当前位置:文档之家› 正弦定理与余弦定理

正弦定理与余弦定理

正弦定理与余弦定理
正弦定理与余弦定理

正弦定理与余弦定理

一、三角形中的各种关系

设ABC ?的三边分别是,,a b c ,与之对应的三个角分别是,,A B C .则有如下关系: 1、三内角关系

三角形中三内角之和为π(三角形内角和定理),即A B C π++=,; 2、边与边的关系

三角形中任意两条边的和都大于第三边,任意两条边的差都小于第三边,即

,,a b c a c b b c a +>+>+>;,,a b c a c b b c a -<-<-<;

3、边与角的关系 (1)正弦定理

三角形中任意一条边与它所对应的角的正弦之比都相等,即

2sin sin sin a b c

R A B C

===(这里,R 为ABC ?外接圆的半径). 注1:(I )正弦定理的证明:

在ABC ?中,设,,BC a AC b AB c ===, 证明:2sin sin sin a b c

R A B C

===(这

里,R 为ABC ?外接圆的半径) 证:法一(平面几何法):

在ABC ?中 ,作CH AB ⊥,垂足为H 则在Rt AHC ?中,sin CH A AC =

;在Rt BHC ?中,sin CH

B BC

= sin ,sin CH b A CH a B ∴== sin sin b A a B ?= 即

sin sin a b

A B

=

同理可证:

sin sin b c

B C

= 于是有

sin sin sin a b c

A B C

== 作ABC ?的外接圆⊙O ,设其半径为R

连接BO 并延长,则可得到⊙O 的直径BD ,连接DA 因为在圆中,直径所对的圆周角是直角 所以90o DAB ∠=

于是在Rt DAB ?中,sin 2AB c

D BD R

=

= 又因为在同一圆中,同弧所对的圆周角相等 所以D C ∠=∠

2sin sin 2c c c

R c C D

R

===

2sin sin sin a b c

R A B C

===(这里,R 为ABC ?外接圆的半径) 法二(平面向量法)

(Ⅱ)正弦定理的意义:

正弦定理指出了任意三角形中三边与其对应角的正弦值之间的一个关系式,也就是任意三角形的边角关系. (Ⅲ)正弦定理适用的范围:

(i )已知三角形的两角及一边,解三角形;

(ii )已知三角形的两边及其中一边所对应的角,解三角形;

(iii )运用::sin :sin :sin a b c A B C =解决角之间的转换关系. 注2:正弦定理的一些变式: (i )::sin :sin :sin a b c A B C =;

(ii )sin ,sin ,sin 222a b c A B C R R R

=

==; (iii )2sin ,2sin ,2sin a R A b R B c R C ===.

注3:已知三角形是确定的,则在运用正弦定理解该三角形时,其解是唯一的;已知三角形的两条边和其中一条边的对角,由于该三角形具有不稳定性,所以其解是不确定的,此时可结合平面几何作图的方法、“大边对大角,大角对大边”定理及三角形内角和定理解决问题.

例1. ABC ?中,,a b 分别为角,A B 的对边,若60,75,8o o B C a ===,则b =_.

例2. ABC ?中,角,,A B C 的对边分别为,,a b c ,,13

A a b π

=

==,则c =_.

例3.在ABC ?中,60,1o b B c ==,求a 和,.A C

例4. 在ABC ?中,已知2,2,2B A BC AB ∠=∠==+则A ∠=_. 例5.已知ABC ?中,角,A B 所对的边分别是,a b ,若cos cos a B b A =,则ABC ?一定是()

A. 等腰三角形

B. 等边三角形

C. 直角三角形

D. 等腰直角三角形 (2)余弦定理

三角形中任意一条边的平方等于其他两条边平方的和减去这两条边与它们夹角的余弦的乘积的2倍,即

2222cos a b c bc A =+-,2222cos b c a ca B =+-,2222cos c a b ab C =+-.

注1:(I )余弦定理的证明: 法一(平面几何法)

在ABC ?中 ,作CH AB ⊥,垂足为H 则在Rt AHC ?中,sin CH CH A AC b =

=;cos AH AH

A AC b

== sin ,cos CH b A AH b A ∴== cos BH AB AH c b A ?=-=- 在Rt CHB ?中,由勾股定理有222BC CH BH =+ 于是有

222222222

2

2

2

2

2

(sin )(cos )sin 2cos cos (sin cos )2cos 2cos a b A c b A b A c bc A b A b A A c bc A b c bc A

=+-=+-+=++-=+-

同理可证:2222cos b c a ca B =+-,2222cos c a b ab C =+-. 法二(平面向量法)

(Ⅱ)余弦定理的意义:

余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当结合其它知识,则使用起来更为方便、灵活。

(Ⅲ)余弦定理适用的范围:

注3:常选用余弦定理判定三角形的形状;

注4:求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化.

例1. 在ABC ?中,三边长为连续的正整数,且最大角是最小角的2倍,求此三角形的三边长.

例2.如下图所示,在四边形ABCD 中,已知,10AD CD AD ⊥=,14AB =,

60O BDA ∠=,135O BCD ∠=,求BC 的长.

例3. 在ABC ?中,已知7

5,4,cos()8

BC AC A B ==-=

,则cos C =() A.

1116 B. 916 C. 716 D. 316

(3)面积公式: (i )常规方法:1

2

ABC a S a h ?=

?; (ii )三角函数法:111

sin sin sin 222

ABC S ab C ac B bc A ?=

==;

(iii )海伦公式:ABC S r p ?==?. 这里,a h 为边a 的高线;p 为ABC ?周长的一半,即2

a b c

p ++=;r 为ABC ?内切圆的半径.

例1. 在ABC ?中,若已知三边为连续的正整数,且最大角为钝角. (1)求该最大角;

(2)求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积.(参考数据:cos710.25o =)

例2. 在ABC ?中,内角,,A B C 对应的边分别是,,a b c ,已知2222a c b +=.

(1)若4

B π

=

,且A 为钝角,求内角A 与C 的大小;

(2)若2b =,求ABC ?面积的最大值.

二、关于三角形内角的常用三角恒等式

由三角形内角和定理:A B C π++=,有()A B C π=-+ 由此可得到:sin sin()A B C =+,cos cos()A B C =-+;

222

A B C π+=-, 于是得到:sin

cos 22A B C +=,cos sin 22

A B C

+=. 三、三角形的度量问题:即所谓的求边、角、周长、面积、圆半径等问题

(1)求角角边的适用定理是正弦定理;

(2)求边边角的适用定理是正弦定理或余弦定理; (3)求边边边、边角边的适用定理是余弦定理.

注:在解决“边边角” (,,)a b A 类型的题目时,若利用正弦定理求角,则应判定三角形的个数: 假定:90o A <, ①若a b ≥,则有一解;

②若a b <,则当sin a b A >时,有两解;当sin a b A =时,有一解;当

sin a b A <时,无解;

假定:90o A ≥, ①若a b >,则有一解; ②a b ≤,则无解.

四、三角形形状的判定方法 (1)角的判定; (2)边的判定; (3)综合判定; (4)余弦定理判定.

注:余弦定理判定法:若c 是ABC ?的最大边,则: ①222a b c +>?ABC ?是锐角三角形;

②222a b c +

三角形是锐角三角形?三内角都是锐角?任意两角和都是钝角?三内角的余弦值均为正值?任意两条边的平方和都大于第三边的平方.

五、高考真题整理

1.设ABC ?的三内角,,A B C 的对边分别为,,a b c ,若c =b =120O B =,则a =()

22.如果等腰三角形的周长是底边边长的5倍,那么它的顶角的余弦值是()

A.

518 B. 34 C. 78 D. 2

3.在ABC ?中,角,,A B C 所对的边分别为,,a b c ,若)cos cos c A a C -=,则

cos A =_____.

4、在ABC ?中,4B π

=

,BC 边上的高等于1

3

BC ,则cos A =_____. 5、ABC ?的内角A ,B ,C 的对边分别为a ,b ,c . 若4cos 5A =

,5

cos 13

C =,1a =,则b =_____.

6、已知ABC ?的三边长分别为3,5,7,则该三角形的外接圆半径等于_____.

7、在△ABC 中,已知B=45°,D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB

的长.

8、在ABC ?中,内角,,A B C 对应的边分别为,,a b c ,已知2,3

c C π

==

.

(1)若ABC ?,a b ;

(2)若sin sin()2sin 2C B A A +-=,求ABC ?的面积.

9、设函数2()sin cos sin ()4f x x x x π

=--(x R ∈).

(1)求函数()f x 的单调区间;

(2)在锐角ABC ?中,角A ,B ,C 所对应的边分别为a ,b ,c . 若

()02

C

f =,2c =,求ABC ?面积的最大值.

10、已知向量3

(,sin )2

m x =,(1,sin )n x x =,函数()f x m n =?.

(1)试求函数()f x 的单调递增区间;

(2)若ABC ?的三个内角A ,B ,C 所对应的边分别为a ,b ,c ,内角B 满足()3f B =,且3b =,试求ABC ?面积的最大值.

11、在ABC ?中,角A ,B ,C 所对应的边分别为a ,b ,c ,且4a =,

3cos 4A =

,sin B =4c >. (1)求b ;

(2)求ABC ?的周长.

12、设ABC ?三个内角A ,B ,C 所对的边分别为a ,b ,c . 已知3

c π

=

cos cos a A b B =.

(1)求角A 的大小;

(2)如图所示,在ABC ?的外角ACD ∠内取一点P ,使得2PC =. 过点P 分别作直线CA 、CD 的垂线,垂足分别是M 、N

大值及此时α的取值.

13、ABC ?的内角,,A B C 的对边分别为,,a b c . 已知2cos (cos cos )C a B b A c +=. (1)求C ;

(2)若c =ABC ?ABC ?的周长.

14、在ABC ?中,222a c b +=. (1)求B ∠的大小;

(2cos A C +的最大值.

15、ABC ?的内角A ,B ,C 所对的边分别为a ,b ,c . 已知向量()m a =与(cos ,sin )n A B =平行.

(1)求A ;

(2)若a =2b =,求ABC ?的面积.

16、如图,已知扇形的圆心角2

3

AOB π∠=,半径为C 是AB 上一动

点(不与点A ,B 重合).

(1)若弦1)BC =,求BC 的长; (2)求四边形OACB 面积的最大值.

【解析】(1)在OBC ?中,1)BC =,OB OC ==由余弦定理,有

222cos 2OB OC BC BOC OB OC +-∠====

? ∴6

BOC π

∠=

于是的长为

22

426

π

π?=

(2)设AOC θ∠=,2

(0,)3θπ∈

则2

3

BOC πθ∠=-

于是四边形OACB 的面积AOC BOC OACB S S S ??=+四边形

11

sin sin 22

OA OC AOC OB OC BOC =

??∠+??∠

112

sin sin()223

θπθ=?+?-

1

16sin 16[

()sin ]22

θθθ=+--

24sin θθ=+

)6

π

θ=+ 又2

(0,)3

θπ∈

∴5(,)666π

ππθ+

∈ 故当62

π

π

θ+=

,即3

π

θ=

时,四边形OACB

的面积最大,且最大值为

17、在△ABC 中,若2AB =

,AC =,求ABC S ?的最大值.

【解析】(法一)由余弦定理,有222222

424cos 244a c b a a a B ac a a

+-+--===

11sin 222ABC

S ac B a ?==?==

==

又由三角形三边关系,有:a b c a c b +>??+>?

,即2

2a a ?+>??

+>?

?22a ?<<

故当212a =

,即a =ABC S ?

最大,且max []ABC S ?=

==

(法二)∵2

22

a b c a p +++=

=

∴22

22

a a p a a +-+-=

-=

22

22a a p b ++-=

=

2p c -=

-=

于是由海伦公式,有:ABC S ?

===

又由三角形三边关系,有:a b c a c b +>??+>?

,即2

2a a ?+>??

+>?

?22a ?<< 故当212a =

,即a =ABC S ?

最大,且max []ABC S ?=

==

正弦定理和余弦定理

正弦定理和余弦定理 高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C = c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形: cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、 r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: [1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A

人教版高中数学必修5正弦定理和余弦定理测试题及答案教学内容

人教版高中数学必修5正弦定理和余弦定理测试题及答案

人教版高中数学必修5正弦定理和余弦定理测试题及答案 一、选择题 1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3, cos C =- 41,则c 等于( ) (A)2 (B)3 (C)4 (D)5 2.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( ) (A)60° (B)30° (C)60°或120° (D)30°或150° 3.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c = 150,b =503,那么这个三角形是( ) (A)等边三角形 (B)等腰三角形 (C)直角三角形 (D)等腰三角形或直角三角形 4.在△ABC 中,已知3 2sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A )45 (B)35 (C)920 (D)5 12 5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C = 1∶2∶3,那么a ∶b ∶c 等于( ) (A)1∶2∶3 (B)1∶3∶2 (C)1∶4∶9 (D)1∶2∶3 二、填空题 6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B = 45°,C =75°,则b =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________.

8.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若2cos B cos C=1-cos A,则△ABC形状是________三角形. 9.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=3,b=4,B =60°,则c=________. 10.在△ABC中,若tan A=2,B=45°,BC=5,则AC=________. 三、解答题 11.在△ABC中,三个内角A,B,C的对边分别是a,b,c, 若a=2,b=4,C=60°,试解△ABC. 12.在△ABC中,已知AB=3,BC=4,AC=13. (1)求角B的大小; (2)若D是BC的中点,求中线AD的长. 13.如图,△OAB的顶点为O(0,0),A(5,2)和B(-9,8),求角A的大小.

三角形正弦余弦定理

正弦定理,余弦定理 (课 堂) 选择 9 一,下列余弦定理正确的是哪一个 ( ) C 、 同弧所对的圆周角相等 D 、 圆内接四边形对角互补 六,三角形的三个角之比是 1:2:3,则最大的角 十二,在三角中, A 则角_等于 2 A 、30 o 已知 A 、60 o cc o B 、90 C 、 30°或150° A 、a 2 =b 2 +c 2 C 、 120 o D 、150 o 2 2 2 B 、a =b +c +2bccosA 七,下列哪个三角形是直角三角形 ( ) 十三,三角形中, 列正确的是 2 2 2 C 、 b =a +c -accosB A 、1,1,2 1,1,73 A 、a 2 =b 2 +c ,2 2 , 2 _ _ D 、b =a +c -2accosB 二,下列正弦定理公式变形正确的 是哪一个 ( ) D 、3,4,4 C 、 a -A a sin A =— R 2Rsin A = a b cos150o sin B sin A , csin C b = ----- sin B a 2 J 3 2 73 2 A 1 sin —=- 2 2 150o D 、60 o B = 60°,则 下 2 -bc B 、b 2 = a 2 + c 2 - ac = a2+b2-ab C. 一 =b 2 +c 2 12bc 三,下列关于三角形的表达式错误 的是 ( ) A 、A + B +C " ab =sin As in B a sin A C 、-= ------- b sin B a si n B =bsi n A 四,下列有关三角形外接圆的表达 式错误的是 ( A 、a =2Rsin A c =2Rsi nC 十四, 三角中, A = 45o ,则下列 cos120o 73 2 =b 2 +c 2 + J 2bc B 、a 2 = b 2 +c 2 - J 2bc a ——=2R sin A sin A C 、 =2R 列哪一句是错误的 ) A 、直径所对的圆周角是 180o 十,cosA<0,则此三角形一定 是 ( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、等腰三角形 ,在三 =丄 2 , ) 中,已知 sin A A 等于 30o 150o D 、 =a 2 + c 2 -72ac c 2 = a 2 卄2 -72ab 在三角形 则 A 、30o C 、 60° D 、 90o B 、直径所对的圆周角是 90 o C 、 30o 或150 o D 、60 o 45° 十六,在三角形中, A+B = 2C ,贝 U C

(完整版)正弦定理与余弦定理练习题

正弦定理与余弦定理 1.已知△ABC 中,a=4,ο 30,34==A b ,则B 等于( ) A .30° B.30° 或150° C.60° D.60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B.60° C.45° D.30° 3.已知ABC ?中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A . 6 π B . 3 π C . 32π D .6 5π 4.在?ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.若 sin sin C A =2,ac a b 322=-,则B ∠=( ) A. 030 B. 060 C. 0120 D. 0150 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5,c=10,A=30°,则B 等于( ) A .105° B.60° C.15° D.105° 或 15° 6.已知ABC ?中,75 6,8,cos 96 BC AC C ===,则ABC ?的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形 7.在ABC ?中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A . 2π B .3π C .4π D .6 π 8.在△ABC 中,若sin 2 A +sin 2 B <sin 2 C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 9.在ABC ?中,sin :sin :sin 3:2:4A B C =,那么cos C =( ) A. 14 B.23 C.23- D.14 - 10.在ABC ?中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等腰或直角三角形 11.在△ABC 中,cos 2 =,则△ABC 为( )三角形. A .正 B .直角 C .等腰直角 D .等腰 12.在△ABC 中,A=60°,a=4,b=4 ,则B 等于( ) A .B=45°或135° B .B=135° C .B=45° D .以上答案都不对 13.在ABC ?,内角,,A B C 所对的边长分别为,,.a b c 1 sin cos sin cos ,2 a B C c B A b += 且a b >,则B ∠=( )

正弦余弦公式总结

正弦余弦公式总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(2π-a)=cos(a) cos(2π-a)=sin(a) sin(2π+a)=cos(a) cos(2π+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinAcosA 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)tan(b)] tan(a-b)=[tan(a)-tan(b)]/[1+tan(a)tan(b)] 3.和差化积公式 sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2) sin(a)sin(b)=2cos((a+b)/2)sin((a-b)/2)

cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2) cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2) 4.积化和差公式 (上面公式反过来就得到了) sin(a)sin(b)=-1/2* [cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2* [cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2* [sin(a+b)+sin(a-b)] cos(a)sin(b)=1/2* [sin(a+b)-sin(a-b)] 5.二倍角公式 sin(2a)=2sin(a)cos(a) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 6.半角公式 2sin2(a/2)=1-cos(a) 2cos2(a/2)=1+cos(a) tan(a/2)=[1-cos(a)]/sin(a)=sina/[1+cos(a)] tan2(a/2)= [1-cos(a)]/[1+cos(a)] 7.万能公式 sin(a)=2tan(a/2)/[1+tan2(a/2)] cos(a)=[1-tan2(a/2)]/[1+tan2(a/2)] tan(a)=2tan(a/2)/[1-tan2(a/2)] 8.其它公式(推导出来的) a*sin(a)+b*cos(a)=2+b2其中 tan(c)=b/a a*sin(a)-b*cos(a)= √a2+b2cos(a-c) 其中 tan(c)=a/b

《正弦定理、余弦定理》单元测试题

高一数学《正弦定理、余弦定理》单元测试题(1) 班级 姓名 1.在ABC ?中,?=∠?=∠=15,30,3B A a ,则=c ( ) A .1 B. 2 C .3 2 D. 3 2.在ABC ?中,若 B b sin 2=,则∠A 等于( ) A .30°或60° B .45°或60° C .120°或60° D .30°或150° 3.在ABC ?中,?=∠==60,10,15A b a ,则B cos =( ) A .-223 B.223 C .-63 D.63 4.在ABC ?中,角A 、B 、C 所对的边分别为a 、b 、c ,若B b A a sin cos =,则 B A A 2cos cos sin +=( ) A .-12 B.1 2 C .-1 D .1 5.在ABC ?中,若A b a sin 23=,则B 等于 ( ) A. 30 B. 60 C. 30或 150 D. 60或 1206.在ABC ?中,已知 45,1,2=== B c b ,则a 等于 ( ) A. 226- B. 2 2 6+ C. 12+ D. 23- 7.不解三角形,确定下列判断中正确的是 ( ) A. 30,14,7===A b a ,有两解 B. 150,25,30===A b a ,有一解 C. 45,9,6===A b a ,有两解 D. 60,10,9===A c b ,无解 8.在ABC ?中,?===30,3,1A b a ,则c =( ) A .1 B .2 C .1或2 D .无解 9.在ABC ?中,已知B a b sin 323=,C B cos cos =,则ABC ?的形状是( ) A. 直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形 10.在ABC ?中, 60=A ,3=a ,则 =++++C B A c b a sin sin sin ( ) A. 338 B.3392 C.3 3 26 D. 32 11.在ABC ?中,已知3,45,60=?=∠?=∠C ABC BAC ,则AC =________;

正弦定理与余弦定理地综合应用

正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,角A,B,C的对边分别为a,b,c.若a2-b23bc,sin C3B,则角A=. 【答案】π6 【解析】由sin C 3B得c3b,代入a2-b23得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 ,所以角A= π 6.

3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度 为n mile/h. (第3题) 【答案】 176 4.(必修5P26本章测试7改编)设△ABC的角A,B,C的对边分别为a,b,c.若a sin A+c sin C2sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c22ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B=2 , 因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,则角B的取值围为. 【答案】 π0 3?? ???,

正弦定理余弦定理

第七节 正弦定理、余弦定理应用举例 时间:45分钟 分值:75分 一、选择题(本大题共6小题,每小题5分,共30分) 1.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( ) A .a km B.3a km C.2a km D .2a km 解析 利用余弦定理解△ABC .易知∠ACB =120°,在△ACB 中,由余弦 定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=2a 2-2a 2×? ?? ??-12=3a 2, ∴AB =3a . 答案B 2.张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( ) A .2 2 km B .3 2 km

C .3 3 km D .2 3 km 解析 如图,由条件知AB =24×15 60=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,所以∠ASB =45°.由正弦定理知BS sin30°=AB sin45°,所以BS =AB sin45°sin30°=3 2. 答案B 3.轮船A 和轮船B 在中午12时离开海港C ,两艘轮船航行方向的夹角为120°,轮船A 的航行速度是25海里/小时,轮船B 的航行速度是15海里/小时,下午2时两船之间的距离是( ) A .35海里 B .352海里 C .353海里 D .70海里 解析 设轮船A 、B 航行到下午2时时所在的位置分别是E ,F ,则依题意有CE =25×2=50,CF =15×2=30,且∠ECF =120°, EF =CE 2+CF 2-2CE ·CF cos120° = 502+302-2×50×30cos120°=70. 答案D 4.(2014·济南调研)为测量某塔AB 的高度,在一幢与塔AB 相距20 m

正弦与余弦定理和公式高中数学知识点梳理

正弦与余弦定理和公式高中数学知识点 梳理 首先,我们要了解下正弦定理的应用领域 在解三角形中,有以下的应用领域: (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦 正弦定理 在△ABC中,角A、B、C所对的边分别为a、b、c,则有a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径) 其次,余弦的应用领域 余弦定理 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB : sinC = a : b : c; 在一个三角形

中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及大边对大角,大角对大边定理和三角形内角和定理去考虑解决问题 (3)相关结论:a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sin A+sinB+sinC) c/sinC=c/sinD=BD=2R(R为外接圆半径) (4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA (5)a=bsinA/sinB sinB=bsinA/a 正弦、余弦典型例题 1.在△ABC中,C=90,a=1,c=4,则sinA 的值为 2.已知为锐角,且,则的度数是( ) 3.在△ABC中,若,A,B为锐角,则C的度数是() 4.若A为锐角,且,则A=() 5.在△ABC中,AB=AC=2,ADBC,垂足为D,且AD= ,E 是AC中点, EFBC,垂足为F,求sinEBF的值。

(完整版)正弦定理余弦定理应用实例练习含答案

课时作业3应用举例 时间:45分钟满分:100分 课堂训练 1.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C间的距离是() A.103海里B.106海里 C.52海里D.56海里 【答案】 D 【解析】如图,∠A=60°,∠B=75°, 则∠C=45°, 由正弦定理得: BC=AB·sin A sin C =10×sin60° sin45° =5 6. 2.如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()

A .502m B .503m C .252m D.2522m 【答案】 A 【解析】 因为∠ACB =45°,∠CAB =105°,所以∠ABC =30°,根 据正弦定理可知,AC sin ∠ABC =AB sin ∠ACB ,即50sin30°=AB sin45°,解得AB =502m ,选A. 3.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A ,B 间距离是35m ,则此电视塔的高度是________m. 【答案】 521 【解析】 如图所示,塔高为OC ,则∠OAC =60°,∠AOB =180°-30°=150°,∠CBO =45°,AB =35,

设电视塔高度为h m,则OA=3 3h,OB=h,在△AOB中由余弦定理可得AB2=OA2+OB2-2OA·OB·cos∠AOB, 即352=(3 2+h2-2×33h×h×(-32) 3h) 解得h=521. 4.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险? 【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有

时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a -4,a ,a +4,则(a +4)2=(a -4)2+a 2-2a (a -4)cos 120°,解得a =10,故S =12×10×6×sin 120°=15 3. 答案 15 3 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里. 解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°) .解得BC =56(海里). 答案 5 6 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68sin 120°sin 45°=346(海里),船的航行速度为3464= 176 2(海里/时). 答案 176 2 4.在△ABC 中,若23ab sin C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a 2+b 2+c 2,a 2+b 2-c 2=2ab cos C 相加,得a 2+b 2= 2ab sin ? ????C +π6.又a 2+b 2≥2ab ,所以 sin ? ????C +π6≥1,从而sin ? ????C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形. 答案 等边三角形

三余弦定理与三正弦定理

1. 设A 为面上一点,过A 的直线AO 在面上的射影为AB ,AC 为面上的一条直线,那么∠OAC,∠BAC,∠OAB 三角的余弦关系为: cos∠OAC=cos∠BAC×cos∠OAB (cos∠BAC 和cos∠OAB 只能是锐角) 通俗点说就是,斜线与平面内一条直线夹角θ的余弦值 =斜线与平面所成角1θ的余弦值?射影与平面内直线夹角的 余弦值. 三余弦定理(又叫最小角定理或爪子定理) 定理证明:如上图,自点O 作OB⊥AB 于点B ,过B 作BC⊥AC 于C ,连OC ,则易知△ABC、△AOC、△ABO 均为直角三角 形.OA AC AB AC OA AB ===θθθcos ,cos ,cos 21 ∴ 21cos cos cos θθθ?= 辅助记忆:这三个角中,角θ是最大的,其余弦值最小,等于另外两个角的余弦值之积。斜线与平面所成角1θ是斜线与平面内所有直线所成的角中最小的角。 2.设二面角M -AB -N 的度数为α,在平面M 上有一条射线AC ,它和棱AB 所成角为β,和平面N 所成的角为γ,则 sin γ=sin α·sin β(如图) 三正弦定理 定理证明:如上图,过C 作CO⊥平面N 于点O ,过O 作直线OB⊥二面角的棱于点B ,连OA ,CB ,则易知△CAO,△CBO,△ABC 均为直角三角形. 于是,sin =AC CO ,sin =BC CO ,sin β=AC BC ∴ sin γ=sin α·sin β β

如果将三余弦定理和三正弦定理联合起来使用,用于解答立体几何综合题,你会发现出乎意料地简单,甚至不用作任何辅助线! 例1 如图,已知A1B1C1-ABC是正三棱柱,D是AC中点,若AB1⊥BC1,求以BC1为棱,DBC1与CBC1为面的二面角α的度数.(1994年全 国高考理科数学23题)

正弦定理、余弦定理单元测试及答案

正弦定理、余弦定理 一、选择题 1.在△ABC 中,已知,30,10,25?===A c a 则B= ( ) (A )105° (B )60° (C )15° (D )105°或15° 2.在△ABC 中,已知a=6,b=4,C=120°,则sinB 的值是 ( ) (A ) 7 21 (B ) 19 57 (C ) 383 (D )19 57- 3.在△ABC 中,有a=2b ,且C=30°,则这个三角形一定是 ( ) (A )直角三角形 (B )钝角三角形 (C )锐角三角形 (D )以上都有可能 4.△ABC 中,已知b=30,c=15,C=26°,则此三角形的解的情况是 ( ) (A )一解 (B )二解 (C )无解 (D )无法确定 5.在△ABC 中,中,若2 cos sin sin 2 A C B =,则△ABC 是 ( ) (A )等边三角形 (B )等腰三角形 (C )直角三角形 (D )等腰直角三角形 6.在△ABC 中,已知13 5 cos ,53sin == B A ,则 C cos 等于 ( ) (A ) 6556 (B ) 65 16 (C ) 6516或65 56 (D ) 65 33 7.直角△ABC 的斜边AB=2,内切圆的半径为r ,则r 的最大值是 ( )

(A )2 (B )1 (C ) 2 2 (D )12- 8.若△ABC 的三边长为a ,b ,c ,且,)()(2 2 2 2 2 2 c x a c b x b x f +-++=则f (x )的图 象是 ( ) (A )在x 轴的上方 (B )在x 轴的下方 (C )与x 轴相切 (D )与x 轴交于两点 二、填空题 9.在△ABC 中,∠C=60°,c=22,周长为),321(2++则∠A= . 10.三角形中有∠A=60°,b ∶c=8∶5,这个三角形内切圆的面积为12π,则这个三角形 面积为 . 11.平行四边形ABCD 中,∠B=120°,AB=6,BC=4,则两条对角线的长分别是 . 12.在60°角内有一点P ,到两边的距离分别为1cm 和2cm ,则P 到角顶点的距离为 . 三、解答题 13.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,A <B <C ,B=60°,且满足 ).13(2 1 )2cos 1)(2cos 1(-= ++C A 求:(1)A 、B 、C 的大小; (2)c b a 2+的值.

正弦定理与余弦定理

第28讲 正弦定理与余弦定理 1.在△ABC 中,a 2=b 2+c 2+bc ,则角A 等于(C) A .60° B .45° C .120° D .30° 因为cos A =b 2+c 2-a 22bc =-12, 又因为0°

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

正弦定理和余弦定理测试题

正弦定理和余弦定理测试题 1.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( ) A.4 3 B .8-4 3 C .1 D.2 3 2.(文)在△ABC 中,已知A =60°,b =43,为使此三角形只有一解,a 满足的条件是( ) A .0

正弦定理和余弦定理

正弦定理和余弦定理 【知识梳理】 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?????===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三: 形式四: 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2222cos a b c bc A =+- 222 2cos b c a ca B =+- 2222cos c a b ab C =+-(解三角形的重要工具) 形式二: 【典型例题】 111sin sin sin 222ABC S ab C bc A ac B ?===::sin :sin :sin a b c A B C =sin ,sin ,sin 222a b c A B C R R R ===222cos 2b c a A bc +-=222cos 2a c b B ac +-=222 cos 2a b c C ab +-=

题型一:利用正弦定理解三角形 1.在ABC ?中,若5b =,4B π∠=,1sin 3A =,则a = . 2.在△ABC 中,已知a = 3,b =2,B=45°,求A 、C 和c . 题型二:利用余弦定理解三角形 1.设ABC ?的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,4 1cos = C . (Ⅰ)求ABC ?的周长;(Ⅱ)求()C A -cos 的值. 2. 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-c a b +2.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.

正余弦定理、三角形的一些公式

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 R c C R b B R a A C R c B R b A R a R R C c B b A a 2sin 2sin 2sin sin 2sin 2sin 2)(2sin sin sin = = = ======变形有:为外接圆的半径 三角形的面积公式: A bc B ac C ab S ABC sin 2 1 sin 21sin 21=== ? 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 ab c b a C ac b c a B bc a c b A C ab b a c B ac c a b A bc c b a 2cos 2cos 2cos cos 2cos 2cos 22222 222 22222222222-+= -+= -+= -+=-+=-+=变形有: 判断三角形的形状: 为锐角三角形 ,为直角角三角形 为钝角三角形 ABC b a c c a b c b a ABC c b a ABC c b a ?+<+<+2222222222 222 22,, 三角形中有: 形为正三角形 成等比数列,则该三角、、成等差数列,、、)若()(中c b a C B A C B A C B A C B A ABC 2tan )tan(cos )cos(sin )sin(1-=+-=+=+? 两角和差的正余弦公式及两角和差正切公式 ()βαβαβαsin cos cos sin sin -=- ()βαβαβαsin cos cos sin sin +=+ cos()cos cos sin sin αβαβαβ-=+ ()c o s c o s c o s s i n s i n αβα βαβ+=- ()βαβαβαt a n t a n 1t a n t a n t a n +-=- ()tan tan tan 1tan tan αβ αβαβ ++=- 二倍角公式: α α ααβ β ααααα2 22 2 2t a n 1t a n 22t a n 1 c o s 2s i n 21s i n c o s 2c o s c o s s i n 22s i n -= -=-=-== 半角公式:

正弦定理余弦定理练习题及答案

正弦定理、余弦定理练习题 年级__________ 班级_________ 学号_________ 姓名__________ 分数____ 一、选择题(共20题,题分合计100分) 已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为 1.A.- B. C.- D.λλ则满足此==中,在△ABCa,b,°=45A,2.条件的三角形的个数是 D.无数个A.0B. 1 C.2,则三角形为a cos Bb在△ABC中,cos A=3. D.C.锐角三角形等边三角形等腰三角形. A.直角三角形 B 22,则最大角为x2x+1(>1)x已知三角形的三边长分别为+1,+xx和-14.° C.60 D.75° 120B A.150° .° 在△ABC中,=1,5.,=2. +((·)+ )则=5+2边等于|| A. 5-2.B.

C. D.,b°BABC在△中,已知=30,=50=150c,6.那么这个三角形是

等腰三角形或直角等边三角形 B. 直角三角形 C.D. 等腰三角形A.三角形2222C+c, 则此三角形为sin B=2bc cos B cos C在△ABC中,若b sin7.等腰直角三角形 C.D.等边三角形 A. 直角三角形 B.等腰三角形 正弦定理适应的范围是8. D.任意△钝角△ A.Rt△B.锐角△ C.= =45°,则c°a已知△ABC中,=10,B=60,C9.B. 10 A.10+ C. )-1(. (+1 )D.10A sin<a<b,则此三角形有ABC在△中,b10.无解 C. 两解 D.不确定. A.一解B 5和3,它们夹角的余弦是方程5x-7x-6=0的根,则三角形的另一11.边 2三角形的两边分别为 长为

相关主题
文本预览
相关文档 最新文档