当前位置:文档之家› 正弦定理与余弦定理的证明

正弦定理与余弦定理的证明

正弦定理与余弦定理的证明
正弦定理与余弦定理的证明

一、正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,

有=sin CD a B ,sin CD b A =。 由此,得

sin sin a

b

A B =

,同理可得

sin sin c

b

C

B

=

故有

sin sin a

b

A

B

=

sin c

C =

.从而这个结论在锐角三角形中成立.

(2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得

=

∠sin sin a

b

A

ABC ,同理可得

=

∠sin sin c

b

C

ABC

故有

=

∠sin sin a

b

A

ABC

sin c

C =

.

由(1)(2)可知,在?ABC 中,

sin sin a

b

A

B

=

sin c

C

=

成立.

从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即

sin sin a

b

A

B

=

sin c

C =

.

2.利用三角形面积证明正弦定理

已知△ABC,设BC =a, CA =b,AB =c,作AD ⊥BC,垂足为 D. 则Rt △ADB

中,AB

AD B =sin , ∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?. 同理,可证 S △ABC =A bc C ab sin 21

sin 21=.

∴ S △ABC =B ac A bc C ab sin 2

1sin 21sin 21==. ∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==. 即C

c

B b A a sin sin sin ==. 3.向量法证明正弦定理

(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与

AB 的夹角为

90°-A ,j 与CB 的夹角为90°-C . 由向量的加法原则可得 AB CB AC =

+,

为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量

a

b D

A

B

C

A

B C

D

b

a

D C B

A

j 的数量积运算,得到AB j CB AC j ?=+?)( 由分配律可得AB j CB j AC ?=?+.

B

∴|j |

AC Co s90°+|j |CB Co s(90°-C )=|j |AB Co s(90°-A ). j

∴asinC=csinA. ∴

C

c

A a sin sin =. A 另外,过点C 作与C

B 垂直的单位向量j ,则j 与A

C 的夹角为90°+C ,j 与AB 的夹角为90°+B ,可得

B

b

C c sin sin =. (此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与AC 的夹角

为90°-C ,j 与

AB 的夹角为90°-B ) ∴

C

c

B b A a sin sin sin ==. (2)△AB

C 为钝角三角形,不妨设A >90°,过点A 作与AC 垂直的单位向量j ,则j

AB 的夹角为A -90°,j 与CB 的夹角为90°-C .

由AB CB AC =+,得j ·AC +j ·CB =j ·AB , j

即a·Cos(90°-C)=c·Cos(A-90°), ∴asinC=csinA. ∴C

c

A a sin sin = 另外,过点C 作与C

B 垂直的单位向量j ,则j 与A

C 的夹角为90°+C ,j 与AB 夹

角为 90°+B .同理,可得C c

B b sin sin =. ∴ C

c B b simA a sin sin == 4.外接圆证明正弦定理

在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心,

连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所

对的圆周角相等可以得到

∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=R c B C 2sin sin ='=. ∴

R C

c

2sin =. 同理,可得

R B b R A a 2sin ,2sin ==. ∴R C

c

B b A a 2sin sin sin ===. 这就是说,对于任意的三角形,我们得到等式

A

C

C

B

A

C

c

B b A a sin sin sin ==. 法一(平面几何):在△AB

C 中,已知,,AC b BC a C ==∠及,求c 。

过A 作sin sin AD BC D AD AC C BC C ⊥=于,是=,

cos cos ,CD AC b c ==

在Rt ABD ?中,2222222(sin )(cos )2cos AB AD BD b c a b c a b ab c =+=+-=+-,

法二(平面向量):

222()()22||||AB AB AC BC AC BC AC AC BC BC AC AC BC ?=+?+=??+=+? 2

22cos(180)2cos B BC b ab B a -+=-+

,即:2222cos c a b ab c =+-

法三(解析几何):把顶点C 置于原点,CA 落在x 轴的正半轴上,由于

△ABC 的AC=b ,CB=a ,AB=c ,则A ,B ,C 点的坐标分别为A(b ,0),B(acosC ,asinC),C(0,0).

|AB|2=(acosC -b)2+(asinC -0)2 =a 2cos2C -2abcosC+b 2+a 2sin2C =a 2+b 2-2abcosC , 即c 2=a 2+b 2-2abcosC .

.

法五(用相交弦定理证明余弦定理):

如图,在三角形ABC 中,∠A=α,AB=a ,BC=b ,AC=c 。现在以B 为圆心,以长边AB 为半径做圆,这里要用长边的道理在于,这样能保证C 点在圆内。BC 的延长线交圆B 于点D 和

E

这样以来,DC=a-b ,CE=a+b ,AC=c 。因为AG=2acos α,所以CG=2acos α-c 。根据相交弦定理有:

DC×CE=AC×CG,带入以后就是 (a-b)(a+b)=c(2acos α-c)

化简以后就得b 2

=a 2

+c 2

+2accos α。也就是我们的余弦定理。

如图,在△

ABC 中,AB =4 cm ,AC =3 cm ,角平分线AD =2 cm ,求此三角形面积.

分析:由于题设条件中已知两边长,故而联想面积公式S △ABC =1

2

AB ·AC ·sin A ,需求出

A

C

B

sin A ,而△ABC 面积可以转化为S △ADC +S △ADB ,而S △ADC =12 AC ·AD sin A 2 ,S △ADB =1

2

AB ·AD ·sin A 2 ,因此通过S △ABC =S △ADC +S △ADB 建立关于含有sin A ,sin A

2 的方程,而sin A =

2sin A 2 cos A 2 ,sin 2A 2 +cos 2A

2

=1,故sin A 可求,从而三角形面积可求.

解:在△ABC 中,S △ABC =S △ADB +S △ADC , ∴12 AB ·AC sin A =12 ·AC ·AD ·sin A 2 +12 ·AB ·AD sin A 2 ∴12 ·4·3sin A =12 ·3·2sin A 2 ,∴6sin A =7sin A 2 ∴12sin A 2 cos A 2 =7sin A 2

∵sin A 2 ≠0,∴cos A 2 =712 ,又0<A <π,∴0<A 2 <π

2

∴sin A 2

1-cos 2A 2 =95

12

∴sin A =2sin A 2 cos A 2 =795

72,

∴S △ABC =12 ·4·3sin A =795

12(cm 2).

在△ABC 中,AB =5,AC =3,D 为BC 中点,且AD =4,求BC 边长. 解:设BC 边为x ,则由D 为BC 中点,可得BD =DC =x

2 ,

在△ADB 中,cos ADB =AD 2

+BD 2

-AB

2

2AD ·BD =42+(x

2 )2-52

2×4×x

2

在△ADC 中,cos ADC =AD 2

+DC 2

-AC

2

2AD ·DC =42+(x

2 )2-32

2×4×x

2

又∠ADB +∠ADC =180° ∴cos ADB =cos (180°-∠ADC )=-cos ADC . ∴42+(x 2 )2-522×4×x 2 =-42+(x 2

)2-32

2×4×x 2

解得,x =2

所以,BC 边长为2.

2.在△ABC 中,已知角B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,求AB . 解:在△ADC 中,

cos C =AC 2+DC 2-AD 22AC ·DC =72+32-522×7×3 =1114

又0<C <180°,∴sin C =53

14

在△ABC 中,AC sin B =AB

sin C

∴AB =sin C sin B AC =5314· 2 ·7=56

2.

3.在△ABC 中,已知cos A =35 ,sin B =5

13 ,求cos C 的值.

解:∵cos A =35 <2

2=cos45°,0<A <π

∴45°<A <90°,∴sin A =4

5

∵sin B =513 <1

2 =sin30°,0<B <π

∴0°<B <30°或150°<B <180° 若B >150°,则B +A >180°与题意不符. ∴0°<B <30° cos B =1213

∴cos (A +B )=cos A ·cos B -sin A ·sin B =35 ·1213 -45 · 513 =16

65

又C =180°-(A +B ).

∴cos C =cos [180°-(A +B )]=-cos (A +B )=-1665 .

正弦定理证明

一、正弦定理的几种证明方法
1.利用三角形的高证明正弦定理
(1)当 ? ABC 是锐角三角形时,设边 AB 上的高是 CD,根据锐角三角函数的定义,
有CD ?asinB ,CD ? b sin A 。
C
由此,得
a sin A
b ? sinB
同理可得 ,
c sinC
?
b sin B

b
a
A
B
故有
a
b
sinA ? sinB
c ? sinC .从而这个结论在锐角三角形中成立.
D
(2)当 ? ABC 是钝角三角形时,过点 C 作 AB 边上的高,交 AB 的延长线于点 D, 根据锐角三角函数的定义,有CD ?asin?CBD ?asin?ABC ,CD ? b sin A 。由此,

a sin A
b ? sin?ABC
同理可得 ,
c sinC
b ? sin?ABC
C
故有
a
b
sinA ? sin?ABC
c ? sinC .
b
a
A
由(1)(2)可知,在
?
ABC
中,
a sin
A
?
b sin
B
c ? sinC
成立.
BD
从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即
a
b
c
sinA ? sinB ? sinC .
2.利用三角形面积证明正弦定理
已知△ ABC,设 BC=a, CA=b,AB=c,作 AD⊥BC,垂足为 D. 则 Rt△ ADB
中, sin B ? AD , ∴AD=AB·sinB=csinB.
A
AB
∴S△ ABC= 1 a ? AD ? 1 acsin B . 同理,可证 S△ ABC= 1 absin C ? 1 bcsin A.
2
2
2
2
∴ S△ ABC= 1 absin C ? 1 bcsin A ? 1 acsin B . ∴absinc=bcsinA=acsinB, C
2
2
2
D
B
在等式两端同除以 ABC,可得 sin C ? sin A ? sin B . 即 a ? b ? c .
c
a
b
sin A sin B sin C
3.向量法证明正弦定理
(1)△ ABC 为锐角三角形,过点 A 作单位向量 j 垂直于 AC ,则 j 与 AB 的夹角为
90°-A,j 与 CB 的夹角为 90°-C. 由向量的加法原则可得 AC ? CB ? AB ,
为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量
第1页共5页

正弦定理证明

正弦定理的证明解读 克拉玛依市高级中学 曾艳 一、正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B =,同理可得 sin sin c b C B =, 故有 sin sin a b A B =sin c C =.从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 =∠sin sin a b A ABC , 同理可得 =∠sin sin c b C ABC 故有 =∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中,sin sin a b A B =sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin a b A B =sin c C =. 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C === sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == a b D A B C A B C D b a

正弦定理的几种证明

正弦定理的几种证明 内蒙古赤峰建筑工程学校 迟冰 邮编(024400) 正弦定理是解决斜三角形问题及其应用问题(测量)的重要定理,而证明它们的方法很多,展开的思维空间很大,研究它们的证明,有利于培养学生的探索精神,体验数学的探索活动过程,也有利于教师根据不同的教学质量要求和学次,进行适当的选择。 C c B b A a C B A c b a ABC sin =sin =sin ,,,,:则:和中的三边和三角分别是 在正弦定理的内容: ? 一向量法 C c B b A a B b A a C c C CB i A CB AC i AB i AC i ABC sin sin sin :sin sin sin sin ||||sin | ) (,⊥=== ==+?=??即正弦定理可证 同理可证:,则:中做单位向量 证明:在

即正弦定理可证 同理可证:即中 和则在中做高线证明:在, sin =sin ,sin =s sin =sin sin =, sin =, C c A a B b inA a B a A b B a CD A b CD BDC Rt ADC Rt CD ABC ??? 三外接圆法 C c B b A R C c R A a R B b B R b B D a D R b Rt CAD R AD D C O ABC sin sin sin a ∴2sin ,2sin :2sin ,sin 2∴∠∠,sin ,∴, ,,========???同理即且且为设圆的半径为连接连接圆心与圆交于点过点的外接圆证明:做

四面积法 C c B b A a B ac C ab A bc S ABC sin sin sin ∴sin 21sin 2 1 sin 21=====?正弦定理可证:

勾股定理16种证明方法

勾股定理的证明 【证法1】(课本的证明) a 、 b ,斜边长为 c ,再做三 个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++,整理得222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21.把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵Rt ΔHAE ≌Rt ΔEBF, ∴∠AHE = ∠BEF . ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵Rt ΔGDH ≌Rt ΔHAE, ∴∠HGD = ∠EHA . ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ABCD 是一个边长为a + b 的正方形,它的面积等于()2 b a +. ∴ ()2 22 14c ab b a +?=+. ∴2 2 2 c b a =+.

以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角 三角形的面积等于ab 21. 把这四个直角三 角形拼成如图所示形状. ∵Rt ΔDAH ≌ Rt ΔABE, ∴∠HDA = ∠EAB . ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵EF = FG =GH =HE = b ―a , ∠HEF = 90o. ∴EFGH 是一个边长为b ―a 的正方形,它的面积等于()2 a b -. ∴()22 214c a b ab =-+?. ∴2 2 2 c b a =+. 【证法4】(1876年美国总统Garfiel d 证明) 以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面 积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵Rt ΔEAD ≌Rt ΔCBE, ∴∠ADE = ∠BEC . ∵∠AED + ∠ADE = 90o, ∴∠AED + ∠BEC = 90o. ∴∠DEC = 180o―90o= 90o. ∴ΔDEC 是一个等腰直角三角形, 它的面积等于221c . 又∵∠DAE = 90o, ∠EBC = 90o, ∴ AD ∥BC . ∴ABCD 是一个直角梯形,它的面积等于()2 21 b a +. ∴()2 2212122 1 c ab b a +?=+. ∴2 22c b a =+.

正弦定理的四种证明方法

正弦定理的四种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义, 有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C = == sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == a b D A B C A B C D b a

余弦定理的证明方法大全(共十种方法)

余弦定理的证明方法大全 (共十种方法) 一、余弦定理 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的积的两倍,即在ABC ?中,已知AB c =,BC a =,CA b =,则有 2222cos a b c bc A =+-, 2222cos b c a ca B =+-, 2222cos c a b ab C =+-. 二、定理证明 为了叙述的方便与统一,我们证明以下问题即可: 在ABC ?中,已知AB c =,AC b =,及角A ,求证:2222cos a b c bc A =+-. 证法一:如图1,在ABC ?中,由CB AB AC =-可 得: ()()CB CB AB AC AB AC ?=-?- 22 2AB AC AB AC =+-? 222cos b c bc A =+- 即,2222cos a b c bc A =+-. 证法二:本方法要注意对A ∠进行讨论. (1)当A ∠是直角时,由22222222cos 2cos90b c bc A b c bc b c a +-=+-?=+=知结论成立. (2)当A ∠是锐角时,如图2-1,过点C 作CD AB ⊥,交AB 于点D ,则 在Rt ACD ?中,cos AD b A =,sin CD b A =. 图1

从而,cos BD AB AD c b A =-=-. 在Rt BCD ?中,由勾股定理可得: 222BC BD CD =+ 22(cos )(sin )c b A b A =-+ 222cos c cb A b =-+ 即,2222cos a b c bc A =+-. 说明:图2-1中只对B ∠是锐角时符合,而B ∠还可以是直角或钝角.若B ∠是直角,图中的点D 就与点B 重合;若B ∠是钝角,图中的点D 就在AB 的延长线上. (3)当A ∠是钝角时,如图2-2,过点C 作CD AB ⊥,交BA 延长线于点D ,则 在Rt ACD ?中,cos()cos AD b A b A π=-=-,sin()sin CD b A b A π=-=. 从而,cos BD AB AD c b A =+=-. 在Rt BCD ?中,由勾股定理可得: 222BC BD CD =+ 22(cos )(sin )c b A b A =-+ 222cos c cb A b =-+ 即,2222cos a b c bc A =+-. 综上(1),(2),(3)可知,均有2222cos a b c bc A =+-成立. 证法三:过点A 作AD BC ⊥,交BC 于点D ,则 在Rt ABD ?中,sin BD c α= ,cos AD c α=. 在Rt ACD ?中,sin CD b β=,cos AD b β=. 由cos cos()cos cos sin sin A αβαβαβ=+=-可得: 2cos AD AD BD CD AD BD CD A c b c b bc -?=?-?= 图2-1 图2-2 图3

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

数学正弦定理证明如何证明

数学正弦定理证明如何证明 正弦定理该怎么证明呢?关于它们的证明方法之怎样的呢?下面 就是给大家的正弦定理证明方法内容,希望大家喜欢。 用三角形外接圆 证明:任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D.连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以 c/sinC=c/sinD=BD=2R 类似可证其余两个等式。 ∴a/sinA=b/sinB=c/sinC=2R 用直角三角形 证明:在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC∴a/sinA=b/sinB=c/sinC 在直角三角形中,在钝角三角形中(略)。 用三角形面积公式 证明:在△ABC中,设BC=a,AC=b,AB=c。作CD⊥AB垂足为点D,作BE⊥AC垂足为点E,则CD=a·sinB,BE=csinA,由三角形面积公式得:AB·CD=AC·BE

即c·a·sinB=b·csinA∴a/sinA=b/sinB同理可得 b/sinB=c/sinC ∴a/sinA=b/sinB=c/sinC 用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证 正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC 证明如下:在三角形的外接圆里证明会比较方便 例如,用BC边和经过B的直径BD,构成的直角三角形DBC可 以得到: 2RsinD=BC(R为三角形外接圆半径) 角A=角D 得到:2RsinA=BC 同理:2RsinB=AC,2RsinC=AB 这样就得到正弦定理了 猜你感兴趣: 1.高中数学定理证明 2.承兑延期证明

正弦定理证明上课讲义

正弦定理证明

正弦定理的证明解读 克拉玛依市高级中学 曾艳 一、正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定 义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B =,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC , 同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: a b D A B C A B C D b a

在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C = == sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == 推论: sin sin b c B C = 同理可证: sin sin sin a b c A B C == 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD ⊥BC,垂足为 D.则Rt △ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin = =. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与CB 的夹角为90°-C .由向量的加法原则可得AB CB AC =+, 为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量 j 的数量积运算,得到AB j CB AC j ?=+?)( 由分配律可得AB j CB j AC ?=?+. B ∴|j | AC Co s90°+|j |CB Co s(90°-C )=|j |AB Co s(90°-A ). j D C B A C

正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法 ——王彦文青铜峡一中1.掌握正弦定理、余弦定理,并能解决一 些简单的三角形度量问题. 2.能够运用正弦定理、余弦定理等知识和 方法解决一些与测量和几何计算有关的实际问 题. 主要考查有关定理的应用、三角恒等变换 的能力、运算能力及转化的数学思想.解三角 形常常作为解题工具用于立体几何中的计算或 证明,或与三角函数联系在一起求距离、高度 以及角度等问题,且多以应用题的形式出现. 1.正弦定理 (1)正弦定理:在一个三角形中,各边和它 所对角的正弦的比相等, 即.其中R是三角形外接圆的 半径. (2)正弦定理的其他形式: ①a=2R sin A,b=,c =; ②sin A=a 2R,sin B=, sin C=; ③a∶b∶c=______________________. 2.余弦定理 (1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即 a2=,b2=, c2=. 若令C=90°,则c2=,即为勾股定理. (2)余弦定理的变形:cos A =,cos B=,cos C=. 若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角. (3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B+C=π. 3.解斜三角形的类型 (1)已知三角形的任意两个角与一边,用____________定理.只有一解. (2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知a, 时,只有一解. (4)已知两边及夹角,用____________定理,必有一解.

拉格朗日中值定理证明中辅助函数构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

Cayley定理的证明方法

Cayley 定理的证明方法 摘要:本文对Cayley 定理:n K 的生成树共有2n n -棵,即2()n n K n τ-=。的几种证明方法简单归纳。 关键词:Cayley 公式 标号树枝 生成树 第一种证明方法 通过确定标号树枝的个数来求生成树的个数,设生成树的数目为x 个,因为每个生成树的每一个点都能作为一个根,所以标号树枝的个数为nx 个,现在就是确定标号树枝的个数1n n -,这样一来就能确定2n x n -=。下面我们就来证明标号树枝的个数为1n n -。 通过一步一步建立标号树枝,先拿出n 个点的无边土,此时这个图有n 个树枝森林,,现在往上加边,加第一条边后,树枝森林数减少一个,,当树枝数目为k 时,加下一条边新边(,)u v 的选择为(1)n k -,任意一个点都能当作u ,而v 必须连接不含u 的树枝的根,用这种方法构造标号树枝的数目应该为111()(1)!n n i n n i n n --=-=-∏,因为每个标号树枝含有1n -条边,有(1)!n -种顺序,也 就是说每个标号树枝被构造了(1)!n -次,所以标号树枝的个数为1n n -。 证毕。 第二种证明方法 设2n ≥,12,,,n d d d 是正整数,并且1222n d d d n ++ +=-,则在顶点集{1,2,,}n 上具有顶点度序列 为12,,,n d d d 的树的个数是 多项式展开如下: 11211 11,,,11(1)(1)2211n n n d d n d d d n d d n n a a d d --≥-++-=--??= ?--??∑特别地,令每一个1i a =,得到 为了计算顶点集{1,2,,}n 上的树的数目,必须将12,,,n d d d 是正 整数并且其和等于2n -的具有顶点度序列12,, ,n d d d 的所有树的数目全 部加在一起. 从前面的事实有

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

(完整版)中值定理的应用方法与技巧

中值定理的应用方法与技巧 中值定理包括微分中值定理和积分中值定理两部分。微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。积分中值定理有积分第一中值定理和积分第二中值定理。积分第一中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f b a -=?ξ。积分第二中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在一点ξ,使得??=b a b a dx x g f dx x g x f )()()()(ξ。 一、 微分中值定理的应用方法与技巧 三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。 例一.设)(x ?在[0,1]上连续可导,且1)1(,0)0(==??。证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+') ()(η?ξ?成立。 证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ?==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(??ξ?。 任意给定正整数b ,再令)()(,)(21x x g bx x g ?==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=') 0()1(0)(??η?。 两式相加得:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得 b a b a +='+') ()(η?ξ? 成立。 证法2:任意给定正整数b a ,,令)()(,)(21x x f ax x f ?==,则在[0,1]上对

正弦定理的几种证明方法

正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定 义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC , 同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin a b A B =sin c C = . 1’用知识的最近生长点来证明: | 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD?AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C = == sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == ` a b D A ( C A B ~ D b a

勾股定理逆定理八种证明方法

勾股定理逆定理八种证 明方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

证法1 作四个的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF =90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC =90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,

正弦定理的三种证明

A B C c b a C B A D a b c A B C D a b △ABC 中的三个内角∠A ,∠B ,∠C 的对边,分别用,,a b c 表示. 正弦定理:在三角形中,各边的长和它所对角的正弦的比相等,即 = = sin sin sin a b c A B C 证明:按照三角形的种类,分三种情形证明之. (1) 在R t A B C ?中,如图1-1 sin = a A c ,sin = b B c 因此, = =sin sin a b c A B 有因为sin =1C ,所以 = = sin sin sin a b c A B C (2)在锐角△ABC 中,如图1-2 作C D AB ⊥于点D ,有sin =C D A b ,sin = C D B a , 因此,sin =sin b A a B ,即=sin sin a b A B 同理可证: = sin sin a c A C ,故 = = sin sin sin a b c A B C . (3)在钝角△ABC 中,如图1-3 作C D AB ⊥,交A B 的延长线于点D ,则 sin = C D A b ,sin =sin = C D A B C C B D a ∠ 因此,sin =sin b A a B ,即= sin sin a b A B 同理可证: = sin sin b c B C 故==sin sin sin a b c A B C 综上所述,在任意的三角形中,正弦定理总是成立.

B A C B 证明:如图所示,圆O 是△ABC 的外接圆,半径为R 连接A O 并延长,交圆O 于点D ,连接C D , 易知,=90ACD ∠ ,=B D ∠∠ sin = =2A C b D A D R ,即sin = 2b B R 因此 =2sin b R B 同理,延长,BO CO , 可证= =2sin sin a c R A C 故===2sin sin sin a b c R A B C 证明:过点B 作单位向量j BC ⊥ ,那么就有 j A C j A B j B C =+ cos(90)cos(90)0b C c B ?+=++ sin b C ?-=-sin sin b c B C ? =, 同理有sin sin a b A B =。 故 = = sin sin sin a b c A B C 【小技巧】 根据几何图形确定向量夹角的方法: 如果两个向量所在之间直线相交,或通过平移一个向量而相交,那么 (1) 向量夹角为锐角,很容易判断; (2) 向量夹角为钝角时,可以先判断锐角,再取补角 例如: 确定向量j 与向量AB 的夹角时,由于是钝角, 先确定向量j 与向量BA 的夹角为90B - ,再求补角,即为90B + 确定向量j 与向量A C 的夹角时,先平移j ,同上可得,夹角为90C +

相关主题
文本预览
相关文档 最新文档