMB7、IMB8、IMV5、IMV6、IMB5、IMV1、IMV3、IMB35、IMV15、IMV36,并按下表的规定制造。 六、产品性能 1.电动机额定电压为380V,变频范围1~100Hz,其中1~50Hz为恒转矩调速,50~100Hz为恒功率调速。 2.电动机的绝缘等级为F级,也可根据用户要求制成H级。 3.电机的低速性能好,低频运行时转矩平滑,无爬行现象。 4.过载能力强,额定电压、额定频率时,能承受2倍额定转矩历时1min。 5.电动机接线方式,280及以下机座号为Y接,315及以上机座号为△接。 6.低速起动性能好,低频时起动转矩可达到额定转矩的150%。 7.根据用户要求可带各种高分辩率的传感器(光电编码器,测速发电机,超速开关等)可带电磁制动器,齿轮减速器等附件。

异步电动机变频调速控制系统设计

毕业论文(设计)材料题目:异步电动机变频调速控制系统设计 学生姓名:xxx 学生学号:xxxxxxxxx 系别:电气信息工程学院 专业:自动化 届别:2012届 指导教师:xxx

word 文档 可自由复制编辑 异步电动机变频调速控制系统设计 学生:xxx 指导教师:xxx 摘 要:本文对变频调速理论、逆变技术、SPWM 产生原理进行了研究,在此基础上设计了一种新型数字化三相SPWM 变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT 作为主功率器件,同时采用EXB840构成IGBT 的驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控的功率环节,电路结构比较简单。本文在控制上采用恒f V 控制,同时,软件程序使得参数的输入和变频器运行方式的改变极为方便,新型集成元件的采用也使得它的开发周期短。此外,本文对SA4828三相SPWM 波发生器的使用和编程进行了详细介绍,完成了整个系统控制部分的软硬件设计。 关键字:变频调速;正弦脉宽调制;f V 控制;SA4828波形发生器 Induction motor speed-adjusted system design The student :xxx The teacher :xxxxxx Electronic information and engineering institute from Huainan Normal University Abstract:This thesis has a research on these technologies: Variable Voltage Variable Frequency motor drive, inverter, and the creation principle of SPWM, Based on the results of the study, I designed a system of a new digital three phases VVVF motor drive system. It uses ASIC-SA4828 controlled by 8051 as main controlling core, it uses IGBT as power device, and uses EXB840 as drive. It uses diodes as converting circuit unit, which makes power factor close to 1. Because I only need to control inverter, the whole circuit is very simple.I adopt the means of linear f V operation. At the same time, it is very convenient to input parameters or change the drive’s operating mode due to the software procedure. Moreover, owing to the advantages of the new integrated parts, it costs less time to develop this motor drive.This thesis has also detail introduced the method of the usage and the programs of the three phases SPWM wave generator SA4828. The software and the hardware of the control part in system have been completed. Keywords: variable frequency speed control ;Sine Pulse Width Modulation (SPWM); f V operation ; SA4828 Wave Generator

变频调速三相异步电动机型号

变频调速三相异步电动机型号 YVP系列变频调速异步电动机是一种变更供电频率,达到电机调速的目的,它依据的原理(公式):n=60f/p 式中:n-每分钟转速p-极对数 f-频率(我国电网标准为50Hz) 由上述公式看出,当电机级数(P)一定时,频率变更,电机每分钟转速( n)必然变更(成正比),通过变频器一般频率变更在10-60Hz(赫兹)之间,但也可延伸至5-100Hz。变频电机必须与变频器配合使用。目前国际上普遍采用变频调速,因为变频调速有以下优点: 1、效率高、节能显著; 2、调速平滑能在5-100Hz范围内无级调速。 3、低频启动时力矩对负载冲击小; 4、启动电流小,不用附加启动设备; 5、体积小、重量轻、安装尺寸合Y系列相同; 6、在风罩内装有轴流风机,在各种转速下,均由良好的冷却效果; 7、应用范围广,在50Hz以下可作恒转矩运行,在50Hz以上可作恒功率运行; 8、较电磁调速电机结构简单,使用可靠,维修方便。 二、使用条件 1、环境温度不超过-15℃~+40℃ 2、海拔不超过1000m 3、电机防护等级IP44 4、电源电压380(220)V±10% 频率50(60)Hz ± 2% 三、主要性能指标 1、调频范围:5~50Hz恒转矩 2、工作制:连续(SI) 3、接法3KW及以下用Y接法,使变频器输出为三相220V时可改为△,4KW及以上为△接 4、启动转矩>125% 5、绝缘等级:F级:电机内部最高耐温为110℃ 调速系统的特性

变频调速范围(标准系列);5-50Hz(或6-60Hz)恒转矩调速。在矢量控制条件下,调速系统范围还可扩大。 1、额定转据 TH=9550 PH/Ns N.M 式中: PH-额定功率(KW) 2、系统运行时应选择比较合理的V-F特性。 3、用户要求大于1:10恒转合大于1:2恒功率变频电机时轻在订货时说明。 4、用户要求比三速电机变频调速时本单位亦能供货。

基于PLC实现的三相异步电动机变频调速控实验报告(精)

基于PLC 实现的三相异步电动机 变频调速控制实验报告 学院:电气与控制工程学院 专业:电气工程及其自动化 班级:1001 学号:0906060124 姓名:赵东兵 一、实验名称: 基于PLC 实现的三相异步电动机七段变频调速控制系统 二、实验目的: 1. 通过电动机变频调速控制系统实验,进一步了解可编程控制器在电动机变频调速控制中的应用。 2. 通过系统设计,进一步了解PLC 、变频器及编码器之间的配合关系。 3. 通过实验线路的设计,实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。 4. 培养动手能力,增强对可编程控制器运用的能力。 5. 培养分析,查找故障的能力。 6. 增加对可编程控制器外围电路的认识。 三、实验器件:

220V PLC实验台一套、380V 变频器实验台一套、三相电动机一台 (Nr=1400r/min,p=2)、光电编码器一个(864p/r)、万用表一个、导线若干。 四、实验原理: 1. 实验原理: 通过光电编码器将电动机的转速采集出来并送入PLC 中,通过实验程序将采集到的信息与DM3X(加速/DM4X(减速)区的设定值进行比较,当频率满足设定值时用PLC 控制变频器(变频器工作在端子调速模式下),电动机停止加速,保持匀速5S ,5S 后PLC 控制变频器加速端子继续加速。从而实现完成七段速逐段加速。以15HZ 为基准加速频率上限为45Hz (可以根据具体情况设定),并在最高段速保持10s, 此后电机开始减速,当到达设定的频率时,PLC 控制变频器停止加速,保持匀速5S ,5S 后PLC 控制变频器减速端子继续减速;反转的运动过 程与正转正转过程相似。 2. 实验原理图

三相异步电动机变频调速系统设计及仿真

天津职业技术师范大学 课程设计说明书题目:三相异步电动机变频调速系统设计及仿真 指导老师: 班级:机检1112班 组员

天津工程师范学院 课程设计任务书 机械工程学院机检1112 班学生 课程设计课题: 三相异步电动机变频调速系统设计及仿真 一、课程设计工作日自 2015 年 1 月 12 日至 2015 年 1 月 23 日 二、同组学生: 三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时 间、主要参考资料等): 1、目的和意义 交流调速是一门重要的专业必修课,它具有很强的实践性。为了加深对所学课程(模拟电子技术、数字电子技术、电机与拖动、电力电子变流技术等)的理解以及灵活应用所学知识去解决实际问题,培养学生设计实际系统的能力,特开设为期一周的课程设计。 2、具体内容 写出设计说明书,内容包括: (1)各主要环节的工作原理; (2)整个系统的工作原理(包括启动、制动以及逻辑切换过程); (3)调节器参数的计算过程。 2.画出一张详细的电气原理图; 3.采用Matlab中的Simulink软件对整个调速系统进行仿真研究,对计算得到的调节 器参数进行校正,验证设计结果的正确性。将Simulink仿真模型,以及启动过程中的电流、转速波形图附在设计说明书中。 4、考核方式 1.周五采用口试方式进行考核(以小组为单位),成绩按百分制评定。其中小组分数占60%,个人成绩占40%(包括口试情况和上交材料内容); 2.每天上午8:30--11:30在综合楼226房间答疑。 五、参考文献 1、陈伯时.电力拖动自动控制系统----运动控制系统(第3版).机械工业出版社,2003 指导教师签字:教研室主任签字:

三相交流异步电动机变频调速的实现及应用

课程设计报告 课题名称三相交流异步电动机变频调速的实现及应用 姓名学号 系专业年级电气自动化 指导教师职称 年月日

目录摘要 第一章绪论 1.1背景 1.2课程目的 1.3课程意义 1.4课程主要工作 第二章相关技术与理论 2.1.电动机的基本结构 2.1.1 定子部分 2.1.2 转子部分 2.1.3 电动机的其他附件 2.2 电动机分类 2.3三相异步电动机的工作原理 2.4变频器的结构 2.5变频器的工作原理 第三章变频器差率调速 3.1三相异步电动机的调速方法 3.3.1绕线式电动机转子串电阻调速方法 3.3.2 液力耦合器调速方法 3.3.3变极对数调速方法 3.3.4串级调速方法 3.3.5电磁转差离合器调速方法 3.2 用什么控制系统 3.3工作过程 3.4注意事项 第四章结束语 谢辞 参考文献

摘要 随着工业的不断发展,三相异步电动机的需求会越来越大,三相异步电动机的应用越来越广泛,三相异步电动机的操作系统是一个非常庞大而复杂的系统,它不仅为现代化工业、家庭生活和办公自动化等一系列应用提供基本操作平台,而且能提供多种应用服务,使人们的生活质量有了大幅度的提高,摆脱了人力劳作的模式。而三相异步电动机主要应用于工业生产的自动化操作中是三相异步电动机的主要应用之一,因此本课程设计课题将主要以在工业中三相交流异步电动机调频变速方法的应用过程可能用到的各种技术及实施方案为设计方向,为工业生产提供理论依据和实践指导。 关键词:三相交流异步电动机变频器 ABSTRACT With our industrial development, with a three wire asynchronous motor requirements will, with a three wire asynchronous motor is finding wider and wider application, with a three wire asynchronous motor of the operating system is a very large and complex systems, it only for modern industry, the family life and office automation and a number of applications to provide basic operating platform, and can provide multiple applications, the people's quality of life have a large margin,From human labor models of motors. and with a three wire asynchronous mainly applied to industrial production of automation is with a three wire asynchronous operation of the motor of the main application and this curriculum design issues will be mainly in industry with a three wire exchange to start async motor of the application may be made to various technical and implementation of solutions for the design direction and offer a theoretical basis for industrial production and practice of instruction. key word three-phase ac asynchronous motor frequency converters

普通的三相异步电动机可以用变频器驱动吗

普通的三相异步电动机可以用变频器驱动吗?普通的三相异步电动机与变频调速的三相异步电动机有何区别? 普通异步电机与变频电机的区别—— 普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。以下为变频器对电机的影响: 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。其次,普通异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。 6、电磁设计 对普通异步电动机来说,在设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下: 1)尽可能的减小定子和转子电阻。减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增加

三相异步电动机变频调速的课程设计

课程报告 课程名称:三相异步电动机变频调速的实现学生姓名:刘佐威王一哲王宇洋赵馨雨专业班级: 12级电气一班 2016 年 1月 4日

摘要 变频调速是一种典型的交流电动机调速方法,交流电动机采用变频调速技术不仅能够实现无级调速,而且可以根据负载的不同,通过适当调节电压和频率的关系,使电机始终在高效率区运行,并且保证良好的动态性能,因而被广泛使用。 目前,世界上有60%左右的发电量是通过电动机消耗的。据统计,我国各类电动机的装机容量已超过4亿kW,其中异步电动机约占90%,拖动风机、水泵及压缩机类机械的电动机约1.3亿kW。在目前4亿kW的电动机负载中,约有50%的负载是变动的,其中的30%可以使用电动机调速。虽然,有专门为变频调速系统而设计的变频调速电机,但是由于变频调速电机价格较贵,所以在大多数有调速要求的系统中都是变频器和普通交流异步电机组成的调速系统[4]。但是,在实际生产中,还只是凭借经验确定交流异步电机运行的频率范围,而对普通交流异步电机在频率改变时,电机的各项性能指标的大小和变化情况还没有定量研究。在本文中,我们以Y100L1-4普通三相交流异步电机和松下VF-8X变频器组成的变频调速系统为测试对象,测试普通交流异步电机在频率改变时的各项性能指标,以这些实验数据为依据,进而分析确定普通交流异步电机变频调速的最佳调速范围。在测试中所有的实验均按照国标中三相异步电机型式实验的相关规定进行。 课程目的 笼式三相异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。正由于此,通过此课程设计,实现三相异步电动机的变频调速控制与应用。 课程意义 这次课程设计可以使我们在学校学的理论知识用到实践中,使我们在学习中起到主导地位,是我们在实践中掌握相关知识,能够培养我们的职业技能,课程设计是以任务引领,以工作过程为导向,以活动为载体,给我们提供了一个真实的过程,通过设计和运行,反复调试、训练、便于我们掌握规范系统的电机方面的知识,同时也提高了我们的动手能力。 课程内容 在这次课程设计中,我们的主要工作在于 1. 电机的结构与工作原理 2. 变频器的结构与原理 3. 变频器的调速方法及工作过程

普通三相异步电动机与变频电动机的区别

普通三相异步电动机与变频电动机的区别 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

普通三相异步电动机与变频电动机的区别 普通的三相异步电动机可以用变频器驱动吗? 普通的三相异步电动机与变频调速的三相异电动机有何区别? 普通异步电机与变频电机的区别——普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。 以下为变频器对电机的影响: 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显着的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。其次,普通异步电动机在转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。

异步电动机变频调速

异步电动机变频调速 第一节异步电动机基本知识 1、概述 由于大功率电力电子技术(GTO、IGBT、IGCT等器件)和计算机技术的迅速发展,异步电动机也可象直流电动机一样,其速度可在大的速度范围内进行调节。因而,在工业电力拖动和铁道电力牵引等行业,大量采用异步电动机代替直流电动机,以降低设备的投资和维修成本。 2、异步电动机基本方程和特性 2.1、转速方程式 异步电动机的转速方程为:n=60f1/p(1-s)=n1(1-s) 式中:n-电动机转速(rpm) f1-定子供电频率(Hz) s-转差率 p-电动机极对数 n1-定子旋转磁场的同步速度(rpm) 2.2电压方程式 U1=E1+IZ U1≈E1=4.44 f1WK1Φ(V) U1-定子每相电压(V) E1-定子每相反电势(V) W-定子每相绕组匝数 K1-基波绕组系数 Φ-每极气隙磁通(韦伯) 2.3 等效电路图 异步电动机等效电路图如图1: 图1 异步电动机等效电路图 r1-定子绕组电阻x1-定子绕组漏抗 r m-定子激磁电阻x m-定子激磁电抗 r’2-转子绕组电阻(归算到定子側) x’2-转子绕组漏抗(归算到定子側) r2-负载等效电阻

2.4 机械特性 异步电动机转矩-转速特性如图2所示: 图2 异步电动机转矩-转速特性 第二节鼠笼式异步电动机的起动和调速 1、鼠笼式异步电动机传统的起动方法 在各种旋转电机中,鼠笼式异步电动机是最为简单的一种,它有很多的优点。 从使用的角度耒看,它价格低廉、构造简单、坚实可靠、维护容易;从性能上耒看,它漏磁通较小,功率因数较高,过载能力较大。其缺点是起动特性较差,即在额定电压下起动时,起动电流大,起动时的功率因数很低,起动时的转矩小。 为了降低在额定电压下起动时的起动电流,传统的方法有: 1)在定子线路中串联电抗器起动,如图3所示: 图3 串联电抗器起动 其缺点是如降低起动电流50%,则起动转矩将降低75%(与额定电压下起动

简述三相异步电动机工作原理

简述:三相异步电动机的工作原理 悬赏分:5 - 解决时间:2008-9-10 17:33 谢谢各位大侠 提问者:问题一般多- 试用期一级最佳答案 1.概述 电动机是把电能转换成机械能的设备。在机械、冶金、石油、煤炭、化学、航空、交通、农业以及其他各种工业中,电动机被广泛地应用着。随着工业自动化程度不断提高,需要采用各种各样的控制电机作为自动化系统的元件,人造卫星的自动控制系统中,电机也是不可缺少的。此外在国防、文教、医疗及日常生活中(现代化的家电工业中)电动机也愈来愈广泛地应用起来。 2.结构及各部分的作用 一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。另外还有端盖、风扇、罩壳、机座、接线盒等。 定子的作用是用来产生磁场和作电动机的机械支撑。电动机的定子由定子铁心、定子绕组和机座三部分组成。定子绕组镶嵌在定子铁心中,通过电流时产生感应电动势,实现电能量转换。机座的作用主要是固定和支撑定子铁心。电动机运行时,因内部损耗而发生的热量通过铁心传给机座,再由机座表面散发到周围空气中。为了增加散热面积,一般电动机在机座外表面设计为散热片状。 电动机的转子由转子铁心、转子绕组和转轴组成。转子铁心也是作为电动机磁路的一部分。转子绕组的作用是感应电动势,通过电流而产生电磁转矩。转轴是支撑转子的重量,传递转矩,输出机械功率的主要部件。 3.原理 电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。图6-10-1是三相交流异步电动机转子转动的原理图(图中只示出两根导条),当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力F,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 4.分类 按其功能可分为驱动电动机和控制电动机;按电能种类分为直流电动机和交流电动机;从电动机的转速与电网电源频率之间的关系来分类可分为同步电动机与异步电动机;按电源相数来分类可分为单相电动机和三相电动机;按防护型式可分为开启式、防护式、封闭式、隔爆式、防水式、潜水式;按安装结构型式可分为卧式、立式、带底脚、带凸缘等;按绝缘等级可分为E级、B级、F级、H级等。 5.检验标准 电动机的检验标准在国际上广泛采用的是国际电工委员会(IEC)的现行有效标准。我国电动机生产的国内标准主要是国家标准和行业标准。常用的标准有:GB755《旋转电机基本技术要求》;GB10068《旋转电机振动测定方法及限值》;GB10069《旋转电机噪声测定方法及限值》;GB1032《三相异步电动机试验方法》;GB1029《三相同步电机试验方法》;GB5171《小功率电动机通用技术要求》;JB1136《微型单相交流串激电动机和试验方法》;ZBK22007-88《Y系列三相异步电动机技术条件》等。 6.检验 电动机的性能检验分为检查试验和型式试验两大类。 (1)检查试验项目包括: A.绕组对接地端及绕组相互之间的绝缘电阻的测定; B.耐电压试验; C.绕组在实际冷态下直流电阻的测定;

相关主题
文本预览
相关文档 最新文档