当前位置:文档之家› 中考数学专题复习教学案——开放探究题

中考数学专题复习教学案——开放探究题

中考数学专题复习教学案——开放探究题
中考数学专题复习教学案——开放探究题

开放探究题

开放探究问题最常见的是命题中缺少一定的条件或无明确的结论,要求添加条件或概括结论;其次是给定条件,判断存在与否的问题;近几年来又逐步出现了一些根据提供的材料,按自己的喜好自编问题并加以解决的试题。

开放探究问题涉及知识面广,遍布整个初中阶段的所有知识,要求学生具有较强的解题能力和思维能力。

开放探究问题就开放而言,有条件开放、结论开放、解题方法开放、编制问题开放:就探究而言,可归纳为探究条件型、探究结论型、探究结论存在与否型及归纳探究型四种。类型一:探究条件型

探究条件型是根据问题提供的残缺条件添补若干条件,使结论成立,解决此类问题的一般方法是:根据结论成立所需要的条件增补条件,此时要注意已有的条件及由已有的条件推导出的条件,不可重复条件,也不能遗漏条件。

例1.(2009丽水市)已知命题:如图,点A,D,B,E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如

果是假命题,请添加一个

..适当条件使它成为真命题,并加以证明.

解:是假命题.

以下任一方法均可:

①添加条件:AC=DF.

证明:∵AD=BE,

∴AD+BD=BE+BD,即AB=DE.

在△ABC和△DEF中,

AB=DE,

∠A=∠FDE,

AC=DF,

∴△ABC≌△DEF(SAS).

②添加条件:∠CBA=∠E.

证明:∵AD=BE,

∴AD+BD=BE+BD,即AB=DE.

在△ABC和△DEF中,

∠A=∠FDE , AB=DE , ∠CBA=∠E , ∴△ABC ≌△DEF(ASA ). ③添加条件:∠C=∠F. 证明:∵AD=BE,

∴AD+BD=BE+BD,即AB=DE. 在△ABC 和△DEF 中,

∠A=∠FDE , ∠C=∠F , AB=DE , ∴△ABC ≌△DEF(AAS )

同步测试

1.(2009年牡丹江市)如图,□ABCD 中,E 、F 分别为

BC 、AD 边上的点,要使BF DE =,需添加一个条

件: . 1.

()

;BE DF BF DE AF CE BFD BED AFB ADE ==∠=∠∠=∠或∥;;等

2.(2009东营)如图,在四边形ABCD 中,已知AB 与CD 不平行,∠ABD =∠ACD ,请你添加一个条件: ,使得加上这个条件后能够推出AD ∥BC 且AB =CD .

2.∠DAC =∠ADB ,∠BAD =∠CDA ,∠DBC =∠ACB ,∠ABC =∠DCB ,OB =OC ,OA =OD ;(任选其一)

B

C

D

A

O

A

B

C

E D

F

类型二:探究结论型

探究结论型问题是指根据题目所给的条件经过分析、推断,得出一个与条件相关的结论,解决此类问题的关键是需要对已知的条件进行综合推理,得出新的结论。 例2.(2009年安徽)如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠

DME =∠A =∠B =α,

且DM 交AC 于F ,ME 交BC 于G .

(1)写出图中三对相似三角形,并证明其中的一对;

(2)连结FG ,如果α=45°,AB =AF =3,求FG 的长. 【答案】

(1)证:△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM

以下证明△AMF ∽△BGM .

∵∠AFM =∠DME +∠E =∠A +∠E =∠BMG ,∠A =∠B ∴△AMF ∽△BGM .

(2)解:当α=45°时,可得AC ⊥BC 且AC =BC

∵M 为AB 的中点,∴AM =BM =又∵AMF ∽△BGM ,∴

AF BM

AM BG

=

∴28

3

AM BM BG AF =

==

又4AC BC ===,∴84

433

CG =-

=,431CF =-=

∴5

3

FG =

同步测试

3.(2009小的整数 3.答案不唯一,小于或等于2的整数均可,如:2,1等

4.(2009年莆田)已知,如图,BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、..

(1)仔细观察图形并写出四个不同的正确结论:①________,②________ ,③________,④____________(不添加其它字母和辅助线,不必证明);

(2)A ∠=30°,CD ,求O ⊙的半径r . 4.(1)BC AB AD BD ⊥⊥,,DF FE BD BE ==,,BDF BEF △≌△, BDF △∽BAD △,BDF BEF ∠=∠,A E DE BC ∠=∠,∥等

(2)解:AB 是O ⊙的直径90ADB ∴∠=°

30E ∠=°

30A ∴∠=° 1

2

BD AB r ∴=

= 又

BC 是O ⊙的切线

90CBA ∴∠=° 60C ∴∠=?

在Rt BCD △中,3

CD =

tan 602BD r

DC ∴

==° 2r ∴=

类型三:探究结论存在与否型

探究结论存在与否型问题的解法一般先假定存在,然后以此为条件及现有的条件进行推理,然后得出问题的解或矛盾再加以说明。

例3.(2009仙桃)如图,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,已知AD =AB =3,BC =4,动点P 从B 点出发,沿线段BC 向点C 作匀速运动;动点Q 从点D 出发,沿线段DA 向点A 作匀速运动.过Q 点垂直于AD 的射线交AC 于点M ,交BC 于点N .P 、Q 两点同时出发,速度都为每秒1个单位长度.当Q 点运动到A 点,P 、Q 两点同时停止运动.设点Q 运动的时间为t 秒.

(1)求NC ,MC 的长(用t 的代数式表示); (2)当t 为何值时,四边形PCDQ 构成平行四边形?

(3)是否存在某一时刻,使射线QN 恰好将△ABC 的面积和周长同时平分?若存在,求出此时

t 的值;若不存在,请说明理由;

(4)探究:t 为何值时,△PMC 为等腰三角形? 解:(1)在直角梯形ABCD 中,

∵QN ⊥AD ,∠ABC =90°,∴四边形ABNQ 是矩形。

∵QD=t ,AD=3,∴BN=AQ=3-t ,∴NC=BC-BN=4-(3- t )= t+1。 ∵AB =3,BC =4,∠ABC =90°,∴AC=5。 ∵QN ⊥AD ,∠ABC =90°,∴MN ∥AB ,∴CM CN

AC BC

=, 即

154CM t +=,∴55

4

t MC +=. (2)当QD=CP 时,四边形PCDQ 构成平行四边形。 ∴当t=4-t ,即t=2时,四边形PCDQ 构成平行四边形。 (3)∵MN ∥AB ,

∴△MNC ∽△ABC ,要使射线QN 将△ABC 的面积平分,则△MNC 与△ABC 的面积比为1:2,即

相似比为1:

,∴

CN BC =,即14t +=,∴

t=1.∴CN=MC=

2,∴CN+MC=2

,∵

△ABC 的周长的一半=

3452++=6≠2

∴不存在某一

时刻,使射线QN 恰好将△ABC 的面积和周长同时平分。 (4)分3种情况:

①如图,当PM=MC 时,△PMC 为等腰三角形。 则PN=NC ,即3-t-t=t+1, ∴23t =

,即2

3

t =时,△PMC 为等腰三角形。 ②如图,当CM=PC 时,△PMC 为等腰三角形。

55

44t t +=-, ∴119

t =时,△PMC 为等腰三角形。

③如图,当PM=PC 时,△PMC 为等腰三角形。 ∵PC=4-t ,NC=t+1, ∴PN=2t-3, 又∵

3

4

MN AB NC BC ==, ∴MN=

()

314

t +, 由勾股定理可得[()314

t +]2

+(2t-3)2=(4-t )2

即当t=103

57

时,△PMC 为等腰三角形。

同步测试

5.(2009年广西南宁·改编)如图,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,延长EF 交正方形外角平分线CP P 于点,AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由. 解法①

AE EF ⊥

2390∴∠+∠=°

四边形ABCD 为正方形

90B C ∴∠=∠=° 1390∴∠+∠=°

12∠=∠

90DAM ABE DA AB ∠=∠==°, DAM ABE ∴△≌△

DM AE ∴= AE EP = DM PE ∴=

∴四边形DMEP 是平行四边形.

解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形 证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .

90AD BA DAM ABE =∠=∠=,° Rt Rt DAM ABE ∴△≌△ 14DM AE ∴=∠=∠, 1590∠+∠=° 4590∴∠+∠=°

AE DM ∴⊥ AE EP ⊥ DM EP ∴⊥

∴四边形DMEP 为平行四边形

6.(2009白银市)如图(1),抛物线2

2y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点

C (0,3-).[图(2)、图(3)为解答备用图]

(1)k = ,点A 的坐标为 ,点B 的坐标为 ; (2)设抛物线2

2y x x k =-+的顶点为M ,求四边形ABMC 的面积;

(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由;

(4)在抛物线22y x x k =-+上求点Q ,使△BCQ 是以BC 为直角边的直角三角形.

B C

E D

A F

P

5

4

1

M

F A D

C B

E

1 3 2

解:(1)3k =-,

A (-1,0),

B (3,0).

(2)如图(1),抛物线的顶点为M (1,-4),连结OM . 则 △AOC 的面积=

23,△MOC 的面积=2

3

, △MOB 的面积=6, ∴ 四边形 ABMC 的面积

=△AOC 的面积+△MOC 的面积+△MOB 的面积=9. (3)如图(2),设D (m ,322--m m ),连结OD .

则 0<m <3,322

--m m <0.

且 △AOC 的面积=

23,△DOC 的面积=m 23

, △DOB 的面积=-

2

3(322

--m m ), ∴ 四边形 ABDC 的面积=△AOC 的面积+△DOC 的面积+△DOB 的面积 =629

232++-m m =8

75)23(232+--

m . ∴ 存在点D 3

15(

)2

4-,

,使四边形ABDC 的面积最大为8

75. (4)有两种情况:

图(1) 图(2) 图(3)

图(3) 图(4)

如图(3),过点B 作BQ 1⊥BC ,交抛物线于点Q 1、交y 轴于点E ,连接Q 1C . ∵ ∠CBO =45°,∴∠EBO =45°,BO =OE =3. ∴ 点E 的坐标为(0,3). ∴ 直线BE 的解析式为3y x =-+.

由2323y x y x x =-+??=--?, 解得1125x y ,;ì=-??í?=?? 2230.

x y ,ì=??í?=?? ∴ 点Q 1的坐标为(-2,5).

如图(4),过点C 作CF ⊥CB ,交抛物线于点Q 2、交x 轴于点F ,连接BQ 2. ∵ ∠CBO =45°,∴∠CFB =45°,OF =OC =3. ∴ 点F 的坐标为(-3,0). ∴ 直线CF 的解析式为3y x =--.

由2323

y x y x x =--??=--?,

解得1103x y ,;ì=??í?=-?? 2214x y ,.

ì=??

í?=-??

∴点Q 2的坐标为(1,-4).

综上,在抛物线上存在点Q 1(-2,5)、Q 2(1,-4),使△BCQ 1、△BCQ 2是以BC 为直角边的直角三角形.

类型四:归纳探究型

归纳探究型问题是指给定一些条件和结论,通过归纳、总结、概括,由特殊猜测一般的结论或规律,解决这类问题的一般方法是由特殊性得到的结论进行合理猜想,适量验证。

例4.(2009年抚顺市)已知:如图所示,直线MA NB MAB ∠∥,与NBA ∠的平分线交于点C ,过点C 作一条直线l 与两条直线MA NB 、分别相交于点D E 、.

(1)如图1所示,当直线l 与直线MA 垂直时,猜想线段AD BE AB 、、之间的数量关系,请直接写出结论,不用证明;

(2)如图2所示,当直线l 与直线MA 不垂直且交点D E 、都在AB 的同侧时,(1)中的结论是否成立?如果成立,请证明:如果不成立,请说明理由;

(3)当直线l 与直线MA 不垂直且交点D E 、在AB 的异侧时,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,那么线段AD BE AB 、、之间还存在某种数量关系吗?如果存在,请直接写出它们之间的数量关系.

解:(1)AD BE AB += (2)成立.

(方法一):在AB 上截取AG AD =,连接CG .

12AC AC ∠=∠=, ADC AGC ∴△≌△ 56∴∠=∠ AM BN ∥

1234180∴∠+∠+∠+∠=° 1234∠=∠∠=∠, 2390∴∠+∠=° 90ACB ∴∠=°

即6790∠+∠=°

5678180∠+∠+∠+∠=° 5890∴∠+∠=° 78∴∠=∠

34BC BC ∠=∠=, BGC BEC ∴△≌△ BG BE ∴=

AD BE AG BG ∴+=+

AD BE AB ∴+=

(方法二):过点C 作直线FG AM ⊥,垂足为点F , 交BN 于点G .作CH AB ⊥,垂足为点H . 由(1)得AF BG AB +=

90AM BN AFG ∠=∥,°

A

B

E D C

M N

l A

B

E

D C

M N l A

B

C

M N

A

B

C

M N

图1

图2

备用图

备用图

A B

E D

C

M N l

1 2

5

6 3

4

H

F

G 题(2)方法二图

90

∴∠=∠=°

BGF FGE

∠=∠∠=∠

1234

∴==

CF CH CH CG

∴=

CF CG

∠=∠

56

CFD CGE

∴△≌△

∴=

DF EG

∴+=+=

AD BE AF BG AB

(方法三):延长BC,交AM于点F.

AM BN

∴∠=∠

54

∠=∠

34

∴∠=∠

53

∴=

AF AB

12AC AC

∠=∠=

∴△≌△

AFC ABC

∴=

CF CB

∠=∠

67

∴△≌△

FCD BCE

∴=

DF BE

∴+=+==

AD BE AD DF AF AB

(3)不成立.

存在.当点D在射线AM上、点E在射线BN的反向延长线上时(如图①),-=

A D

B E A B

当点D在射线AM的反向延长线上,点E在射线BN上时(如图②),-=

BE AD AB

同步测试

7

.(2009仙桃)如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =

21BD ,EN =2

1

CE ,得到图③,请解答下列问题: (1)若AB =AC ,请探究下列数量关系:

①在图②中,BD 与CE 的数量关系是________________;

②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想; (2)若AB =k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,直接写出你的猜想,不必证明.

A

B

E D C

M N l 1 2 5 6

3 4

F 7 A

B E D

C

M l

A B

E C

M

D l

N

题(2)方法三图

题(3)图①

题(3)图②

7.(1)①BD=CE ;

②AM=AN ,∠MAN=∠BAC 理由如下: ∵在图①中,DE//BC ,AB=AC ∴AD=AE.

在△ABD 与△ACE 中,,AB AC BAD CAE AD AE =??

∠=∠??=?

∴△ABD ≌△ACE.∴BD=CE ,∠ACE=∠ABD.在△DAM 与

△EAN 中, ∵DM=

12BD ,EN=1

2

CE ,BD=CE ,∴DM=EN ,∵∠AEN=∠ACE+∠CAE ,∠ADM=∠ABD+∠BAD ,∴∠AEN=∠ADM.

又∵AE=AD ,∴△ADM ≌△AEN.∴AM=AN ,∠DAM=∠EAN.∴∠MAN=∠DAE=∠BAC.∴AM=AN ,∠MAN=∠BAC.

(2)AM=k AN ,∠MAN=∠BAC. 随堂检测:

1. (2009年台州市)请你写出一个图象在第一、三象限的反比例函数. 答: .

2. (2009白银市)如图6,四边形ABCD 是平行四边形,使它为矩形的条件可以是 .

3. (2009年牡丹江)先化简:

121a a a a a --??

÷- ???

并任选一个你喜欢的数a 代入求值. 4. (09湖南邵阳)已知22

2222

2xy x y M N x y x y

+==--、,用“+”或“-”连接M N 、,有三种不同的形式:M N M N N M +--、、,请你任选其中一种进行计算,并化简求值,其中x ∶y =5∶2.

5. (09湖南邵阳)如图是一个反比例函数图象的一部分,点(110)A ,,(101)B ,是它的两个端点.

(1)求此函数的解析式,并写出自变量x 的取值范围; (2)请你举出一个能用本题的函数关系描述的生活实例.

6. (2009年杭州市)如图,在等腰梯形ABCD 中,∠C=60°,AD ∥BC ,且AD=DC ,E 、F 分别在AD 、DC 的延长线上,且DE=CF ,AF 、BE 交于点P . (1)求证:AF=BE ;

(2)请你猜测∠BPF 的度数,并证明你的结论.

7. (2009年遂宁)如图,二次函数的图象经过点D(0,39

7),且顶点C 的横坐标为4,该

图象在x 轴上截得的线段AB 的长为6. ⑴求二次函数的解析式;

⑵该抛物线的对称轴上找一点P ,使PA+PD 最小,求出点P 的坐标;

⑶在抛物线上是否存在点Q ,使△QAB 与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.

D

E

F

P

B

A

C

随堂检测答案: 1.x

y 1

=

(答案不唯一) 2.答案不唯一,如AC =BD ,∠BAD =90o

,等

3.原式=2121a a a a a --+÷=()

2

11a a

a a --·=11a -. 选择a 除了0与1以外的数代入均可。

4.选择一:2222222

2()()()xy x y x y x y

M N x y x y x y x y x y ++++=+==--+--, 当x ∶y =5∶2时,52

x y =,原式=5

7

2532

y y

y y +=-.

选择二:2222222

2()()()xy x y x y y x

M N x y x y x y x y x y +----=-==--+-+, 当x ∶y =5∶2时,52x y =,原式=

5

32572

y y

y y -

=-+. 选择三:2222222

2()()()x y xy x y x y

N M x y x y x y x y x y +---=-==--+-+, 当x ∶y =5∶2时,52

x y =,原式=5

3

2572

y y

y y -=+.

注:只写一种即可. 5.(1)设k y x

=

,(110)A ,在图象上,101k ∴=

,即11010k =?=,10

y x

∴=,其中110x ≤≤;

(2)答案不唯一.如:小明家离学校10km ,每天以km/h v 的速度去上学,那么小明从家去学校所需的时间10

t v

=

. 6.(1)∵BA=AD ,∠BAE=∠ADF ,AE=DF , ∴△BAE ≌△ADF ,∴BE=AF ; (2)猜想∠BPF=120° .

∵由(1)知△BAE ≌△ADF ,∴∠ABE=∠DAF .

∴∠BPF=∠ABE+∠BAP=∠BAE ,而AD ∥BC ,∠C=∠ABC=60°, ∴∠BPF=120° .

7.解:⑴设二次函数的解析式为:y=a(x-h)2

+k ,∵顶点C 的横坐标为4,且过点(0,39

7)

∴y=a(x-4)2

+k k a +=1639

7 ………………①

又∵对称轴为直线x=4,图象在x 轴上截得的线段长为6,∴A(1,0),B(7,0)

∴0=9a+k ………………②,由①②解得a=9

3,k=3-,∴二次函数的解析式为:

y=9

3(x-4)2

-3

⑵∵点A 、B 关于直线x=4对称,∴PA=PB ,∴PA+PD=PB+PD≥DB,∴当点P 在线段DB 上时PA+PD 取得最小值,∴DB 与对称轴的交点即为所求点P ,设直线x=4与x 轴交于点M ,∵PM ∥OD ,∴∠BPM=∠BDO ,又∠PBM=∠DBO ,∴△BPM ∽△BDO ,∴BO BM DO PM =, ∴

3

373

397

=

?=PM ,∴点P 的坐标为(4,33) ⑶由⑴知点C(4,3-),

又∵AM=3,∴在Rt △AMC 中,cot ∠ACM=3

3,∴∠ACM=60o

,∵AC=BC ,∴∠ACB=120o

①当点Q 在x 轴上方时,过Q 作QN ⊥x 轴于N ,如果AB=BQ ,由△ABC ∽△ABQ 有BQ=6,∠ABQ=120o

,则∠QBN=60o

,∴QN=33,BN=3,ON=10,此时点Q(10,33),如果AB=AQ ,由对称性知Q(-2,33)

②当点Q 在x 轴下方时,△QAB 就是△ACB ,此时点Q 的坐标是(4,3-),经检验,点(10,33)与(-2,33)都在抛物线上,综上所述,存在这样的点Q ,使△QAB ∽△ABC ,点Q 的

坐标为(10,33)或(-2,33)或(4,3-).

中考数学专题训练---圆的综合的综合题分类含答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E. (1)求证:AC∥OD; (2)如果DE⊥BC,求AC的长度. 【答案】(1)证明见解析;(2)2π. 【解析】 试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度. 试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO, ∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD; (2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三 角形,∴∠AOC=60°,∴弧AC的长度=606 180 π? =2π. 点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用. 2.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.

【答案】画图见解析. 【解析】 【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线. 【详解】解:画图如下: 【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线. 3.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC. (1)判断直线BE与⊙O的位置关系,并证明你的结论; (2)若sin∠ABE= 3 3 ,CD=2,求⊙O的半径. 【答案】(1)直线BE与⊙O相切,证明见解析;(2)⊙O的半径为3 . 【解析】 分析:(1)连接OE,根据矩形的性质,可证∠BEO=90°,即可得出直线BE与⊙O相切;(2)连接EF,先根据已知条件得出BD的值,再在△BEO中,利用勾股定理推知BE的长,设出⊙O的半径为r,利用切线的性质,用勾股定理列出等式解之即可得出r的值.详解:(1)直线BE与⊙O相切.理由如下: 连接OE,在矩形ABCD中,AD∥BC,∴∠ADB=∠DBC. ∵OD=OE,∴∠OED=∠ODE. 又∵∠ABE=∠DBC,∴∠ABE=∠OED, ∵矩形ABDC,∠A=90°,∴∠ABE+∠AEB=90°, ∴∠OED+∠AEB=90°,∴∠BEO=90°,∴直线BE与⊙O相切;

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

2019安徽中考数学专题训练——规律探索题

2019安徽中考数学 规律探索题 专题训练 类型一 数式规律探索 1.观察下列等式,按照等式排列的规律填空: ① 121 1222=--, ② 221 2322=--, ③ 32 1 3422=--, … (1)根据上述规律,请写出第4个等式; (2)写出第n 个等式(用含n 的代数式表示),并证明等式成立. 解:(1)由题中等式的变化规律可得,第4个等式为 421 4522=--; (2)第n 个等式是 n n n =--+2 1 )1(22. 证明:∵左边=21)1(22--+n n =21 1222--++n n n =n ,右边=n , ∴第n 个等式是 n n n =--+2 1 )1(22成立. 2.观察下列等式: 第一个等式:2 212 21 2112213?-?=??= a ; 第二个等式:3 232231 2212324?-?=??=a ; 第三个等式:4 343241 2312435?- ?=??=a ; 第四个等式:5 454251 2412546?- ?=??=a ; … 按上述规律,回答以下问题: (1)猜想并写出第n 个等式;

(2)证明你写出的等式的正确性. 解:(1)根据上述规律可得,第n 个等式:1 12)1(1 -212)1(2++?+?=?++=n n n n n n n n n a ; (2)证明:∵右边=12)1(1-21+?+?n n n n =12)1(-1)2(+?++n n n n n =1 2 )1(2 +?++n n n n =左边, ∴等式成立. 类型二 图形规律探索 3.如图,用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个. 第3题图 (1)求第四个图案中正三角形的个数; (2)求第n 个图案中正三角形的个数(用含n 的代数式表示). 解:(1)∵第一个图案中正三角形的个数为6=2+4×1; 第二个图案中正三角形的个数为10=2+2×4; 第三个图案中正三角形的个数为14=2+3×4; … ∴第四个图案中正三角形的个数为18=2+4×4; (2)由(1)可得,第n 个图案中正三角形的个数为4n +2. 4.如图,是由m ×m (m 为奇数)个小正方形组成的图形,我们把图中所有的x ,y 相加得到的多项式称为“正方形多项式”.

中考数学专题复习——操作探究(详细答案)

中考数学专题复习——操作探究 一.选择题 1. (2018?临安?3 分.)如图,正方形硬纸片A BCD的边长是4,点E.F分别是A B.BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是() A.2 B.4 C.8 D.10 2. (2018?嘉兴?3 分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是() A. (A) B. (B) C. (C) D. (D) 3. (2018?广西南宁?3 分)如图,矩形纸片A BCD,AB=4,BC=3,点P在B C 边上,将△CDP 沿D P 折叠,点C落在点E处,PE.DE 分别交A B 于点O、F,且O P=OF,则c os∠ADF 的值为 () A.11 13 B. 13 15 C. 15 17 D. 17 19 4.(2018?海南?3 分)如图1,分别沿长方形纸片A BCD 和正方形纸片E FGH 的对角线A C,EG 剪开,拼成如图2所示的?KLMN,若中间空白部分四边形O PQR 恰好是正方形,且?KLMN 的面积为50,则正方形E FGH 的面积为()

A.24 B.25 C.26 D.27 二、填空题 1. (2018?杭州?4 分)折叠矩形纸片 ABCD 时,发现可以进行如下操作:①把△ADE 翻折,点A 落在D C 边上的点F处,折痕为D E,点E在A B 边上;②把纸 片展开并铺平;③把△CDG 翻折,点C落在直线A E 上的点H处,折痕为D G,点G在B C 边上,若 AB=AD+2,EH=1,则A D= 。 2.(2018?临安?3 分.)马小虎准备制作一个封闭的正方体盒子,他先用5 个大小一样的正方 形制成如图所示的拼接图形(实线部分) ,经折叠后发现还少一个面,请你在图中的拼接图形 上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符 合要求的正方形,添加的正方形用阴影表示) . 3.(2018?金华、丽水?4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形A BCD内, 装饰图中的三角形顶点E,F分别在边A B,BC上, 三角形①的边G D在边A D上,则AB BC 的值 是. 4. (2018·湖北省恩施·3 分)在Rt△ABC 中,AB=1,∠A=60°,∠AB C=90°,如图所示将R t△ABC沿直线l无滑动地滚动至R t△DE F,则点B所经过的路径与直线l所围成的封闭 图形的面积为.(结果不取近似值)

中考数学第二轮复习专题个专题

2018年中考数学第二轮专题复习 专题一选择题解题方法 一、中考专题诠释 选择题是各地中考必考题型之一,2017年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性. 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养. 二、解题策略与解法精讲 选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做. 解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.

三、中考典例剖析 考点一:直接法 从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础. 例1 根据表中一次函数的自变量x与函数y的对应值,可得p的值为() A.1 B.-1 C.3 D.-3 对应训练 1.若y=(a+1)x a2-2是反比例函数,则a的取值为() A.1 B.-l C.±l D.任意实数 考点二:筛选法(也叫排除法、淘汰法) 分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

中考数学 直机关操作探究大题操作探究大题 人教新课标版

中考数学 直机关操作探究大题操作探究大题 人教新课标版 26.(12分)25.如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =?∠. (1)求点E 到BC 的距离; (2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 26(1)如图1,过点E 作EG BC ⊥于点G . ······ 1分 A D E B F C 图4(备用) A D E B F C 图5(备用) A D E B F C 图1 图2 A D E B F C P N M 图3 A D E B F C P N M (第26题)

∵E 为AB 的中点, ∴1 22 BE AB ==. 在Rt EBG △中,60B =?∠,∴30BEG =?∠. ··· 2分 ∴1 12 BG BE EG ====, 即点E 到BC 3分 (2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM = ,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==?=?∠∠,∠. ∴12PH PM == ∴3 cos302 MH PM =?=. 则35422NH MN MH =-=-=. 在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ············ 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =. 类似①,3 2 MR =. ∴23MN MR ==. ················· 7分 ∵MNC △是等边三角形,∴3MC MN ==. 此时,6132x EP GM BC BG MC ===--=--=. ··········· 8分 当 MP MN =时,如图4,这时 图3 A D E B F C P N M 图4 A D E B F C P M N 图5 A D E B F (P ) C M N G G R G 图1 A D E B F C G 图2 A D E B F C P N M G H

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

2019年全国各地中考数学试题分类汇编(第一期)专题37操作探究(含解析)

操作探究 一.选择题 1. (2019?湖南邵阳?3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边 BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于() A.120°B.108°C.72°D.36° 【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC =∠C=54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°. 【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°, ∴∠C=90°﹣∠B=54°. ∵AD是斜边BC上的中线, ∴AD=BD=CD, ∴∠BAD=∠B=36°,∠DAC=∠C=54°, ∴∠ADC=180°﹣∠DAC﹣∠C=72°. ∵将△ACD沿AD对折,使点C落在点F处, ∴∠ADF=∠ADC=72°, ∴∠BED=∠BAD+∠ADF=36°+72°=108°. 故选:B. 【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形 状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、 等腰三角形的性质、三角形内角和定理以及三角形外角的性质. 2. (2019?浙江金华?3分)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF 的面积相等,则的值是()

中考数学专题训练--函数综合题

中考数学专题训练函数综合题专题 1. 如图,一次函数y kx b y 4 与反比例函数x 的图像交于 A 、B 两点,其中y 点A的横坐标为1,又一次函数y (1)求一次函数的解析式; (2)求点 B 的坐标. kx b 的图像与x 轴交于点C3,0 . A C O x B 2. 已知一次函数y=(1-2x)m+x+3 图像不经过第四象限,且函数值y 随自变量x 的减小而减小。(1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 4.5 ,求这个一次函数的解析式。 y 2 1 -1 O -1 1 2 x 图 2 3. 如图,在平面直角坐标系中,点O 为原点,已知点 A 的坐标为(2,2),点B、C 在x 轴上,BC=8,AB=AC ,直线 y 1 / 22 D A

° AC 与 y 轴相交于点 D . ( 1)求点 C 、D 的坐标; ( 2)求图象经过 B 、D 、 A 三点的二次函数解析式及它的顶点坐标. 4. 如图四, 已知二次函数 y ax 2 2ax 3 的图像与 x 轴交于点 A ,点 B ,与 y 轴交于点 C ,其顶点为 D ,直线 DC 的函数关系式为 y kx b ,又 tan OBC 1. y ( 1)求二次函数的解析式和直线 DC 的函数关系式; D ( 2)求 △ ABC 的面积. C ( 图 四 ) A O B x 5. 已知在直角坐标系中,点 A 的坐标是( -3, 1),将线段 OA 绕着点 O 顺时针旋转 90 得到 OB. y 2 / 22 A

x

(1)求点B 的坐标;(2) 求过A、B、O 三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴的对称点为C,求△ABC 的面积。 y 6.如图,双曲线0)、与y 轴交于点5 x 在第一象限的一支上有一点 B. C(1,5),过点C 的直线y kx b( k 0) 与x 轴交于点A(a, (1) 求点A 的横坐标 a 与k 之间的函数关系式; (2) 当该直线与双曲线在第一象限的另一交点 D 的横坐标是9 时,求△COD 的面积. y B C D O A x 第 6 题 3 / 22

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

中考数学专题 规律探索题

1 规律探索 类型一 数式规律 1. 我国战国时期提出了“一尺之棰,日取其半,万世不竭”这一命题,用所学知识来解释可理解为:设一尺长的木棍,第一天折断一半,其长为12尺,第二天再折断一半,其长为1 4尺,…,第n 天折断一半后 得到的木棍长应为________尺. 12n 2. 如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是________. 第2题图 41【解析】由图形可知,第n 行最后一个数为1+2+3+…+n = n (n +1) 2 ,∴第8行最后一个数为 8×9 2 =36=6,则第9行从左至右第5个数是36+5 =41. 3. 观察下列关于自然数的式子:

2 第一个式子:4×12-12 ① 第二个式子:4×22-32 ② 第三个式子:4×32-52 ③ … 根据上述规律,则第2019个式子的值是______. 8075 【解析】∵4×12-12=3①,4×22-32=7②,4×32-52=11③,…,4n 2-(2n -1)2=4n -1,∴第2019个式子的值是4×2019-1=8075. 4. 将数1个1,2个12,3个13,…,n 个1 n (n 为正整数)顺次排成一列: 1,12,12,13,13,13,…,1n ,1n ,…,记a 1=1,a 2=12,a 3=1 2,…,S 1 =a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2019=________. 63364 【解析】根据题意,将该数列分组,1个1的和为1,2个12的和为1,3个1 3的和为1,…;∵1+2+3+…+63=2016个数,则第 2019个数为64个164的第3个数,则此数列中,S 2019=1×63+3× 1 64=633 64 .

聊城市中考数学专题复习讲义动手操作

中考数学专题:动手操作题(含答案) 操作型问题是指通过动手测量、作图(象) 、取值、计算等实验,猜想获得数学结论的探索 研究性活动,这类活动完全模拟以动手为基础的手脑结合的科学研究形式,需要动手操作、 合情猜想和验证,不但有助于实践能力和创新能力的培养,更有助于养成实验研究的习惯, 符合新课程标准特别强调的发现式学习、探究式学习和研究式学习,鼓励学生进行“微科 研”活动,培养学生乐于动手、 勤于实践的意识和习惯, 切实提高学生的动手能力、实践能 力的指导思想. 类型之一 折叠剪切问题 折叠中所蕴含着丰富的数学知识, 解决该类问题的基本方法就是,根据“折叠后的图形再展 开,则所得的整个图形应该是轴对称图形”, 求解特殊四边形的翻折问题应注意图形在变 换前后的形状、大小都不发生改变,折痕是它们的对称轴.折叠问题不但能使有利于培养我 们的动手能力,而且还更有利于培养我们的观察分析和解决问题的能力. 1. 将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形. 将纸片展开,得 到的图形是 3. 如下左图:矩形纸片 ABCD AB=2,点E 在BC 上,且AE=EC 若将纸片沿 AE 折 叠,点B 恰好落在AC 上,则AC 的长是 . 4. 如上右图,在正方形纸片 ABCD 中,对角线 AC BD 交于点0,折叠正方形纸片 ABCD 使AD 落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕 DE 分别交 AB AC 于点E 、G.连接GF.下列结论:①/ AGD=112.5 :②tan △ 0GD ④四边形 AEFG 是菱形;⑤BE=20G 其中正确结论的序号是 类型之二 分割图形问题 分割问题通常是先给出一个图形(这个图形可能是规则的,也有可能不规 则) 你用直线、线段等把该图形分割成面积相同、形状相同的几部分。解决这类问题的时 候可以借助对称的性质、面积公式等进行分割。 5. 如图所示的方角铁皮, 要求用一条直线将其分成面积相等的两部分, 请你设计两种不同的 分割方案(用铅笔画图,不写画法,保留作图痕迹或简要的文 字说明). 6. 如图1 , △ ABC 中,/ C =90 ,请用直尺和圆规作一条直线, 把厶 ABC 分割成两个等腰三角形(不写作法,但须保留作图痕迹) A C D 匚口-0-H 2. 如图,把一张长方形纸片对折,折痕为 ----------- AB 再以AB 的中点0为顶点把平角/ AOB 三等分,沿平角的三等分线折叠,将折叠 A ---------------- 后的图形剪出一个以 0为顶点的等腰三角 后得到的平面图形- -定是 A.正三角形 B .正方形 C .正五边形 D .正六边形 / AED=2

中考数学综合题专题复习【相似】专题解析

一、相似真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C. (1)求抛物线解析式及对称轴; (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由; (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由. 【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得 解得 ∴抛物线解析式为:y= x2?x?1 ∴抛物线对称轴为直线x=- =1 (2)解:存在 使四边形ACPO的周长最小,只需PC+PO最小 ∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点. 设过点C′、O直线解析式为:y=kx

∴k=- ∴y=- x 则P点坐标为(1,- ) (3)解:当△AOC∽△MNC时, 如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E ∵∠ACO=∠NCD,∠AOC=∠CND=90° ∴∠CDN=∠CAO 由相似,∠CAO=∠CMN ∴∠CDN=∠CMN ∵MN⊥AC ∴M、D关于AN对称,则N为DM中点 设点N坐标为(a,- a-1) 由△EDN∽△OAC ∴ED=2a ∴点D坐标为(0,- a?1) ∵N为DM中点 ∴点M坐标为(2a,a?1) 把M代入y= x2?x?1,解得 a=4 则N点坐标为(4,-3) 当△AOC∽△CNM时,∠CAO=∠NCM ∴CM∥AB则点C关于直线x=1的对称点C′即为点N

中考数学压轴题专题

中考数学压轴题专题Prepared on 21 November 2021

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-=。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

相关主题
文本预览
相关文档 最新文档