当前位置:文档之家› 三相异步电机变频调试方案

三相异步电机变频调试方案

三相异步电机变频调试方案
三相异步电机变频调试方案

电力电子与电机拖动综合课程设计

题目:小功率三相异步电机

变频调速系统的设计

专业: 10自动化(2)

学号: 2012010320220 姓名:

完成日期: 2013-6-22 指导教师:曹利钢

教研室主任签字:年月日

目录

1. 引言 (3)

2.系统概述 (4)

2.1 调速方案论证 (4)

一、调压调速 (4)

二、变极数调 (4)

三、变频调速 (4)

2.2 交流低压交直交通用变频器系统框图与分析 (5)

3. 单元电路设计与分析 (5)

3.1.1整流电路模块 (5)

3.1.2IPM电路模块 (6)

3.1.3IPM隔离驱动模块 (6)

3.1.4输出滤波模块 (7)

3.1.5电压检测模块 (7)

3.2 系统软件设计 (8)

3.2.1A/D采样子程序 (9)

3.2.2数据处理算法 (9)

3.2.3SVPWM算法 (9)

3.2.4PID调节算法 (10)

3.2.5频率检测算法 (11)

3.3 实验结果 (11)

3.3.1测量波形 (11)

3.3.2测试数据 (11)

4. 结束语 (13)

4.1 心得 (13)

4.2 元件清单 (13)

4.3 主电路 (14)

4.4 控制电路 (15)

4.5 参考文献: (16)

1.引言

近几十年来随着电力电子、微电子技术和现代控制理论的发展,中小功率电机在工农业生产工厂生产中及我们日常生活中有着广泛的应用。电机的种类很多,按结构和工作原理可划分为直流电动机、异步电动机、同步电动机。按转子的结构划分笼型感应电动机(旧标准称为鼠笼型异步电动机)和绕线转子感应电动机(旧标准称为绕线型异步电动机)。异步电机,因其转子绕组电流是感应产生的,又称感应电动机。异步电动机是各类电动机中应用最广、需要量最大的一种。各国的以电为动力的机械中,约有90%左右为异步电动机,其中小型异步电动机约占70%以上。在电力系统的总负荷中,异步电动机的用电量占相当大的比重。在中国,异步电动机的用电量约占总负荷的60%多。介于应用面广,本论文主要讨论鼠笼型小功率三相异步电机YSL450 2-10的变频调速。

变频技术是应交流电机无级调速的需要而诞生的。变频器把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。

变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n =60 f(1-s)/p,(式中n、f、s、p分别表示转速、输入频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率达到改变电机转速的目的。变频器就是基于上述原理采用交-直-交电源变换技术,电力电子、微电脑控制等技术于一身的综合性电气产品。变频调速技术已深入我们生活的每个角落,变频调速系统的控制方式包括V/F、矢量控制(VC)、直接转矩控制(DTC)等。V/F控制主要应用在低成本、性能要求较低的场合;而矢量控制的引入,则开始了变频调速系统在高性能场合的应用。随着半导体技术的飞速发展,MCU的处理能力愈加强大,处理速度不断提升,变频调速系统完全有能力处理复杂的任务,实现复杂的观测、控制算法,传动性能也因此达到前所未有的高度。而现在变频驱动主要使用PWM合成驱动方式,这要求其控制器有很强的PWM生成能力。

2.系统概述

2.1 调速方案论证

一、调压调速

优点:

可以将调速过程中产生的转差能量加以回馈利用。效率高;

装置容量与调速范围成正比,适用于70%~95%的调速。

缺点:

功率因素较低,有谐波干扰,正常运行时无制动转矩,适用于单象限运行的负载。

二、变极数调

优点:

无附加差基损耗,效率高;

控制电路简单,易维修,价格低;

与定子调压或电磁转差离合器配合可得到效率较高的平滑调速。

缺点:

有级调速,不能实现无级平滑的调速。且由于受到电机结构和制造工艺的限制,通常只能实现2~3种极对数的有级调速,调速范围相当有限。

三、变频调速

它是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(V/F变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。

优点:

无附加转差损耗,效率高,调速范围宽;

对于低负载运行时间较多,或起停运行较频繁的场合,可以达到节电和保护电机的目的。

缺点:

技术较复杂,价格较高。

根据上面的优缺点比较综合论证,本设计采用的是变频调速的方法。由于异步电机是依靠定子的磁场旋转的方法使转子产生感应电流,感应电流切割定子产生的磁场从来运作的。通过实验表明,电机的转速是跟频率和极对数有关的,即

n=60f(1-s)/p

n为转速 f为供电频率 s为转差率 p为极对数

设计中自行设计了一简单用AVR控制器作为主控,以AC-DC-AC的整流逆变过程的变频器,来达到电机三相电压频率的变化及电压的跟随。使系统达到驱动异步电机使转速可调及转矩可调的目的。改变频率使得电机的速度平滑性稳定性很高和变速级数能做到连续变化

2.2 交流低压交直交通用变频器系统框图与分析

图1(系统框图)

变频调速基本原理

(1)整流滤波模块:对电网输入的交流电进行整流滤波,为变换器提供波纹较小的

直流电压。

(2)三相桥式逆变器模块:把直流电压变换成交流电。其中功率级采用智能型IPM 功率模块,具有电路简单、可靠性高等特点

变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。当在定子绕组上接入三相交流电时,在定子与转子之间的空气隙内产生一个旋转磁场,它与转子绕组产生相对运动,使转子绕组产生感应电势,出现感应电流,此电流与旋转磁场相互作用,产生电磁转矩,使电动机转动起来。

(3)控制电路模块:检测输出电压、电流信号后,按照一定的控制算法和控制策略产生SPWM控制信号,去控制IPM开关管的通断从而保持输出电压稳定,同时通过SPI 接口完成对输入电压信号、电流信号的程控调理。捕获单元完成对输出信号的测频。

3.单元电路设计与分析

3.1单元电路设计

变频器由整流环节、滤波器、全控器件IGBT组成的逆变电路组成,实现交直交的逆变过程通过为控制器改变V1-V6的导通频率和导通相序达到调节频率它的的硬件电路主要包含6个模块:整流电路模块、IPM电路模块、IPM隔离驱动模块、输出滤波模块、电压检测模块和PM25RSB-120数字信号处理模块。

3.1.1整流电路模块

采用二极管不可控整流电路以提高网侧电压功率因数,整流所得直流电压用大电容稳压为逆变器提供直流电压,该电路由6只整流二极管和吸收负载感性无功的直流稳压电容组成。整流电路原理图如图2所示。

发电机调试方案

发电机调试方案标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

发电机试验是检查发电机投运前检验其在制造、运输、安装过程中是否受损的重要手段。根据《电气装置安装工程电气设备交接试验标准》(GB50150-91)的规定,发电机容量在6MW以上的同步发电机应进行以下项目试验,为安全、正确地将各项试验工作顺利完成,特制定本试验方案要求试验人员认真负责地遵守各项试验程序。 发电机部分 一、测量定子线圈的绝缘电阻和吸收比 l、试验接线:被试相短接后与兆欧表端子相连,其绝缘良好,非被试相短路后接发电机外壳。 2、测量方法:兆欧表校正无误后,接通被试相进行绝缘测定,并分别记录15"和60"的兆欧值,R60与R15之比值即为吸收比,1min后停止测量,并对被试相放电后,改接线测量另两相的绝缘电阻。 3、试验标准 各绝缘电阻的不平衡系数应不大于2,吸收比应不小于。 二、测量定子绕阻的直流电阻 l、测量方法 用双臂电桥分别测定发电机定子线圈和转子线圈直流电阻,并同时记录线圈表面温度,直流电阻应在冷状态下测量,测量时线圈表面温度与周围室内空气温度之差应在土3℃范围内。

2、试验标准 各相的流电阻,相互间差别不得大于最小值的2%,与产品出厂时测量得的数值换算至同温度下的数值比较,其相对变化也不应大于2%。 三、定子线圈直流耐压试验和泄漏电流测量。 定子绕阻的绝缘电阻和吸收比合格后,即可进行直流耐压试验。 1、试验所需设备,JGF—80型直流高压发生器1套。 2、直流试验电压确定(V):V=3*VH=3*6300V=18900(V)。 3、试验接线如附图(1):非被试相短路接地于电机外壳上,转子绕阻短路接外壳。 4、试验步骤 试验电路接好后,首先检查各仪表指针是否在零位,量程是否合适,调压器是否在零位。一切无误后,在不接被试品的状态下,先将试验电路进行空试,试验电压按每级倍额定电压分阶段升高,每阶段停留一分钟,读微安表的指示值,然后将电压降至0,断开电流。 试验电路经空试正常后,将电机被试相首尾短接后,接入试验电路,为两相短接后接入电机外壳上。对被试设备加压时,试验电压按每级分阶段升高,每阶段停留1分钟,观察泄漏电流的变化。如无异常,当升到最高试验电压后停留1分钟,读取泄漏电流,一相试完后,降下试验电压断开电源,对被试设备及电容器放电并接地,改试其余两相。若有异常,立即降压查明原因,并消除之,后再试验。

安川变频器的调试及参数设置表(齐全)

第一部分变频器的操作方法 一、操作面板各部的名称: 图1 操作面板布置 二、操作键的功能: LOCAL/REMOTE:用数字操作器运行(COCAL)和用控制回路端子运行(REMOTE)切换时按下,由参数(o2-01)可设定这个键的有效/无效。 MENU:菜单键,按此键可进入参数设置。 ESC:按一下ESC键,则回到前一个状态。 JOG:操作器运行时的点动运行键。

FWD/REV:操作器运行时,运转方向切换键。 RESET:设定参数数值时,选择操作位;故障发生时,作为故障复位键。 增加键:选择方式、组、功能、参数的名称、设定值(增加)时按下此键。 减少键:选择方式、组、功能、参数的名称、设定值(减少)时按下此键。 DATA/ENTER:各模式、功能、参数、设定值确认时按下此键。RUN:操作器运行时,按下此键起动变频器。 STOP:操作器运行时,按下此键停止变频器;控制回路端子运行时,由参数(o2-01)可以设定这个键的有效/无效。 三、方式的切换 按(MENU)键,表示驱动方式,然后按、键切换方式。读取、设定各方式中参数时,按(DATA/ENTER)键。从参数的读取、设定状态返回前一状态时,按(ESC)键。具体操作如下图:

图2 方式的切换 四、操作举例 把加速时间从变更为,请按以下顺序设定参数: 五、在驱动方式下的操作 在驱动方式下,可监视频率指令、输出频率、输出电流、输出电

压、输入输出状态等及显示异常内容、异常记录等。常用监视参数:

图3 驱动方式下的操作方法 第二部分变频器的调整 确认电机旋转方向 把电梯的检修开关置于检修位置,按检修上行或检修下行按钮,电梯将以检修速度上行或下行,观察电梯的运行方向是否跟所要求的方向一致,速度是否正常。如有异常,按下表中的方法进行处理:

变频器的VF控制与矢量控制

变频器的V/F控制与矢量控制 U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。 V/F控制与矢量都是恒转矩控制。U/F相对转矩可能变化大一些。而矢量是根据需要的转矩来调节的,相对不好控制一些。对普通用途。两者一样。 1、矢量控制方式 矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制。 在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 2、V/F控制方式 V/F控制,就是变频器输出频率与输出电压的比值为恒定值或成比例。例如,50HZ时输出电压为380V的话,则25HZ时输出电压为190V。 变频器采用V/F控制方式时,对电机参数依赖不大,V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变

发电机安装与调试方案

张家港保税区热电厂二期工程 锅炉、汽机、电气设备安装工程 发电机安装与调试方 案 中国化学工程第六建设公司 二○○二年三月二十七日

目录 一、编制说明 二、编制依据 三、工程概况 四、施工程序 五、施工方法、技术要求及质量控制 六、主要施工机具及劳动力组织 七、安全措施及注意事项 八、质量保证措施

一、编制说明 应工程投标需要及便于施工准备,特编制本方案。待资料齐备之后,再补充或编制新方案,交施工处(队)执行。 二、编制依据 1、张家港保税区热电厂二期工程锅炉、汽机、电气设备安装工程 2、电气装置安装工程电缆线路施工及验收规范(GB50168-92) 3、电气装置安装工程旋转电机施工及验收规范(GB50170-92) 4、电气装置安装工程电气设备交接试验标准(GB50150-91) 5、本企业标准Q/LJ010503.04-91高压同步电机电气试验 6、本企业部级工法GF、LJ07.08-94,35KV及以下热缩型电缆头制作工法 7、本公司施工过的同类工程施工技术方案 三、工程概况 从招标文件看,本工程设计汽轮发电机2台,额定功率为12000kw,其他数据及资料尚待设计定。 四、施工程序 基础验收→定子和转子安装→集电环和电刷安装→电缆敷设→电缆头制作及电缆试验→电缆接线→电机干燥→底座绝缘试验→电机本体试验→可控硅励磁系统调试→电机控制及保护系统调试→电机系统调试→空载试车→负荷试车 五、施工方法、技术要求及质量控制 1、基础验收 由工艺设备安装专业进行。 2、定子和转子安装。 由工艺设备专业安装,电气专业配合。注意观察埋入式测温元件的引出线和端子板应清洁、绝缘,其屏蔽接地良好。电机的引线及出线的接触面良好、清洁、无油垢,镀银层不应锉磨。引线及出线连接紧固,采用铁质螺栓时,连接后不得构成闭合磁路。 3、集电环和电刷安装 亦由工艺设备专业安装,电气专业配合检查。接至刷架的电缆,

变频器如何调试

安伟,致力成为变频器中的“戴尔”变频器行业专用,特价,维修,方案系统,咨询 尽在http;//www.yapuda.com

变频器调试的工作步骤 一、通电前的准备工作 1、先检查变频器的接线和配线。 a、检查进出线主电源连接是否正确、可靠。电源电压的等级是否符合 变频器使用说明的要求,连接是否牢固。绝缘层有无破损。仔细检 查端子排有无松脱,是否存在短路等隐性故障。接地是否良好。 b、检查变频柜内控制回路的进线连接和电压等级是否符合变频柜的应 用要求。各连接线连接是否牢固,绝缘层有无破损,各电路板连接 插头接插是否牢固。 c、清理变频柜内部杂物,再次确认主电源进线、控制回路线路、接地 线、零线的连接有无不当之处.保持变频器周围的环境清洁、干燥, 严禁在变频器附近放置杂物。认真检查有无遗漏的螺丝及导线等, 防止小金属物品造成变频器短路事故。 2、咨询用户的系统控制要求(控制方式)及管网压力设定要求(通俗的说就是 了解用户要求的供水压力是多少),记录下来。 3、如果变频柜控制的是潜水泵,咨询用户明确潜水泵的电机相关参数:额定功 率、额定转速、额定电流等,确认后纪录下来。如果控制的是离心泵或风机就将电动机铭牌上的参数记录下来,以便在进行变频器的程序设定时能将电动机的参数准确输入,从而实现变频器保护的准确和控制的精确。 4、检查用户的管网安装连接是否符合我们的安装图,如果用户未按照我们的图 纸安装施工,特别要注意的是单流阀和检测仪表的安装位置。我们要向用户陈述让其明白不当安装的利害关系。其一,如果控制的是深井潜水泵,不安装单流阀(单向阀)在停泵的时候,管道中的水会往井内倒流(从井中抽出来的水,又回流到了井内)这样不仅造成了电能的白白浪费。又因潜水电泵(其他类型的泵也是如此)是禁止反转运行的(祥见使用说明书)而水在回流的过程中会引起潜水电泵的反向运转,常期会造成潜水电泵内的紧固件松动,发生机械故障。其次,因为我们的供水管道是个全密闭的系统,管道中的水在往井内回流的过程中,会在管道内部形成近似真空的状态,而我们安装在管道上的压力检测仪表会因为管道内的真空负压反吸而造成损坏,进而造成我们的设备因检测仪表的失灵而无法启动。 5、检查压力检测仪表与变频器的接线是否牢固,连接是否正确。我们的压力检 测仪表的接线规则:屏蔽线的红色线接仪表内的红色引出线、屏蔽线的黄色线接仪表内的黄色引出线、屏蔽线的绿色线(兰色)线接仪表内的蓝色引出线。变频器内的端子接线规则:屏蔽线的红色线接变频器内反馈端子的负端、屏蔽线的黄色线接变频器内反馈端子的输入端、屏蔽线的绿色(兰色)线接变频器内反馈端子的电源端。如果是丹佛斯的变频器要在屏蔽线的绿色(兰色)线串接一个300 ~ 500欧姆的电阻然后接到变频器反馈端子的电源上。6、检测水泵电机的电机线绝缘是否良好,有无破损,线径是否达到要求。先检 测水泵电机的三相阻值是否平衡,有条件的情况下用兆欧表摇测一下水泵电机的对地绝缘,在用变频器控制的情况下绝缘阻值必须大于20兆欧以上。检查水泵电机的电源线的线径是否符合使用说明书中的线径要求。如果是离心泵可以用手去盘动水泵的驱动轴,检查转动是否灵活,如果转不动,拆除电

三相异步电动机变频调速课程设计

目录 1三相异步电动机基本原理 (1) 1.1电动机的结构及原理 (1) 1.1.1 电动机的结构 (1) 1.1.2工作原理 (3) 2异步电动机的机械特性 (4) 2.1 固有机械特性 (4) 2.2 人为机械特性 (5) 2.2.1降低定子电压的人为特性 (5) 2.2.2增加转子电阻时的人为特性 (5) 2.2.3改变定子频率时的人为特性 (5) 3电动机的调速指标 (7) 4 异步电机的变频调速 (8) 5具体调速的设计 (10) 6结论 (11) 7设计体会 (12) 参考文献 (13)

摘要 原理是当定子三绕组通三相对称电流后,定转子产生旋转磁场,根据右手定则,转子绕组产生感应电动势,由于绕组是闭合的,所以产生感应电流,根据左手定则,转子绕组相当于空间绕组,进而产生电磁转距,合成磁转距大于阻转距时,电机起动 重点是三相异步电动机变频调速,一方面当f1<fN时,为恒转矩调速,转矩不变,额定转速降低,增大起动转矩Tst,另一方面当f1>fN时,为恒功率调速,调速前后功率不变,额定转速升高,减小启动转矩Tst。变频调速可以实现宽范围内的平滑调速,变频调速电机以简单的结构、优良的调速性能、较高的调速比,应用越来越广泛 关键字:恒转矩调速;恒功率调速;三相异步电动机。

1.三相异步电动机的基本原理 当定子三绕组通三相对称电流后,定转子产生旋转磁场,根据右手定则,转子绕组产生感应电动势,由于绕组是闭合的,所以产生感应电流,根据左手定则,转子绕组相当于空间绕组,进而产生电磁转距,合成磁转距大于阻转距时,电机起动。 1.1电动机的结构及原理 1.1.1结构 三相异步电动机的种类很多,可是三相异步电动机结构基本是相同的,它们都由定子和转子这两大基本部分组成,在定子和转子之间具有一定的气隙。此外,还有端盖、轴承、接线盒、吊环等其他附件 结构如下图: 图1-1-1-1 封闭式三相笼型异步电动机结构图 1—轴承;2—前端盖;3—转轴;4—接线盒;5—吊环;6—定子铁心; 7—转子;8—定子绕组;9—机座;10—后端盖;11—风罩;12—风扇 (1)、定子 定子铁芯:导磁和嵌放定子三相绕组:0.5mm硅钢片冲制涂漆叠压而成;内圆均匀开槽;槽形有半闭口、半开口和开口槽三种:适用于不同电机。 定子绕组:定子绕组是三相电动机的电路部分,三相电动机有三相绕组,通入三相

普通三相异步电动机与变频电动机的区别

普通三相异步电动机与变频电动机的区别 普通的三相异步电动机可以用变频器驱动吗? 普通的三相异步电动机与变频调速的三相异电动机有何区别? 普通异步电机与变频电机的区别——普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。 以下为变频器对电机的影响: 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗

变频器常用的几种控制方式

变频器常用的几种控制方式 变频调速技术就是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也就是非常重要的。本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。 1、变频器简介 1、1 变频器的基本结构 变频器就是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1、2 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器与电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器与高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器与矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器与三相变频器等。 2、变频器中常用的控制方式 2、1 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。 (1) V/f控制 V/f控制就是为了得到理想的转矩-速度特性,基于在改变电源频率进 行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但就是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制就是一种直接控制转矩的控制方式,它就是在V/f控制的基础上,按照知道异 步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率与电流进行控制,因此,这就是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速与负载变动有良好的响应特性。 (3) 矢量控制 矢量控制就是通过矢量坐标电路控制电动机定子电流的大小与相位,以达到对电动机在d、q、0坐标轴系中的励磁电流与转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序与时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的

最新新能源汽车电机逆变器Power-HiL测试方案

新能源汽车电机逆变器Power HiL测试方案 新能源汽车电驱动系统的开发对业界来说是一个新的挑战,因为以往在传统的驱动系统开发上积累的测试规范和测试循环的相关经验并不能直接套用,并且需要新的流程。这是因为高电压部件的出现以及其要遵从国内和国际法规(比如ECE-R 100)和标准(比如 IEC 61851)。汽车E/E 系统必须同时具备实用、耐久、安全、紧凑、轻量化以及高效的功率和低成本这些特点。这些要求施加了高复杂性,尤其在系统级别上。 随着测试技术的进步,Power-HiL的出现电子部件的LV-HiL及网络测试的之间的空缺。Power-HiL方法能够进行控制接口的仿真,和高电压、高电流、高功率的仿真,这些是与实际应用情况精确吻合的,并且是可以复现的。任何现实中缺失的部件都可以使用各种高电压的模拟器代替。它们能够按照特定模型、系统特定硬件和实际工作点,来生成相应的电压和电流。特别地,这种Power-HiL 的方法能够使得部件在不影响其他部件的情况下一直工作在特定工作点下。 德国Scienlab能够实现对电驱动系统从各模块到整个系统的递进式测试,而且是全电气化的功率级仿真测试。在过去的几年中,Scienlab的Power-HiL 测试环境成为了测试电力电子车辆部件系统的非常成功的产品。典型的应用领域包括能量存储、逆变器、充电技术以及车载电气系统和动力传动系统。 系统组成: 针对新能源汽车电机逆变器的实际特点和工作需求,Scienlab逆变器提供一个优化的测试方案,通过高品质的电机模拟器及电池模拟器仿真逆变器实际的交流和直流工作环境,对逆变器的软件和硬件进行功率级的测试,同时作为一个开放的平台,支持汽车行业主流的HiL系统(如dSPACE、ETAS、MicroNova等),支持主流的环境温仓。为了保护被测的逆变器、测试台架以及人员安全,Scienlab 还有专门的独立的安全保护系统来确保安全。

安川 G7变频器调试说明

安川 G7变频器调试说明 一、变频器参数的设定方法: 1、变频器操作器上共有11个按键: 1)LOCAL/REMOTE本地与远程控制转换键; 2)MENU 选择菜单键,用来选择个模式; 3)ESC 返回键,按下此键则返回到前一个状态; 4)JOG 点动键,操作器运行时的点动运行键; 5)FWD/REV 正转/反转键,操作器运行时,切换旋转方向; 6)〉/RESET移位/复位键,选择设定参数数值的位数键,故障发生时 作为故障复位键使用; 7)∧增加键,选择模式,参数编号,设定值(增加)等等; 8)∨减少键,选择模式,参数编号,设定值(减少)等等; 9)DATA/ENTER数据/输入键,决定各模式,参数的编号,设定值; 10)RUN运行键,用操作器运行时,按此键启动变频器; 11)STOP 停止键,用操作器运行时,按此键停止变频器; 2、变频器参数的设定方法: (1)在监视界面下按下MENU键,界面显示“Operation”,连续按下MENU 键会在如下5个菜单之间来回转换: 1)Operation 驱动模式,在此模式下按下DATA/ENTER键,变频器 会回到监视界面; 2)Quick Setting QUICK程序模式,初始设定; 3)Programming ADVANCED程序模式,变频器全部参数设定; 4)Modified Consts 校验模式,已设定过的与出厂值不同的参数; 5)Auto Tuning 字学习模式,对电机参数进行自学习; (2)Quick Setting初始设定举例(设定A1-02=3 带PG矢量控制):在监视界面下按下MENU键,直至显示“Quick Setting”界面,再 按“DATA/ENTER”键,显示“A1-00=0”,再按“〉/RESET”键,此 时“00”闪动,再按“∧”键,将“00”改为“02”,再按“DATA/ENTER” 键后,将数值改为“03”,再按“DATA/ENTER”键,A1-02就被设 置成“03”即带PG矢量控制模式; (3)P rogramming参数设定举例:(设定F1-01=1024 编码器脉冲数)在监视界面下按下MENU键,直至显示“Programming”界面,再按 “DATA/ENTER”键,显示“A1-00=0”,此时“A1”闪动,再按“∧” 键,直至出现“F1-01=0”,此时“F1”闪动,再按再按“〉/RESET”

变频器控制方式选型(精)

变频器控制方式选型 概述:本文介绍了通用变频器的控制方式,以及在实际应用中如何选择合理的型号。 关键词:控制方式选型 1引言 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并获得了广泛应用。 2变频器控制方式 低压通用变频输出电压为380~690V,输出功率为0.75~560kW,工作频率为0~500Hz,它的主电路都采用交直交电路。其控制方式经历了以下四代。 2.1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 2.2电压空间矢量(SVPWM)控制方式 它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。 2.3矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流 Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁

机电系统综合调试方案

第1节机电系统综合调试 7.13.1、机电系统调试计划 机电系统单项调试开始时间表

7.13.2、电气系统调试 (1) 调试方案 电气系统送电试运行应在高、低压供配电调试正常后进行。在正式送电前应编制详细的送电方案,成立相应的送电运行小组,做好送电安全防护等工作。 (2)、配电柜试运行 ①、配电柜试运行前,检查配电柜内有无杂物,安装是否符合质量评定标准。相色、铭牌号是否齐全。 ②、在未闭合主开关时,直投柜要校相。 ③、将开关柜内各分开关处于断开位置。当主开关闭合后,逐个合上分开关。 ④、摘掉电动机接线端子,联动控制设备,看接触器动作逻辑是否按设计要求及动作是否可靠。 ⑤、在空载情况下,检查各保护装置的手动、自动是否灵活可靠。 ⑥、在负载运行时,切断弱电系统中的线路,测弱电端子,感应电是否符合厂家要求。 ⑦、送电空载运行24 小时,无异常现象,经监理工程师及甲方检查确认后,向监理公司及甲方各报一份存档。 (3)、电机试运行 ①、电机试运行前,用1000V 兆欧表测量电机绕组的绝缘电阻,在常温下绝缘电阻值不低于0.5MΩ。 ②、电动机的第一次启动在空载下运行,首先点动,无问题时,空载运行时间 2 小时。开始运行及每隔1 小时要测量并记录其电源电压和空载电流、温升、转速等。 ③、电动机在运行时进行电机的转向、换向器、滑环及电刷工作情况、电机温升等到的检查。 ④、交流电动机在空载状态下可启动次数及时间间隔应符合产品技术条件的要求;无要求时,连续两次启动时间不应小于5 分钟,再次启动应在电动机冷却至常温后。 ⑤、交流电动机的带负荷连续起动次数,如生产厂家无规定时,可按下列规定: A、在冷态时,可连续起动二次;

西威变频器调试资料

西威变频器调试资料 一.变频器线路说明 1.同步变频器选型方法 2.与常见微机板匹配注意事项(蓝光、新时达、中秀、奔克、里霸) 3.与常用曳引机匹配注意事项(蓝光、欣达、孚信、阿尔法、蒙特纳利、威特) 4.端子与接线说明 二.外部部件说明与选配 1.制动电阻选型 2.滤波器选型 3.编码器与分频卡 海德汉 hipeface 内密控 4.旋转变压器与RES卡 三.操作说明 1.面板操作说明 2.参数修改步骤 3.参数保存方法 4.参数初始化方法 四.参数设置表及简要说明 五.变频器自学习调试 1.电流自学习 2.无齿定位自学习 六.速度曲线与时序的说明 七.舒适感调试说明 1.PI调节

2.预转矩调试 八.常见显示错误与处理方法 1.报警清除方法 2.软件报错的说明 3.硬件故障处理方法 九.与新增、改变内容对照表 十.附录1 版本说明 十一.反馈表 一.变频器线路说明 1.同步变频器选型方法 当永磁同步无齿曳引机选配变频器型号时,除了要符合曳引机的铭牌参数外,一般还需要满足I b>,的电流公式。I b:变频器的额定电流。I j:曳引机的额定电流。 2.与常见微机板匹配注意事项(蓝光、新时达、中秀、奔克、里霸)(未完善) 因西威变频器软件系统比较强大,启动时比一般变频器要慢。在电梯系统上电后,变频器正常信号给的比较慢,新时达微机板等会不断的断合变频器电源,从而无法正常

运行运行。具体处理方法:将变频4060号参数置1(反),微机板中Drive OK输入端设为常闭有效。 3.与常用曳引机匹配注意事项(蓝光、欣达、孚信、阿尔法、蒙特纳利、威特) (未完善) 进口曳引机参数不详,,具体参数要向曳引机销售方咨询。 4.端子与接线说明(详细参见说明书P50) a、主线路注意事项 制动电阻应接在BR1和C之间,不能接在C和D或者D和BR1之间,如 果接错会损坏变频器 主线路端子在接线时要拧紧,不然会影响变频器和电机性能,容易产生故 障 b、控制线路注意事项 采用变频器内部24V时,需要将变频器18、19端子接入回路。 在使用41、42端子时,需要与46形成回路详细参见说明P43页电位说明 当曳引机在安装与设计相反时,如果要调换方向需要将13,14调换的同时, 微机板上A+与A-、B+与B-也要调换。 c、接线端子定义可以参考下面几个图

三相异步电动机变频调速

一、三相异步电动机变频调速原理 由于电机转速n 与旋转磁场转速1n 接近,磁场转速1n 改变后,电机转速n 也就随之变化,由公式1 160f n p =可知,改变电源频率1f ,可以调节磁场旋转,从而改变电机转速,这种方法称为变频 调速。 根据三相异步电动机的转速公式为 ()()1 16011f n s n s p = -=- 式中1f 为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s 为异步电动机的转差率。 所以调节三相异步电动机的转速有三种方案。异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。 改变异步电动机定子绕组供电电源的频率1f ,可以改变同步转速n ,从而改变转速。如果频率1f 连续可调,则可平滑的调节转速,此为变频调速原理。 三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为 1111m 4.44m U E f N k φ≈= 式中1E 为气隙磁通在定子每相中的感应电动势;1f 为定子电源频率;1N 为定子每相绕组匝数; m k 为基波绕组系数,m φ为每极气隙磁通量。 如果改变频率1f ,且保持定子电源电压1U 不变,则气隙每极磁通m φ将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。因此,降低电源频率1f 时,必须同时降低电源电压,已达到控制磁通m φ的目的。 .1、基频以下变频调速 为了防止磁路的饱和,当降低定子电源频率1f 时,保持 1 1 U f 为常数,使气每极磁通m φ为常数,应使电压和频率按比例的配合调节。这时,电动机的电磁转 矩为 ()()2 22 2 11 1 111 2 12222111211222p r r m pU f m U s s T f r r f r x x r x x s s ππ?? ?? ?? ??? ??? ?? ??? ''??= = ?''????'+++'+++ ? ? ? [1][8]

发电机调试方案

发电机试验是检查发电机投运前检验其在制造、运输、安装过程中是否受损的重要手段。根据《电气装置安装工程电气设备交接试验标准》(GB50150-91)的规定,发电机容量在6MW以上的同步发电机应进行以下项目试验,为安全、正确地将各项试验工作顺利完成,特制定本试验方案要求试验人员认真负责地遵守各项试验程序。 发电机部分 一、测量定子线圈的绝缘电阻和吸收比 l、试验接线:被试相短接后与兆欧表端子相连,其绝缘良好,非被试相短路后接发电机外壳。 2、测量方法:兆欧表校正无误后,接通被试相进行绝缘测定,并分别记录15"和60"的兆欧值,R60与R15之比值即为吸收比,1min后停止测量,并对被试相放电后,改接线测量另两相的绝缘电阻。 3、试验标准 各绝缘电阻的不平衡系数应不大于2,吸收比应不小于1.3。 二、测量定子绕阻的直流电阻 l、测量方法 用双臂电桥分别测定发电机定子线圈和转子线圈直流电阻,并同时记录线圈表面温度,直流电阻应在冷状态下测量,测量时线圈表面温度与周围室内空气温度之差应在土3℃范围内。 2、试验标准 各相的流电阻,相互间差别不得大于最小值的2%,与产品出厂时测量得的数值换算至同温度下的数值比较,其相对变化也不应大于2%。 三、定子线圈直流耐压试验和泄漏电流测量。 定子绕阻的绝缘电阻和吸收比合格后,即可进行直流耐压试验。 1、试验所需设备,JGF—80型直流高压发生器1套。 2、直流试验电压确定(V):V=3*VH=3*6300V=18900(V)。 3、试验接线如附图(1):非被试相短路接地于电机外壳上,转子绕阻短路接外壳。

4、试验步骤 试验电路接好后,首先检查各仪表指针是否在零位,量程是否合适,调压器是否在零位。一切无误后,在不接被试品的状态下,先将试验电路进行空试,试验电压按每级o.5倍额定电压分阶段升高,每阶段停留一分钟,读微安表的指示值,然后将电压降至0,断开电流。 试验电路经空试正常后,将电机被试相首尾短接后,接入试验电路,为两相短接后接入电机外壳上。对被试设备加压时,试验电压按每级0.5VH分阶段升高,每阶段停留1分钟,观察泄漏电流的变化。如无异常,当升到最高试验电压后停留1分钟,读取泄漏电流,一相试完后,降下试验电压断开电源,对被试设备及电容器放电并接地,改试其余两相。若有异常,立即降压查明原因,并消除之,后再试验。 5、试验结果分析: (1)各相泄漏电流的差别应不大于最小值的50%,当最大泄漏电流在20μA以下,各相间差值与出厂试验值比较不应有明显差别。 (2)泄漏电流应不随时间延长而增大。 (3)泄漏电流随电压不成比例地显著增长时应注意分析。 四、交流耐压试验 直流泄漏试验合格之后,可立即进行交流耐压试验。 l、试验设备与仪器 交流试验压器 25KVA 20KV 1台

西门子变频器的调试方法跟步骤

西门子变频器的调试方法跟步骤 西门子变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异步电机的软起动、变频调速、提高运转精度、改变功率因数、过流/过压/过载保护等功能。 西门子变频器主要应用在风机、水泵的应用上。为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。 变频器调试的基本方法和步骤: 一、变频器的空载通电验 1、将变频器的接地端子接地。 2、将变频器的电源输入端子经过漏电保护开关接到电源上。 3、检查变频器显示窗出厂显示是否正常,如果不正确,应复位,否则要求退换。

4、熟悉变频器的操作键。一般的变频器均有运行(RUN)、停止(STOP)、编程(PROG)、数据P确认(DATAPENTER)、增加(UP、▲)、减少(DOWN、“)等6个键,不同变频器操作键的定义基本相同。此外有的变频器还有监视(MONITORPDISPLAY)、复位(RESET)、寸动(JOG)、移位(SHIFT)等功能键。 二、带载试运行 1、手动操作变频器面板的运行停止键,观察电机运行停止过程及变频器的显示窗,看是否有异常现象。 2、如果启动P停止电机过程中变频器出现过流保护动作,应重新设定加速P减速时间。电机在加、减速时的加速度取决于加速转矩,而变频器在启、制动过程中的频率变化率是用户设定的。若电机转动惯量或电机负载变化,按预先设定的频率变化率升速或减速时,有可能出现加速转矩不够,从而造成电机失速,即电机转速与变频器输出频率不协调,从而造成过电流或过电压。因此,需要根据电机转动惯量和负载合理设定加、减速时间,使变频器的频率变化率能与电机转速变化率相协调。 三、变频器带电机空载运行

(完整版)异步电动机变频调速系统..

《自动控制元件及线路》 课程实习报告 异步电动机变频调速系统 1.4.1 系统原理框图及各部分简介 本文设计的交直交变频器由以下几部分组成,如图1.1所示。

图1.1 系统原理框图 系统各组成部分简介: 供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单相220V,中大功率的采用三相380V电源。因为本设计中采用中等容量的电动机,所以采用三相380V电源。 整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。在本设计中采用三相不可控整流。它可以使电网的功率因数接近1。 滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。 逆变电路:逆变部分将直流电逆变成我们需要的交流电。在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。 电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护信号。控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。这些信号经过光电隔离后去驱动开关管的关断。 1.4.2 变频器主电路方案的选定 变频器最早的形式是用旋转发电机组作为可变频率电源,供给交流电动机。随着电力半导体器件的发展,静止式的变频电源成为了变频器的主要形式。静止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。 1.交-交型变频器:它的功能是把一种频率的交流电直接变换成另一种频率可调电压的交流电(转换前后的相数相同),又称直接式变频器。由于中间不经过直流环节,不需换流,故效率很高。因而多用于低速大功率系统中,如回转窑、轧钢机等。但这种控制方式决定了最高输出频率只能达到电源频率的1/3~1/2,所以不能高速运行。 2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直流,然后再直流变换成频率电压可调的交流,又称间接变频器,交-直-交变频器是目前广泛应用的通用变频器。它根据直流部分电流、电压的不同形式,又可分为电压型和电流型两种:(1)电流型变频器 电流型变频器的特点是中间直流环节采用大电感器作为储能环节来缓冲无功功率,即扼制电流的变化,使电压波形接近正弦波,由于该直流环节内阻较大,故称电流源型变频器。 (2)电压型变频器 电压型变频器的特点是中间直流环节的储能元件采用大电容器作为储能环节来缓冲无功功率,直流环节电压比较平稳,直流环节内阻较小,相当于电压源,故称电压型变频器。 由于电压型变频器是作为电压源向交流电动机提供交流电功率,所以其主要优点是

变频器控制电机运行最常用的两种方式

变频器控制电机运行最常用的两种方式 当变频器主电路接好电源线之后,要控制电动机的运行,还需要给有关端子接上外围接控制电路,并且将变频器的启动方式参数设为外部操作模式。 变频器控制电动机运转,常见的有两种方式,分别是开关控制方式和继电器控制方式: 一、开关控制的正转控制电路 开关控制的转控制电路如下图所示,它是依靠手动操作变频器STF端子外接开关SA,来对电动机进行正转控制。

电路工作原理说明如下: 1、启动准备:按下按钮SB2,接触器KM线圈得电,KM常开辅助触点和主触点均闭合,常开辅助触点闭合锁定KM线圈得电自锁,KM主触点闭合为变频器接通主电源。 2、正转控制:按下变频器STF端子外接开关SA,STF、SD端子接通,相当于STF端子输、输入正转控制信号,变频器U、V、W端子输出正转电源电压,驱动电动机正向运转。调节端子外电位器R,变频器输出电源频率会发生改变,电动机转速也随之变化。 3、变频器异常保护:若变频器运行期间出现异常或故障,变频器B、C端子间内部等效的常闭开关断开,接触器KM线圈失电,KM主触点断开,切断变频器输入电源,对变频器进行保护。 4、停转控制:在变频器正常工作时,将开关SA断开,STF、SD端子断开,变频器停止输出电源,电动机停转。

若要切断变频器输入主电源,可按下按钮SB1,接触器KM线圈失电,KM 主触点断开,变频器输入电源被切断。 二、继电器控制的正转控制电路 继电器控制的正转控制电路如下图所示 电路工作原理说明如下: 1、启动准备:按下按钮SB2,接触器KM线圈得电,KM主触点和两个常开辅助触点均闭合,KM主触点闭合为变频器接通主电源,一个KM常开辅助触点闭合,锁定KM线圈得电,另一个KM常开辅助触点闭合,为继电器K中间A线圈得电作准备。 2、正转控制:按下按钮SB4,继电器KA线圈得电,3 个KA常开触点均闭合,一个常开触点闭合锁定KA线圈得电,一个常开触点闭合将按钮SB1短接,还有一个常开触点闭合将STF、SD端子接通,相当于STF端子输入正转控制信号,变翻器U、V、W端子输出正转电源电压,驱动电动机正向

相关主题
文本预览
相关文档 最新文档