当前位置:文档之家› 随机过程课程设计

随机过程课程设计

随机过程课程设计
随机过程课程设计

课程名称:《随机过程》

课程设计(论文)

题目: 应用马尔科夫链的平稳分

布预测空调市场的占有率学院:理学院

专业:数学与应用数学

班级: 15-1 学生姓名:邹光睿

学生学号: 19

指导教师:蔡吉花

2017年12月20日

目录

任务书.......................................................... ...............I 摘要 (Ⅱ)

1 马尔科夫链遍历性与平稳分布基本原理 (1)

马尔科夫链的概念......................................................... (1)

转移概率的概念......................................................... . (1)

满足遍历性的条件......................................................... (2)

平稳分布的条件与算法......................................................... . (2)

应用马尔科夫链研究市场占有率预测的必要前提 (2)

2 市场占有率问题的分析......................................................... .. (3)

建立模型......................................................... . (3)

提出问题.........................................................

(4)

分析问题......................................................... . (4)

3 计算机结果及程序 (5)

结论 (10)

参考文献 (10)

附录 (11)

评阅书 (13)

《随机过程》课程设计任务书

摘要

通过对市场现象的大量观察,人们发现:同类商品的市场占有率分布是一个随时间不断变化的随机过程,并且当期市场占有率只与前一期的市场占有率有关,而与再远期的市场占有率关联甚微。市场占有率的这一特性与马尔科夫性相吻合。它具有无后效性,即事物的将来呈什么状态、取什么值,仅与它现在的状态和取值有关,与它以前的状态和取值无关。

在预测领域,人们用其对预测对象各个状态的初始分布和各状态间的转移概率进行研究,描述状态的变化趋势,并由此来预测未来。基于此,本文将对马尔科

夫链预测市场占有率模型进行研究和分析,包括根据市场调查结果求出初始市场占有率,根据销售流量的统计算出一步转移概率矩阵及n步转移概率矩阵,判断该马氏链是否是具有遍历性,并求出其平稳分布,从而预测同类商品不同品牌的市场占有率。

关键词:市场占有率,马尔科夫链,转移概率矩阵,平稳分布

第1章马尔科夫链遍历性与平稳分布基本

原理

满足遍历性的条件

1.定义:有限马氏链{n X ,n=0,1,…}的状态空间为I,若对一切i ,j ∈I,

存在不依赖于i 的极限j n ij

n p π=∞

→)

(lim ,则称马尔科夫链具有遍历性。 2.马尔科夫链遍历性的充分条件:

(1)有马氏链,,若?k ∈N ,使?i ,j ∈I 都有)

(k ij p >0,则此马氏链遍历。

(2)有限遍历链n X ,对I={1,2,…,s},对?j ∈I ,)(lim n j n p ∞→=j π (3)有限遍历链n X ,I={1,2,…,s},对?j ∈I ,j π=ππ?∑=ij s

i i p 1=p π

(4)如果j 为非周期的正常返(即遍历态),则有)(lim n ij n p ∞→=

ij i

f μ1

平稳分布的条件与算法

1.定义:设马尔科夫链{n X ,n0}的转移概率矩阵P=(ij p ),如果非负数据{j π}满足:

(1)∑∈I

j j π=1; (2)j π=∑∈I

i ij i p π,j ∈I 则称{i π,j ∈I}为平稳分布。

2.算法:平稳分布计算归结为求解线性方程组 ∏=?∏P (T P -E)T ∏=0 ∑∈I

j j π=1?[1 … 1]T ∏=1

T T T E P ∏??????-11 =()T T T D B ∏-??????

?????10 =b L=??????????11 , b=????

?

?????10 ,B=[]L P ,D=[]O E

在matlab 中,Ax=b 的求解命令:rref (A b )

应用马尔科夫链研究市场占有率预测的必要前提

1.市场占有率随机过程必须符合马尔科夫性,将来t+1时刻市场占有率仅依赖于第t 时刻的市场占有率的分布,与过去时刻t-2,t-2,…的市场占有率的分布及转移状态无关。

2.马尔科夫链理论是以固定的转移概率矩阵为根本规律和特征。应用马尔科夫链模型,市场占有率也要求转移概率矩阵具有相对稳定性。对于一个比较稳定的市场,在短期内可以认为市场占有率的转移概率矩阵是相对稳定的。

第2章 市场占有率问题的分析

建立模型:

根据有关数据统计,依据随机变量市场占有率数据,对数据进行适当划分,可以得到初始占有率分布P (0)

计算得转移概率ij p ,通过{}i X j X P P I ij ===0,可以得到P=ij p ,(i ,j ∈I ),

然后计算m

nn n n n n m p p p p p p

p p p P ?

????

???????=

2

1

22221

11211

,得到m 阶转移矩阵,即m 个周期后的市场

占有率转移矩阵,m 个周期后的市场占有率分布为P(m)=P (0)m P

如果市场流趋向长期稳定下去,则经过一段时间市场占有率将会出现稳定的平衡状态,即顾客的流动,不会影响市场占有率,而且这种占有率与初始分布无关。

按照实际意义,可以近似的看成最终市场占有率,并且得出计算式:

??

?=+++∏=∏1

21n P

πππ 一般n 个状态后的稳定市场占有率(稳定概率)()n πππ 21,=∏可通过解方程求得:

??????

?????

=+++=+++=+++=∑=n

i i n

nn n n n n n n

n p p p p p p p p p 1

22112222112212211111

1ππ

ππππππππ

πππ

提出问题:

下表(表3-1)表示2011年11月各品牌空调大城市市场占有率

表3-1

注:资料来源于赛诺市场研究公司(SINO-MR)对全国35个大城市106家大型商场的流行检测

表3-1 2011年11月各空调市场占有率

分析问题:

空调品牌在将来一年的市场占有率仅依赖于今年的市场占有率的分布,与过去几年的市场占有率的分布及转移状态无关。如果顾客流在近几年内不会改变,则转移概率矩阵近几年内也不会改变,所以可以认为该市场是一个比较稳定的市场,在短期内可以认为市场占有率是相对稳定的,转移概率矩阵反映了各品牌的消费群体的流动情况。因此,通过对转移概率矩阵的分析,可以帮助企业确定行动方案。设I={1,2,3,4},状态1,2,3,4分别表示海尔,容声,新飞,和其他品牌。统计其2011年11月份购买和12月份欲代销和订购的空调的转移量

如下表3-2

注:资料来源于赛诺市场研究公司(SINO-MR)对全国35个大城市106家大型商场的流行检测

企业要进行调整,首先要知道初始的市场占有率P(1)、频数矩阵N,一步转移概率P、第2年的市场占有率P(2),第三年的市场占有率P(3),第五年的市场占有率P(5),顾客流长期稳定下去三大品牌的市场占有率的分布C。由三大品牌在市场上的占有率来决定商场需要对哪个品牌产品的数量进行增加和减少。

第3章计算结果及程序

由上述,画出转移图:

可得出已知条:2011年11月在市场的占有率为P(0)=(),

所占比例表示如图3-2所示:

23%

图3-2 2011年11月市场占有率分布图

频数矩阵

N=?????

????

???46600162547020053651372526316603013253240617393112001175

49402 用频率代替概率,可得:

11P =5108819402=,51088117512=P =,5108820013=P =,5108831113=P =

34700173921=

P =,347003240622=P =,3470032523=P =,34700301

24=P = 16014166031=

P =,1601426332=P =,160141372533=P =,16014365

34=P = 50700200541=

P =,5070047042=P =,50700162543=P =,5070046600

44=P = 所以,一步转移概率矩阵为

?

?

???

??

??

???=919.0032.0009.0040

.0023.0875.0016.0104.0009.0009.0932.0050.0006.0004.0023.0967

.0P ,

由一步转移概率可得2011年12月的市场占有率为

P(1)=P(0)*P=

P1=P0*P

P1 =

分布如图3-3

22%

图3-3 2011年12月市场占有率分布图

同理,可求出2012年1月,2012年2月的市场占有率分别为P(2)=P(0)2

P=()

>> P2=P0*P^2

P2 =

P(3)=P(0)3P=()

P3=P0*P^3

P3 =

分布如下图3-4所示:

40%

22%

图3-4 2012年2月市场占有率分布图

证明k P (N k ∈?),若使?i ,j ∈I 都有)

(k ij p >0,则此马氏链是遍历的。

利用matlab 软件:

P=[ ; ; ; ]; >> P^2 ans =

所以此马氏链是遍历的,解方程组???????=++++++=+++=+++=+++=1

919.0023.0009.0006.0032.0857.0009.0004.0009.0016.0932.0023.0004.0104.0050.0967.043214

321443213

43212

43211

ππππππππππππππππππππππππ 得4321ππππ即为顾客流如此长期稳定市场占有率的分布,企业可由此调

整管理。

B =[ 1; 1; 1; 1];

D=[1 0 0 0 0;0 1 0 0 0;0 0 1 0 0;0 0 0 1 0];

A=B'-D'; b=[0;0;0;0;1]; C=[A b];rref(C) ans =

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 所以(4321ππππ)=( )

即海尔、容声、新飞和其他品牌占有率的平稳分布为、、和.

第4章 结论和展望

通过上述问题可以看出,马尔科夫链的平稳分布在没有突发情况下,确实是可以起到预测同类商品在市场中的占有率.如果不是原始内在问题导致占有率略

低的话,企业可以通过马尔科夫链的平稳分布来预测市场占有率,通过调整企业内部的各种因素来提高产品在市场中的占有率,从而提高企业的盈利. 企业是一个动态变化的系统,在这一系统中,有一些变量和因素随时间的推移而不断地随机变化,产品市场占有率就是其中一个变量。对这个变量的预测是企业市场预测的一个重要内容。如长期趋势预测法,是根据历史数据的变化规律对未来市场状况进行预测的,对市场占有率这无确定变化规律的随机变量来说,这方法显然就行不通了。再加上市场调查预测法,是通过市场调查在掌握购买意向等市场信息资料的基础上,再加以简单的分析和推断,是一种定性预测法,也难以获得准确的结果。所以,必须寻找一种适应随机变量变化特点的动态方法对其进行预测。马尔可夫链预测法就是一种应用于随机过程预测的科学有效的方法它立足于当前通过市场调查等途径所获现实资料的基础上,运用马尔可夫链的基本原理和方法对数据资料进行运算得出预测结果,因此,很适于对产品市场占有率的预测。稳定马尔科夫链预测法是一种适用于随机过程的科学、有效的动态预测方法,其基本原理和方法可用来预测企业产品的市场占有率。在运用马尔科夫链对市场占有率进行预测时,应做好市场调查工作,并借助计算机和简捷表加以计算。

参考文献

[1]蔡吉花.随机过程[M].东北林业大学出版社.

[2]张善文,雷英杰,冯有前. MATLAB在分析中的应用[M].西安:西安电子科技大学出版社,2007,4:77-149.

[3]田铮,秦超英.随机过程与应用[M].北京科学出版社?2007版社?2007.

[4]查秀芳.马尔科夫链在市场预测中的作用[J].江苏大学学报(社会科学版).

附录

matlab代码如下:

>> P0=[ ];

>> P=[ ; ; ; ];

>> P^2

ans =

>> P1=P0*P

P1 =

>> P2=P0*P^2

P2 =

>> P3=P0*P^3

P3 =

>> P5=P0*P^5

P5 =

B =[ 1; 1; 1; 1];

D=[1 0 0 0 0;0 1 0 0 0;0 0 1 0 0;0 0 0 1 0];

A=B'-D';

b=[0;0;0;0;1];

C=[A b];rref(C)

ans =

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0 >> pie(P0)

>> legend('海尔','容声','新飞','其他品牌')

title('2011年11月市场占有率')

>> pie(P1)

legend('海尔','容声','新飞','其他品牌') title('2011年12月市场占有率')

>> pie(P3)

legend('海尔','容声','新飞','其他品牌') title('2012年2月市场占有率')

《随机过程》课程设计评分表

随机过程-答案

2012-2013学年第一学期统计10本 《随机过程》期中考试 一. 填空题 1.设马氏链的一步转移概率矩阵()ij P p =,n 步转移矩阵() ()n ij P p =,二者之间的关系为 (n) n P P = 2.状态i 常返的充要条件为( ) n i i n p ∞ ==∑∞。 3.在马氏链{},0n X n ≥中,记() n i j p ={}0,11,n P Xm j m n X j X i ≠≤≤-==,n ≥1. i j p =( ) 1n i j n p ∞ =∑,若i j p <1,称状态i 为 。 二. 判断题 1. S 是一个可数集,{:0n n X ≥}是取值于S 的一列随机变量,若 ( ) 1 01110011111 1,,...,(,...,)n n n n n n n n n n n n i i S P i X i X i X i P i i -+++--++-?≥?∈X =|====X =|X =并且满足,则{:0n n X ≥}是一个马氏链。 × 2. 任意状态都与它最终到达的状态是互通的,但不与它自己是互通的。 × 3. 一维与二维简单随机游动时常返的,则三维或更高维的简单随机游动也是常返的。× 4. 若状态i ?状态j ,则i 与j 具有相同的周期。 √ 5. 一个有限马尔科夫链中不可能所有的状态都是暂态。 √ 三. 简答题 1.什么是随机过程,随机序列? 答:设T 为[0,+∞)或(-∞,+∞),依赖于t(t ∈T)的一族随机变量(或随机向量){t ξ}通称为随机过程,t 称为时间。当T 为整数集或正整数集时,则一般称为随机序列。 2 .什么是时齐的独立增量过程?

随机过程试题带答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) P(BC A)=P(B A)P(C AB)。 1.为it (e -1) e λ。2. 1(sin(t+1)-sin t)2ωω。3. 1 λ 4. Γ 5. 212t,t,;e,e 33?????? 。 6.(n)n P P =。 7.(n) j i ij i I p (n)p p ∈=?∑。 8.6 18e - 9。()()()()0 t K t H t K t s dM s =+-? 10. a μ 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

(完整版)答案应用随机过程a

山东财政学院 2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A ) (考试时间为120分钟) 参考答案及评分标准 考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉 一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ) 1. 严平稳过程一定是宽平稳过程。(ⅹ ) 2. 非周期的正常返态是遍历态。(√ ) 3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。(ⅹ ) 4. 有限马尔科夫链没有零常返态。(√ ) 5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(?nd ii p 。(ⅹ ) 二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。 2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。 三. 简答题(每小题5分,共10分) 1. 简述马氏链的遍历性。 答:设) (n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(?=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。 2. 非齐次泊松过程与齐次泊松过程有何不同?

答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。它反映了其变化与时间相关的过程。如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。 四. 计算、证明题(共70分) 1. 请写出C —K 方程,并证明之. (10分) 解: 2. 写出复合泊松过程的定义并推算其均值公式. (15分) 解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y 1,那么{}0),(≥t t X 复合泊松过程

(完整版)北邮研究生概率论与随机过程2012-2013试题及答案

北京邮电大学2012——2013学年第1学期 《概率论与随机过程》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈?A,,则B ∈A ; (C )若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D )若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

随机过程习题及答案

第二章 随机过程分析 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程 (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程 (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(),,() (2 - 5) =≤≤≤L L L F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程 (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x )() (2 - 6)?=???L L L L L F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程 (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程 (t )在任意给定时刻t 的取值 (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

期末随机过程试题及标准答案

《随机过程期末考试卷》 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) 1.设A,B,C 为三个随机事件,证明条件概率的乘法公式: P(BC A)=P(B A)P(C AB)。 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

学期数理统计与随机过程(研)试题(答案)

北京工业大学2009-20010学年第一学期期末 数理统计与随机过程(研) 课程试卷 学号 姓名 成绩 注意:试卷共七道大题,请写明详细解题过程。 考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛 骤等编第三版(或第二版)高等教育出版社。可以看笔记、作业,但不允许看其它任何打印或复印的资料。考试时允许使用计算器。考试时间120分钟。考试日期:2009年12月31日 一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平050.=α)? 解:这是单个正态总体 ),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法. 解 85:0=μH ,85:1≠μH 选统计量 n s x T /0 μ-= 已知80=x ,8=s ,n =28,850=μ, 计算得n s x T /0μ-= 31 .328/885 80=-= 查t 分布表,05.0=α,自由度27,临界值052.2)27(025.0=t . 由于052.2>T 2622.2>,故拒绝 0H ,即在显著水平05.0=α下不能认为 该班的英语成绩为85分.

050.= 解:由极大似然估计得.2?==x λ 在X 服从泊松分布的假设下,X 的所有可能的取值对应分成两两不相交的子集A 0, A 1,…, A 8。 则}{k X P =有估计 =i p ?ΛΛ,7,0, !2}{?2 ===-k k e k X P k =0?p

随机过程试题及解答

2016随机过程(A )解答 1、(15分)设随机过程V t U t X +?=)(,),0(∞∈t ,U ,V 是相互独立服从正态分布(2,9)N 的随机变量。 1) 求)(t X 的一维概率密度函数; 2) 求)(t X 的均值函数、相关函数和协方差函数。 3) 求)(t X 的二维概率密度函数; 解: 由于U ,V 是相互独立服从正态分布(2,9)N 的随机变量,所以V t U t X +?=)(也服从正态分布, 且: {}{}{}{}()()22m t E X t E U t V t E U E V t ==?+=?+=+ {}{}{}{}22()()99D t D X t D U t V t D U D V t ==?+=+=+ 故: (1) )(t X 的一维概率密度函数为:()2 22218(1) (),x t t t f x e x --- += -∞≤≤∞ (2) )(t X 的均值函数为:()22m t t =+;相关函数为: {}{} (,)()()()()R s t E X s X t E U s V U t V =?=?+??+ {}{}{} 22()13()413 st E U s t E U V E V st s t =?++??+=?++?+ 协方差函数为:(,)(,)()()99B s t R s t m s m t st =-?=+ (3)相关系数: (,)s t ρρ== == )(t X 的二维概率密度函数为: 2212222(22)(22)12(1)9(1)4(1),12(,)x s x t s t s t f x x e ρ????-----?? +????-++???????? = 2、(12分)某商店8时开始营业,在8时顾客平均到达率为每小时4人,在12时顾客的 平均到达率线性增长到最高峰每小时80人,从12时到15时顾客平均到达率维持不变为每小时80人。问在10:00—14:00之间无顾客到达商店的概率是多少?在10:00—14:00之间到达商店顾客数的数学期望和方差是多少? 解: 到达商店顾客数服从非齐次泊松过程。 将8时至15时平移到0—7时,则顾客的到达速率函数为: 419,04 ()80,47t t t t λ+≤≤?=? <≤? 在10:00—14:00之间到达商店顾客数(6)(2)X X -服从泊松分布,其均值: 6 4 6 2 2 4 (6)(2)()(419)80282m m t dt t dt dt λ-==++=???

应用随机过程习题课二

习题 1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数 12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞ 且1221 (),()33P P ωω==,分别求: (1)一维分布函数(0,)F x 和(,)4F x π ; (2)二维分布函数(0,;,)4F x y π ; (3)均值函数()X m t ; (4)协方差函数(,)X C s t . 2. 利用抛掷一枚硬币一次的随机试验,定义随机过程 1 2 cos ()2t X t πωω?=??出现正面出现反面 且“出现正面”与“出现反面”的概率相等,各为1 2 ,求 1)画出{()}X t 的样本函数 2){()}X t 的一维概率分布,1 (;)2F x 和(1;)F x 3){()}X t 的二维概率分布121 (,1;,)2 F x x 3. 通过连续重复抛掷一枚硬币确定随机过程{()}X t cos ()2 t t X t t π?=? ?在时刻抛掷硬币出现正面 在时刻抛掷硬币出现反面 求:(1)1(,),(1,)2F x F x ; (2)121 (,1;,)2 F x x 4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ. (1)分别求3,,,424t ππππωωωω = 时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程: ()X t t ξη=+ ()t -∞<<+∞ 其中r. v. (,)ξη的协方差矩阵为1334C ?? = ??? , 求随机过程{(),}X t t -∞<<+∞的协方差函数. 6. 考虑随机游动{(),0,1,2,}Y n n =

随机过程作业题及参考答案(第一章)

! 第一章 随机过程基本概念 P39 1. 设随机过程()0cos X t X t ω=,t -∞<<+∞,其中0ω是正常数,而X 是标准正态变量。试求()X t 的一维概率分布。 解: 1 当0cos 0t ω=,02 t k π ωπ=+ ,即0112t k πω??= + ??? (k z ∈)时, ()0X t ≡,则(){}01P X t ==. 2 当0cos 0t ω≠,02 t k π ωπ≠+ ,即0112t k πω?? ≠ + ??? (k z ∈)时, ()~01X N ,,()0E X ∴=,()1D X =. ¥ ()[]()00cos cos 0E X t E X t E X t ωω===????. ()[]()22 000cos cos cos D X t D X t D X t t ωωω===????. ()()20~0cos X t N t ω∴,. 则( )2202cos x t f x t ω- = ;. 2. 利用投掷一枚硬币的试验,定义随机过程为 ()cos 2t X t t π?=??,出现正面,出现反面 假定“出现正面”和“出现反面”的概率各为 12。试确定()X t 的一维分布函数12F x ?? ???;和()1F x ;,以及二维分布函数12112 F x x ? ? ?? ? ,;, 。

】 解: 00 11101222 11

应用随机过程-综述

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计(论文) 课程名称:应用随机过程 设计题目:综述 院系:电子与信息工程学院 班级: 09硕通信一班 设计者: 学号: 指导教师:田波平 设计时间: 2009-11至2009-12 哈尔滨工业大学

哈尔滨工业大学课程设计任务书

特征函数在随机过程研究中的作用与意义 1.特征函数的定义 在介绍特征函数在随机过程研究中的作用和意义之前,首先介绍一下特征函数的定义。 特征函数是一个统计平均值,它是由随机变量X 组成的新的随机变量j X e ω的数学期望,记为: ()()j X E e ωωΦ= (1) 当X 为连续随机变量时,则X 的特征函数可表示成 ()()i X i x Ee f x e dx ωωω∞ -∞ Φ== ? (2) 其中()f x 为X 的概率密度函数。 对于随机过程的特征函数的定义与随机变量的特征函数的定义一致。 对任意时刻t ,随机过程的一维特征函数为: () (,)[](,)i X t i x X t E e f x t e dx ωωω∞ -∞ Φ== ? (3) 2.特征函数的性质 以下本文不加证明的给出特征函数的几个性质: (1) |()|(0)1ωΦ≤Φ=; (2) 共轭对称性()()ωωΦ-=Φ; (3) 特征函数()ωΦ在区间(,)-∞∞上一致连续; (4) 设随机变量Y aX b =+,其中,a b 是常数,则()()ib Y X e a ω ωωΦ=Φ; 其中(),()X Y ωωΦΦ分别表示随机变量,X Y 的特征函数。上式对于随机过程同样适用。 (5) 设随机变量,X Y 相互独立,又Z X Y =+,则()()()Z X Y ωωωΦ=ΦΦ; 此式表示两个相互独立随机变量之和的特征函数等于各自特征函数的乘积。 3.特征函数在随机过程研究中的作用与意义 由于特征函数在随机过程中和随机变量中的定义是一致的,仅是将X 变为X (t ),将概率密度函数也做相应的变化即可。故本文为方便起见,将随机过程和随机变量的特征函数的作用与意义做统一的讨论。 利用特征函数求随机过程的概率密度

随机过程答案-西交大

【第一章】 1.1 证明: ∵1111,,,,,A F F F F ∈ΩΦ∈ΩΩ∈Φ∈Ω-Φ∈ΩΦ∈U 且∴1F 是事件域。 ∵222,,,,c A A F F A F A A ∈Ω∈Ω∈-Φ∈=Ω- ∴22222,,,,c c A F A F A F A F A F ∈-Φ∈-Φ∈Ω-∈Ω-∈ 且2,c c A A A A F ΦΩ=ΩΦΩ∈U U U U U U ∴2F 是事件域。且12F F ∈。∵2ΩΩ∈∴3F Ω∈ ∴3F 是事件域。且23F F ∈∴123,,F F F 皆为事件域且123F F F ∈∈。 1.2 一次投掷三颗均匀骰子可能出现的点数ω为 (),,,,,,,,16,6,6i j k i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤ ∴样本空间()6 1= ,,n i j i k j i j k ==≥≥ΩU 事件(){} ,,|,,i j k A i j k ωω==,,,,,,6,16,6i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤ 事件域2F Ω= 概率测度 ()()() ,,1P 677i j k A i j = --,,,,,,16,6,6i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤

则(),,F P Ω为所求的概率空间。 1.3 证明: (1)由公理可知()0P Φ= (2)有概率测度的可列可加性可得 ()11 n n k k k k P A P A ==??= ???∑∑ (3)∵,,A B F A B ∈? ∴B A F -∈,()A B A -=Φ 由概率测度的可列可加性可得:()()()()P B P A B A P A P B A =+-=+- 即()()()P B A P B P A -=- 有概率测度的非负性可得()()()0P B P A P B A -=-≥,即()()P B P A ≥ (4)若B =Ω,由(3)则有() ()1P A P A =- (5) ∵()()()()121212P A A P A P A P A A +=+- 假设 ()()()()()1 121 1111m m m k k i j i j k m k i j m i j k m k P A P A P A A P A A A P A A A +=≤<≤≤<<≤=??=-+-+- ???∑∑∑K K U 成 立,则

应用随机过程学习汇总

应用随机过程学习汇总

————————————————————————————————作者:————————————————————————————————日期:

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

《概率论与随机过程》第1章习题答案

《概率论与随机过程》第一章习题答案 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 解: ? ??????=n n n n S 100 , ,1,0 ,其中n 为小班人数。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 解:{}18,,4,3 =S 。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 解: {}10,,4,3 =S 。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 解: { } ,11,10=S 。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表示A 为正组长,B 为副组长,余类推。 (6) 甲乙二人下棋一局,观察棋赛的结果。 解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 解: {}Ca Bb Ac Cc Ba Ab Cb Bc Aa Cb Ba Ac Ca Bc Ab Cc Bb Aa S ,,;,,;,,;,,;,,;,,=其中,Aa 表示球a 放 在盒子A 中,余者类推。 (10) 测量一汽车通过给定点的速度。 解:{}0>=v v S (11) 将一尺之棰折成三段,观察各段的长度。 解: (){}1,0,0,0,,=++>>>=z y x z y x z y x S 其中,z y x ,,分别表示第一段,第二段,第三段的 长度。# 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 解:C A (2) A 与B 都发生,而C 不发生。 解: C AB (3) A ,B ,C 都发生。 解: ABC (4) A ,B ,C 中至少有一个发生。 解: C B A ?? (5) A ,B ,C 都不发生。 解: C B A (6) A ,B ,C 中至多于一个发生。 解: A C C A ?? (7) A ,B ,C 中至多于二个发生。 解: C B A ?? (8) A ,B ,C 中至少有二个发生。 解: CA BC AB ??. # 3. 设{ }10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 解: {}5=B A ; (2)B A ?。 解: { }10,9,8,7,6,5,4,3,1=?B A ; (3)B A 。 解:{}5,4,3,2=B A ;

应用随机过程 期末复习资料

第一章 随机过程的基本概念 一、随机过程的定义 例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ·,记为{X n ,n=1,2, ·},则X n 是随机变量,而{X n ,n=1,2, ·}是随机过程。 例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。令X n 表示第n 次统计所得的值,则X n 是随机变量。为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ·}的统计规律性。 例3:一个醉汉在路上行走,以概率p 前进一步,以概率1-p 后退一步(假设步长相同)。以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。 例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候。乘客的到来和每个乘客所需的服务时间都是随机的,所以如果用X(t)表示t 时刻的队长,用Y(t)表示t 时刻到来的顾客所需等待的时间,则{X(t), t ∈T}和{Y(t), t ∈T}都是随机过程。 定义:设给定参数集合T ,若对每个t ∈T, X(t)是概率空间),,(P ?Ω上的随机变量,则称{X(t), t ∈T}为随机过程,其中T 为指标集或参数集。 E X t →Ω:)(ω,E 称为状态空间,即X(t)的所有可能状态构成的集合。 例1:E 为{0,1} 例2:E 为[0, 10] 例3:E 为},2,2,1,1,0{ -- 例4:E 都为), 0[∞+

注:(1)根据状态空间E 的不同,过程可分为连续状态和离散状态,例1,例3为离散状态,其他为连续状态。 (2)参数集T 通常代表时间,当T 取R, R +, [a,b]时,称{X(t), t ∈T}为连续参数的随机过程;当T 取Z, Z +时,称{X(t), t ∈T}为离散参数的随机过程。 (3)例1为离散状态离散参数的随机过程,例2为连续状态离散参数的随机过程,例3为离散状态连续参数的随机过程,例4为连续状态连续参数的随机过程。 二、有限维分布与Kolmogorov 定理 随机过程的一维分布:})({),(x t X P x t F ≤= 随 机 过 程 的 二 维 分 布 : T t t x t X x t X P x x F t t ∈≤≤=21221121,,},)(,)({),(21 随机过程的n 维分布: T t t t x t X x t X x t X P x x x F n n n n t t t n ∈≤≤≤= ,,},)(,)(,)({),,(21221121,,21 1、有限维分布族:随机过程的所有一维分布,二维分布,…n 维分布等的全体 }1,,,),,,({2121,,21≥∈n T t t t x x x F n n t t t n 称为{X(t), t ∈T}的有限维分布族。 2、有限维分布族的性质: (1)对称性:对(1,2,…n )的任一排列),,(21n j j j ,有 ),,(),,(21,,,,21212 1 n t t t j j j t t t x x x F x x x F n n n j j j = (2)相容性:对于m

应用随机过程教学大纲

遵义师范学院课程教学大纲 应用随机过程教学大纲 (试行) 课程编号:280020 适用专业:统计学 学时数:48 学分数: 2.5 执笔人:黄建文审核人: 系别:数学教研室:统计学教研室 编印日期:二〇一五年七月

课程名称:应用随机过程 课程编码: 学分:2.5 总学时:48 课堂教学学时:32 实践学时:16 适用专业:统计学 先修课程:高等数学、线性代数、概率论、测度论或者实变函数(自学) 一、课程的性质与目标: (一)该课程的性质 《应用随机过程》课程是普通高等学校统计学专业必修课程。它是在学生掌握了数学分析、线性代数和概率论等一定的数学专业理论知识的基础上开设的,要求学生掌握随机过程的基本理论和及其研究方法。 (二)该课程的教学目标 (1)从生活中的需要出发,结合研究随机现象客观规律性的特点,并根据随机过程的内容和知识结构,着重从随机过程的基本理论和基本方法出发,就实际应用中的典型随机过程做应用研究,并在理论、观点和方法上予以总结、提高及应用。 (2)对各个章节的教学,随机过程侧重于基本思想和基本方法的探讨,介绍随机过程的基本概念,建立以分布函数等研究相关问题概率的实际应用思路,寻求解决统计和随机过程问题的方法。着重基本思想及方法的培养和应用。 (3)结合学生实际,利用生活中的实例进行分析,培养学生的辩证唯物主义观点。 二、教学进程安排 课外学习时数原则上按课堂教学时数1:1安排。

三、教学内容与要求 第一章 预备知识 【教学目标】 通过本章的学习,复习并扩展概率论课程的内容,为学习随机过程打下良好的基础,提供必备的数学工具。 【教学内容和要求】 随机过程以概率论为其主要的基础知识,为此,本章主要对概率空间;随机变量与分布函数;随机变量的数字特征、矩母函数与特征函数;独立性和条件期望;随机变量序列的收敛性与极限定理等常用到的概率论基本知识作简要的回顾和扩展。其中概率空间,矩母函数和特征函数的定义及性质、条件期望、收敛性、极限定理等既是本章的重点,又是本章的难点。 【课外阅读资料】 《应用随机过程》,林元烈编,清华大学出版社。 【作业】 1.已知连续型随机变量X 的分布函数为0,0()arcsin ,011,1x F x A x x x ≤? ? =<

随机过程习题答案

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1 )是齐次马氏链。经过 次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

随机过程2012A'卷及答案

河北科技大学2012——2013 学年第一学期 《应用随机过程》试卷(A ′) 学院 理学院 班级 姓名 学号 一.概念简答题(每题5分,共40分) 1. 什么是随机过程,随机序列? 2. 随机过程2{()(),,(,)}X t A t t T A N ?μσ=∈ 是否为正态过程,试求其有限维分布的协方差阵。 3. 设()X t 为二阶矩过程,2 12()12(,)t t X R t t e -- =,若()()()d Y t X t X t dt =+ ,试求12(,)Y R t t 。

4.设某设备的使用期限为10年,在前5年平均2.5年需要维修一次,后5年平均2年维修一次,试求在使用期限内只维修过一次的概率。 5. 已知平稳过程() X t的功率谱密度为 2 42 4 () 109 X w S w w w + = ++ ,试求其自相关函数 () X Rτ。 6.一书亭用邮寄订阅销售杂志,订阅的顾客数是强度为6的一个泊松过程,每 位顾客订阅1年,2年,3年的概率分别为111 ,, 236 ,彼此如何订阅是相互独立的, 每订阅一年,店主即获利5元,设() Y t是[0,)t时段内,店主从订阅中所获得总收入。试求: (1)[()] E Y t(即[0,)t时段内总收入的平均收入); (2)[()] D Y t。

7. 写出卡尔曼滤波的算法公式 8.写出ARMA(p,q)模型的定义 二.综合题(每题10分,共60分) 1.设二维随机变量(,) X Y的概率密度为(,) f x y= 2,01,01 0, x y x y --<<<

相关主题
文本预览
相关文档 最新文档