当前位置:文档之家› 光眼图测量技巧

光眼图测量技巧

光眼图测量技巧
光眼图测量技巧

presented by: Shin Yano August 2005
Solving a Mystery in Optical Eye Diagram Measurement
Introduction
Inconsistent in Extinction Ratio
Smaller Mask Margin Result
Can I use a cheaper device ?
Title of Presentation Date
Agilent Restricted
Page 2
1

Agenda
Extinction Ratio Measurement Mask Margin Test Effect of Clock Data Recovery to Eye testing Summary
Title of Presentation Date
Agilent Restricted
Page 3
Issue in Extinction Ratio Measurement
“ I saw two different results. Which is correct ? “ “ I used two looks-same modules to test.”
6.84 dB (86105B#101)
Title of Presentation Date Agilent Restricted
6.23 dB (86105B#102)
Page 4
2

Extinction Ratio – Definition
ER linear = E1/E0 ER (dB) = 10 log10(ER linear) ER (%) = 100 X E0/E1
To find the energy in a bit you must integrate the instantaneous power across the bit period.
ER = the ratio of: the energy used to transmit a logic level ‘1’ to the energy used to transmit a logic level ‘0’
Title of Presentation Date Agilent Restricted Page 5
Factors affecting the ER measurement
Shape of Input waveform Filtered or Unfiltered Frequency Response of the filter Signal Level and Noise (S/N) Calibration (Module cal & Dark cal) Standard of ER is not available…..
Title of Presentation Date
Agilent Restricted
Page 6
3

Using the Filter
How to define “1” level ?
With the Filter
Typical waveform of Laser transmitter
Title of Presentation Date
Agilent Restricted
Page 7
Frequency Response of the Filter
0.75 x Data Rate @-3dB (4th order Bessel-Thompson) Both Filters are compliant Actual is not Ideal
Title of Presentation Date Agilent Restricted Page 8
4

Affect of Frequency Response
DC Gain
ERA>ERB
AC Gain
A
B
ERATitle of Presentation Date
Agilent Restricted
Page 9
Affect of Noise Level
Noise affects significantly from a certain noise level
Uncorrected ER versus Input Level
86105C, 9.9528Gb/s, filter ON, Katmandu ER < 0.25%
6 5.5 5 4.5 4 Measured ER, %
Page 10
-25
-20
-15 Input Level, dBm
-10
-5
Title of Presentation Date
Agilent Restricted
5

Offsets generated by the instrumentation
μdark μ σ Turn Off
Title of Presentation Date
Agilent Restricted
Page 11
Offsets are compensated through the Extinction Ratio Calibration
Ratio ER =
One-level – Dark-level Zero-level – Dark-level
dB
ER dB = 10log10
[
One-level – Dark-level Zero-level – Dark-level
] ]
Page 12
%
ER percent = 100
[
Zero-level – Dark-level One-level – Dark-level
Title of Presentation Date
Agilent Restricted
6

Importance of Calibration
Module (Vertical) Calibration is important for accurate power measurements and gain offsets Dark Cal is important to establish ‘0’ level ER measurement is greatly affected by ‘0’ level For optimal results:
? Warm up mainframe and module for at least an hour, then complete Module Calibration ? Complete Dark Cal immediately prior to desired ER measurement, and after any Auto Scale
Title of Presentation Date
Agilent Restricted
Page 13
Uncertainty in measuring the amplitudes of the waveform
CW Accuracy’ specification is ±25 μW ±2%
After Extinction Ratio Calibration
Title of Presentation Date
Agilent Restricted
Page 14
7

Introduction of Correction Factor
Flexible filters selection (switches and cable) leads a slight distance from the ideal response. -> leads inconsistency at different models-options configuration. -> Good agreement for the same model-options configuration. Up to now, no National Standard with the known-amount of Extinction Ratio exists.
Title of Presentation Date Agilent Restricted Page 15
Agilent way to get the Correction Factor
DC Bias Source #1
Bias
DC Bias Source #2
Bias
Laser (CW)
Polarization Adjustment
LiNbO3 Mach Zehnder Modulator #1
LiNbO3 Mach Zehnder Modulator #2
Optical Output
Pattern Generator
Data Output DataBar Output
Adjustable Delay
1. 2. 3.
Create a transmitter with infinite ER (>30dB) Confirm the ER with Optical sampling scope (>800GHz BW) Compare the result of the module under test.
Agilent Restricted Page 16
Title of Presentation Date
8

Recommended Correction Factor
Designations 86105B Data Rates Option Options (Gb/s) 101 102/103 N/A 0.155 0.50% N/A 0.622 0.50% N/A 1.063 0.70% N/A 1.25 0.90% N/A 2.125 2.30% 2.488 2.30% N/A 2.5 N/A 2.666 3.20% N/A 3.125 3.40% N/A 4.25 3.60% 9.953 10.312 4.50% 10.519 2.80% 10.664 10.709 N/A N/A 11.096 N/A N/A 11.317 86105C Options Option 100/300 200 N/A 0.50% N/A 0.80% N/A 2.50% N/A 1.30% N/A 2.50% 2.00% 2.00% 3.30% 4.00% N/A N/A N/A N/A
OC-3/STM-1 OC-12/STM-4 1x Fibre Channel Gigabit Ethernet 2x Fibre Channel OC-48/STM-16 2 Gb Ethernet OC-48/STM-16 FEC 10 Gb Ethernet LX-4 4x Fibre Channel OC-192/STM-64 10 Gb Ethernet 10x Fibre Channel OC-192/STM-64 FEC OC-192/STM-64 FEC 10 Gb Ethernet FEC 10x Fibre Channel FEC
4.00%
1.50%
Title of Presentation Date
Agilent Restricted
Page 17
Use of ER Correction Factor
86105C pre-installed its typical ER CF value for each rate
Title of Presentation Date
Agilent Restricted
Page 18
9

Example of applying Correction Factor
6.84 dB
86105B/101, ERCF=2.8% 6.84 dB = 20.7% 20.7%-2.8%=17.9% 17.9% = 7.47 dB
Delta = 0.61dB
Delta = 0.33dB
86105B/102, ERCF=4.5% 6.23 dB = 23.82% 23.82%-4.5%=19.32% 19.32% = 7.14 dB
6.23 dB
6.38 dB
86105B/102, ERCF=4.5% 6.38 dB = 23.01% 23.01%-4.5%=18.51% 18.51%=7.33 dB
Page 19
Title of Presentation Date
Agilent Restricted
Agenda
Extinction Ratio Measurement Mask Margin Test Effect of Clock Data Recovery to Eye testing Summary
Title of Presentation Date
Agilent Restricted
Page 20
10

Mask Test & Mask Margin
1レベル
0レベル
Title of Presentation Date
Agilent Restricted
Page 21
Effect of Input Power on Mask Margin Test
Mask Margin over Power
60 58 56 54 52
Above specified 86105C input power
50 48 46 44 42 40
-8
-7.5
-7
-6.5
-6
-5.5
-5
-4.5
-4
-3.5
-3
-2.5
-2
Signal ER of about 7dB Measured with 10.3125 filter turned on 1000 samples
dBm
?Mask margin is typical technique to determine module sensitivity
Title of Presentation Date Agilent Restricted Page 22
Mask Margin %
11

EYE & Mask Performance
86105B Amplification increases mask margin 86105C
83433A Transmitter
Title of Presentation Date
Agilent Restricted
Page 23
Where is Mask Margin test meaningful ?
Margin:10%
A
Margin :4%
α
B
Margin :20% X Margin :10%
A
Margin :25%
β
α Y Margin :20%
A B
β
Title of Presentation Date
Agilent Restricted
Page 24
12

Agenda
Extinction Ratio Measurement Mask Margin Test Effect of Clock Data Recovery to Eye testing Summary
Title of Presentation Date
Agilent Restricted
Page 25
The basic clock recovery circuit
Phase detector
Loop filter
VCO
Data IN A Voltage Controlled Oscillator to generate a clock signal
Clock OUT
A Phase Detector to determine the frequency error between the incoming data and the VCO rate A Loop Filter to control the error signal driving the VCO
Title of Presentation Date Agilent Restricted Page 26
13

Two different eyes for the same signal
?Based on Clock of a Pattern Generator Data
PPG
?Based on Recovered Clock at a receiver Data DCA CRU
Data
Data TRG
DCA
TRG
Clock
Title of Presentation Date
Agilent Restricted
Page 27
Recovered Clock and Data
Data Clock Trigger Jitter Freq. > Loop BW can not track = see as jitter
Jitter Freq. < Loop BW can track = not see as jitter
Title of Presentation Date
Agilent Restricted
Page 28
14

Optimum Loop Bandwidth
?Measuring Jitter on OUTPUT from a transmitter
? Narrower Loop BW, or Clock from SigGen/PPG
?Measuring Jitter at a receiver, or compliance test
? Use the specified Loop BW ? Typically Data Rate/1667 or 2500
Example :
1 Gb Fibre Channel: 1 Gb Ethernet: 10 GbEn 3.125G x 4 lane: 10 Gb Ethernet <= 637 KHz <= 750 KHz <= 1.85 MHz <= 4 MHz
Title of Presentation Date
Agilent Restricted
Page 29
Menu of the 83496A CRU module
50Mb/s – 13.5Gb/s continuous Optical and Electrical inputs Adjustable Loop BW
Title of Presentation Date Agilent Restricted Page 30
15

Qualification of lower-cost transmitters
? Lower cost transmitters often are timed with low cost oscillators ? Switching power supplies/regulators can create periodic jitter ? Close in phase noise can result in significant low frequency jitter ? Mask margin ~35%
Title of Presentation Date
Agilent Restricted
Page 31
Analysis in the “jitter domain”
? Uncorrelated (random and periodic) jitter dominates total jitter (seen graphically) ? Periodic jitter dominates deterministic jitter (seen numerically)
TJ of Presentation DJ,Agilent Restricted (DCD, ISI) & PJ = RJ & DJ = ISI Title
Date
Page 32
16

Finding the root cause
The jitter spectrum
Two significant jitter frequencies Something big going on at 67 and 134 KHz!
Title of Presentation Date
Agilent Restricted
Page 33
How critical is 60 and 120 KHz jitter?
? Receivers derive their timing from the incoming data ? Internal PLL derives a clock from the data stream ? Receiver then has high tolerance to low frequency jitter (PLL tracks and follows as long as the jitter is not too fast)
Basic receiver scheme
Data
Clock Recovery
Data
Decision Circuit
Title of Presentation Date
Agilent Restricted
Page 34
17

Transmitter test: Think like a receiver
?Industry standards perspective: A transmitter is “good enough” if system specs achieved when paired with worst case receiver.
? Complement to the “stressed eye receiver test”
?Why penalize a transmitter for low frequency jitter if the receiver can handle it? ?Need a test approach that ignores low frequency jitter
? Test equipment should mimic the way a receiver operates
Title of Presentation Date
Agilent Restricted
Page 35
Golden PLL testing
? Use a PLL to derive the trigger for the scope/jitter analyzer
? Jitter within the PLL loop BW is common to the transmitter signal and the instrument trigger is not observed in the measured result ? Acts like a jitter high-pass for the displayed waveform
Actual TX signal Derived Clock
Observed waveform
Title of Presentation Date Agilent Restricted Page 36
18

Comparing transmitter test results: Eye diagram
? With “jitter free” trigger, significant eye closure observed ? With “Golden PLL” trigger, low frequency jitter is removed
? Mask margin increased from 35 to >50%
? Common standards approach
Title of Presentation Date
Agilent Restricted
Page 37
Variable loop BW allows in depth analysis
Narrow PLL BW to see all the jitter
Golden PLL BW to verify compliance
Title of Presentation Date Agilent Restricted Page 38
19

(精选)眼图观察测量实验

实验12 眼图观察测量实验 一、实验目的 1.学会观察眼图及其分析方法,调整传输滤波器特性。 二、实验仪器 1. 眼图观察电路(底板右下侧) 2. 时钟与基带数据发生模块,位号:G 3. 噪声模块,位号E 4. 100M双踪示波器1台 三、实验原理 在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。 我们知道,在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间串扰。在码间串扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。为了便于评价实际系统的性能,常用观察眼图进行分析。 眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。 什么是眼图? 所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。因为对于二进制信号波形,它很像人的眼睛故称眼图。 在图12-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。 图12-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。眼图中央的垂直线表示取样时刻。当波形没有失真时,眼图是一只“完全张开”的眼睛。在取样时刻,所有可能的取样值仅有两个:+1或-1。当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。这样,保证

正确判决所容许的噪声电平就减小了。换言之,在随机噪声的功率给定时,将使误码率增加。“眼睛”张开的大小就表明失真的严重程度。 为便于说明眼图和系统性能的关系,我们将它简化成图12-2的形状。 由此图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感; (3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量; (4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5) 阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息的解调器有重要影响。实验室理想状态下的眼图如图12-3 所示。 衡量眼图质量的几个重要参数有: 1.眼图开启度(U-2Δ U)/U 指在最佳抽样点处眼图幅度“张开”的程度。无畸变眼图的开启度应为100%。

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一 ——关于眼图测量(上) 汪进进美国力科公司深圳代表处 内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基 于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基 于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是 可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”, 看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然 没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰 对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元 定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两 只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码

平面度常识及测量方法

平面度误差测量数据处理。 在大中专学校机械类各专业中,《互换性与测量技术基础》是一门重要的技术基础课,该课程内容十分丰富,而教学课时相对较少,许多重点和难点内容难以作详细讲解。其中形位公差与技术测量的内容学生理解掌握更为困难,在四项形位公差中,直线度与平面度误差的测量是一般机械制造行业主要的检测项目,故要求学生重点学习和掌握。直线度误差的测量相对较为简单,而平面度误差的测量及数据处理比较复杂,且理解困难。本文仅对平面度误差的测量和数据处理作较为详细的介绍,希冀初学者能尽快掌握这一重点和难点内容。 一、平面度误差的测量 平面度误差是指被测实际表面对其理想平面的变动量。 平面度误差是将被测实际表面与理想平面进行比较,两者之间的线值距离即为平面度误差值;或通过测量实际表面上若干点的相对高度差,再换算以线值表示的平面度误差值。 平面度误差测量的常用方法有如下几种: 1、平晶干涉法:用光学平晶的工作面体现理想平面,直接以干涉条纹的弯曲程度确定被测表面的平面度误差值。主要用于测量小平面,如量规的工作面和千分尺测头测量面的平面度误差。 2、打表测量法:打表测量法是将被测零件和测微计放在标准平板上,以标准平板作为测量基准面,用测微计沿实际表面逐点或沿几条直线方向进行测量。打表测量法按评定基准面分为三点法和对角线法:三点法是用被测实际表面上相距最远的三点所决定的理想平面作为评定基准面,实测时先将被测实际表面上相距最远的三点调整到与标准平板等高;对角线法实测时先将实际表面上的四个角点按对角线调整到两两等高。然后用测微计进行测量,测微计在整个实际表面上测得的最大变动量即为该实际表面的平面度误差。 3、液平面法:液平面法是用液平面作为测量基准面,液平面由“连通罐”内的液面构成,然后用传感器进行测量。此法主要用于测量大平面的平面度误差。

眼图常用知识介绍

眼图常用知识介绍 关于眼图及其测量大家已经做了较多的讨论传输指标测试大全其侧重于眼图的定义和测量光眼图分析张轩/22336著 以及色散对长距离传输后的眼图的影响 如下降时间消光比信噪比以及如何从各个方面来衡量一个眼图的优劣 现在我们公司常用的测量眼图的仪器为CSA8000 1眼图与常用指标介绍 下图为一个10G光信号的眼图右边一栏为这个光信号的一些测量值ExdB交叉点比例QF平均光 功率Rise下降时间峰值抖动 RMSJ 消光比定义为眼图中电平比电平的值传输距离又不同的要求G.957的建议 衡量器件是否符合要求除了满足建议要求之外 一般的对于FP/DFB直调激光器要求EML电吸收激光器消光比不小于10dBμ?ê??a2¢2?òa??×???1a±è

可以无限大将导致激光器的啁啾系数太大不利于长距传 输与速率的最低要求消光比大0.5~1.5dB???ùò???3??a?′ò???êy?μê?o|????1a±èì???á? μ????ó??2úéú?òí¨μà′ú??3?±ê??óD2úéú?ó??2¢?òí¨μà′ú???ú×???±êòa?ó?à′ó???éò? óéóú′?ê?1y3ì?Dμ????óê?2àμ???2?μ??à??óú·¢?í2àé?ò?±£?¤?óê?2àμ???2?μ?±èày?ú′ó??50ê1μ??óê?2àμ?áé???è×???ò?°?·¢?í2à??2?μ?±èày?¨òé?????ú4045 Q因子综合反映眼图的质量问题表明眼图的质量越好 光功率一般来说1???????ú2??ó1a?¥??μ??é????越高越好越高越好 如果需要准确地测量光功率 信号的上升时间下降的快慢 的变化的时间下降时间不能大于信号的周期的40如9.95G信号要求其上升 峰可以定性反映信号的抖动大小这两个测量值是越小越好如Agilint 的37718 在测量抖动的时候才能保证测量值相对准确 做为一个比较参考一般在发送侧的测量值都大于30dB

检测平面度的方法介绍

检测平面度的方法介绍

一、平面度的定义 平面度是指基片具有的宏观凹凸高度相对理想平面的偏差。 平面的平面度公差符号、基本表示方法,如图1所示。 图1 二、平面度误差的检测方法 平面度误差是指被测实际表面相对其理想表面的变动量,理想平面的位置应符合最小条件,平面度误差属于形位误差中的形状误差。 平面度误差的测量方法: 直接测量法 间接测量法 利用太友科技数据采集仪连接百分表法 1、直接测量法 通过测量可直接获得平面上各点坐标值或能直接评定平面度误差值的方法。具体如下: 平晶干涉法 测微表测量法 光轴法、液面法等。 1)平晶干涉法 干涉法测量平面度误差,是把平晶放在它所能覆盖的整个被测平面上,用平晶工作面体现理想平面,根据测量时出现的干涉条纹形状和数目,由计算所得的结果作为平面度误差值,如图所示。

该方法只适合测量精研小平面及小光学元件。 2)测微表测量法 用3个可调支承将被测件支撑在标准平板上,用测微仪指示。调整可调支承,用三点法或四点法(对角线法)进行测量。然后用测微仪读出被测表上各点的最大与最小读数差作为平面度误差值的测量结果。该测量方法适用于车间较低精度、中等尺寸的工件。 3)光轴法 光轴法测量平面度误差是利用准直类仪器2、以它的光轴经转向棱镜3扫描的平面作为测量基准,将瞄准靶1放置在实际被测平面4上,按选定的布点,测出各测点相对于该测量基准的偏离量,再经数据处理评定平面误差值。

2、间接测量法 特点:测量精度高,但数据处理麻烦。因被测平面需测若干个截面,而各截面内的偏差值在测量时不是由同一基准产生,故须经复杂的数据后,才能获得各测量截面相对统一基准的坐标值。 适用于中大平面的测量。 测量方法:水平仪法、自准仪法、互检法 1)水平仪法 原理:以自然水平面作为测量基础。测量时,先把被测表面调到基本水平,然后把水平仪放在桥板上,再把桥板置于被测表面上,按照一定的布线逐渐测量,同时记录各测点的读数,根据测得的读数通过数据处理,即可得平面度误差值。 分类:依布线方法不同又分为水平面法和对角线法。 2)水平面法 采用网格布点,基准平面为过被测表面上的某给定点且与水平面平行的几何平面:测量时应采用同一桥板,各测点的同一坐标值用累积法求得,计算比较简单。测量时选择不同的起始点和不同的测量线,其数据处理的方法、结果不同。存在一个最佳结果。 3)对角线法 采用对角线布点。 过渡基准平面是:过被测表面的一条对角线,且平行于被测表面的另一条对角线的平面。测量时常须用三块长度不同的板桥。数据处理较麻烦。 4)自准仪法

眼图观测实验 光纤通信_实验5实验报告

课程名称:光纤通信 实验名称:实验5 眼图观测实验 姓名: 班级: 学号: 实验时间: 指导教师: 得分:

一、实验目的 1、了解和掌握眼图的形成过程和意义。 2、掌握光纤通信系统中的眼图观测方法。 二、实验内容 1、观测数字光纤传输系统中的眼图张开和闭合效果。 2、记录眼图波形参数,分析系统传输性能。 三、实验器材 1.主控&信号源模块 2.25号光收发模块 3.示波器 四、实验原理 1、实验原理框图

眼图测试实验系统框图 2、实验框图说明 本实验是以数字信号光纤传输为例,进行光纤通信测量中的眼图观测实验;为方便模拟真实环境中的系统传输衰减等干扰现象,我们加入了可调节的带限信道,用于观测眼图的张开和闭合等现象。如眼图测试实验系统框图所示,系统主要由信号源、光发射机、光接收机以及带限信道组成;信号源提供的数字信号经过光发射机和接收机传输后,再送入用于模拟真实衰减环境的带限信道; 通过示波器测试设备,以数字信号的同步位时钟为触发源,观测TP1测试点的波形,即眼图。 3、眼图基本概念及实验观察方法 所谓眼图,它是一系列数字信号在示波器上累积而显示的图形。眼图包含了丰富的信息,反映的是系统链路上传输的所有数字信号的整体特征。利用眼图可以观察出码间串扰和噪声的影响,分析眼图是衡量数字通信系统传输特性的简单且有效的方法。 ●被测系统的眼图观测方法 通常观测眼图的方法是,如下图所示,以数字序列的同步时钟为触发源,用示波器YT模式测量系统输出端,调节示波器水平扫描周期与接收码元的周期同步,则屏幕中显示的即为眼图。 眼图测试方法框图 ●眼图的形成示意图

一个完整的眼图应该包含从“000”到“111”的所有状态组,且每个状态组发送的此时要尽量一致,否则有些信息将无法呈现在示波器屏幕上。 八种状态如下所示: 八种状态示意图 眼图合成示意图如下所示: 眼图合成示意图 一般在无串扰等影响情况下从示波器上观测到的眼图与理论分析得到的眼图大致接近。 ●眼图参数及系统性能 眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。眼图的张开度受噪声和码间干扰的影响,当光收端机输出端信噪比很大时眼图的张开度主要受码间干扰的影响,因此观察眼图的张开度就可以估算出光

光纤通信系统测量中的眼图分析方法

实验四 光纤通信系统测量中的眼图分析方法测试实验 一、实验目的 1、了解眼图的形成过程 2、掌握光纤通信系统中眼图的测试方法 二、实验仪器 1、ZYE4301F 型光纤通信原理实验箱1台 2、20MHz 模拟双踪示波器1台 3、万用表1台 三、实验原理 眼图是衡量数字光纤通信系统数据传输特性的简单而又有效的方法。眼图可以在时域中测量,并且可以用示波器直观的显示出来。图1是测量眼图的系统框图。测量时,将“伪随机码发生器”输出的伪随机码加在被测数字光纤通信系统的输入端,该被测系统的输出端接至示波器的垂直输入,用位定时信号(由伪随机码发生器提供)作外同步,在示波器水平输入用数据频率进行触发扫描。这样,在示波器的屏幕上就可以显示出被测系统的眼图。 伪随机脉冲序列是由n 比特长,2n 种不同组合所构成的序列。例如,由n=2比特长的4种不同有 组合、n=3比特长的8种不同的组合、n=4比特长16种不同的组合组成,直到伪随机码发生器所规定的极限值为止,在产生这个极限值以后,数据序列就开始重复,但它用作为测试的数据信号,则具有随机性。如图2所示的眼图,是由3比特长8种组合码叠加而成,示波器上显示的眼图就是这种叠加的结果。 分析眼图图形,可以知道被测系统的性能,下面用图3所示的形状规则的眼图进行分析: 1、当眼开度 V V V ?-为最大时刻,则是对接收到的信号进行判决的最佳时刻,无码间干扰、信号无畸变时的眼开度为100%。 2、由于码间干扰,信号畸变使眼开度减小,眼皮厚度V V ?增加,无畸变眼图的眼皮厚度应该等于零。 图1眼图的测试系统

3、系统无畸变眼图交叉点发散角b T T ?应该等于零。 4、系统信道的任何非线性都将使眼图出现不对称,无畸变眼图的正、负极性不对称度- +-++-V V V V 应该等 于零。 5、系统的定时抖动(也称为边缘抖动或相位失真)是由光收端机的噪声和光纤中的脉冲失真产生的,如果在“可对信号进行判决的时间间隔T b ”的正中对信号进行判决,那么在阈值电平处的失真量ΔT 就表示抖动的大小。因此,系统的定时抖动用下式计算: 定时抖动= %100??Tb T

光纤通信系统的眼图测试实验

太原理工大学现代科技学院 光纤通信课程实验报告 专业班级 学号 姓名 指导教师

实验名称 光纤通信系统的眼图测试实验 同组人 专业班级 学号 姓名 成绩 实验三 光纤通信系统的眼图测试实验 一、实验目的 1、了解眼图的形成过程 2、掌握光纤通信系统中眼图的测试方法 二、实验内容 1、测量数字光纤通信系统传输各种数字信号的眼图 2、观察系统眼图,并通过眼图来分析系统的性能 三、实验仪器 1、ZY12OFCom13BG3型光纤通信原理实验箱 1台 2、20MHz 双踪模拟示波器 1台 3、万用表 1台 4、FC/PC-FC/PC 单模光跳线 1根 5、850nm 光发端机和光收端机(可选) 1套 6、ST/PC-ST/PC 多模光跳线(可选) 1根 四、实验原理 眼图是衡量数字光纤通信系统数据传输特性的简单而又有效的方法。眼图可以在时域中测 量,并且可以用示波器直观的显示出来。图20-1是测量眼图的系统框图。测量时,将“伪随机码发生器”输出的伪随机码加在被测数字光纤通信系统的输入端,该被测系统的输出端接至示波器的垂直输入,用位定时信号(由伪随机码发生器提供)作外同步,在示波器水平输入用 数据频率进行触发扫描。这样,在示波器的屏幕上就可以显示出被测系统的眼图。 图1、眼图测试系统框图 ……………………………………装………………………………………订…………………………………………线………………………………………

伪随机脉冲序列是由n 比特长,2n 种不同组合所构成的序列。例如,由n=2比特长的4种 不同有组合、n=3比特长的8种不同的组合、n=4比特长16种不同的组合组成,直到伪随机码发生器所规定的极限值为止,在产生这个极限值以后,数据序列就开始重复,但它用作为测试的数据信号,则具有随机性。如图20-2所示的眼图,是由3比特长8种组合码叠加而成,示 波器上显示的眼图就是这种叠加的结果。 分析眼图图形,可以知道被测系统的性能,下面用图20-3所示的形状规则的眼图进行分析: 1、当眼开度V V V ?-为最大时刻,则是对接收到的信号进行判决的最佳时刻,无码间干扰、 信号无畸变时的眼开度为100%。 2、由于码间干扰,信号畸变使眼开度减小,眼皮厚度V 增加,无畸变眼图的眼皮厚度应该等于零。 3、系统无畸变眼图交叉点发散角 b T T ?应该等于零。 4、系统信道的任何非线性都将使眼图出现不对称,无畸变眼图的正、负极性不对称度 5、系统的定时抖动(也称为边缘抖动或相位失真)是由光收端机的噪声和光纤中的脉冲 失真产生的,如果在“可对信号进行判决的时间间隔T b ”的正中对信号进行判决,那么在阈值电平处的失真量ΔT 就表示抖动的大小。因此,系统的定时抖动用下式计算:定时抖动= …………………………………装……………………………………订………………………………………线……………………………………………

数字光纤通信系统信号眼图测试

实验二数字光纤通信系统信号眼图测试 一.实验目的 1.了解眼图产生的基础,根据眼图测量数字通信系统性能的原理; 2.学习通过数字示波器调试、观测眼图; 3.掌握判别眼图质量的指标; 4.熟练使用数字示波器和误码仪。 二.实验原理 眼图是估计数字传输系统性能的一种十分有效的实验方法。这种方法已广泛应用于数字通信系统,在光纤数字通信中也是评价系统性能的重要实验方法。眼图是在时域进行的用示波器显示二进制数字信号波形的失真效应的测量方法。图2.1是测量眼图的装置图。由AV5233C误码仪产生一定长度的伪随机二进制数据流(AMI码、HDB3码、RZ 码、NRZ码)调制单模光产生相应的伪随机数据光脉冲并通过光纤活动连接器注入单模光纤,经过光纤传输后,再与光接收机相接。光接收机将从光纤传输的光脉冲变为电脉冲,并输入到AV4451(500MHz)示波器,示波器显示的扫描图形与人眼相似,因此称为眼图。 用眼图法测量系统时应有多种字型,可以采用各比特位上0和1出现的概率相等的随机数字信号进行测试。AV5233C误码仪用来产生伪随机数字序列信号。在这里“伪随机”的意义是伪随机码型发生器产生N比特长度的随机二进制数字信号是数字序列在N 比特后发生重复,并不是测试时间内整个数字序列都是随机的,因此称为“伪随机”。伪随机序列如果由2比特位组成,则共有四种组合,3比特数字信号有8种组合,N比特数字信号有2N个组合。伪随机数字信号的长度为2N-1,这种选择可保证字型不与数据率相关。例如N可取7、10、15、23、31等。如果只考虑3比特非归零码,应有如图2.2所示的8种组合。将这8种组合同时叠加,就可形成如图2.3所示的眼图。 图2.1 眼图测量装置

眼图观测

眼图观测 实验目的 1、掌握眼图观测的方法。 2、掌握相关眼图的测量方法。 实验模块 1、通信原理0 号模块一块 2、通信原理11号模块一块 3、示波器一台 实验原理 在实际系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,在示波器上显示的图形很象人的眼睛,因此被称为眼图。二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 图23-1 眼图的一般描述 在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。当有码间串扰时,波形失真,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用图7.6所示的图形来描述。由此图可以看出: 1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜边越陡,系统对定时抖动越敏感。 3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

眼图分析

清风醉明月 slp_art 随笔- 42 文章- 1 评论- 20 博客园首页新随笔联系管理订阅 眼图——概念与测量(摘记) 中文名称: 眼图 英文名称: eye diagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:

(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。 (3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。” 二、眼图的一些基本概念 —“什么是眼图?” “眼图就是象眼睛一样形状的图形。 图五眼图定义” 眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。 图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。 图六“双眼皮”眼图

眼图测量方法B

三、眼图测量方法 之前谈到,眼图测量方法有两种:2002年以前的传统眼图测量方法和2002年之后力科发明的现代眼图测量方法。传统眼图测量方法可以用两个英文关键词来表示:“Triggered Eye”和“Single‐Bit Eye”。现代眼图测量方法用另外两个英文关键词来表示:“Continuous‐Bit Eye”和“Single‐Shot Eye”。传统眼图测量方法用中文来理解是八个字:“同步触发+叠加显示”,现代眼图测量方法用中文来理解也是八个字:“同步切割+叠加显示”。两种方法的差别就四个字:传统的是用触发的方法,现代的是用切割的方法。“同步”是准确测量眼图的关键,传统方法和现代方法同步的方法是不一样的。“叠加显示”就是用模拟余辉的方法不断累积显示。 传统的眼图方法就是同步触发一次,然后叠加一次。每触发一次,眼图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是“Single‐Bit Eye”,每触发一次眼图上只增加了一个比特位。图一形象表示了这种方法形成眼图的过程。 图一传统眼图测量方法的原理 传统方法的第一个缺点就是效率太低。对于现在的高速信号如PCI‐Express Gen2,PCI‐SIG 要求测量1百万个UI的眼图,用传统方法就需要触发1百万次,这可能需要几个小时才能测量完。第二个缺点是,由于每次触发只能叠加一个UI,形成1百万个UI的眼图就需要触发1百万次,这样不断触发的过程中必然将示波器本身的触发抖动也引入到了眼图上。对于2.5GBbps以上的高速信号,这种触发抖动是不可忽略的。 如何同步触发,也就是说如何使每个UI的数据相对于触发点排列?也有两种方法,一种方法是在被测电路板上找到和串行数据同步的时钟,将此时钟引到示波器作为触发源,时钟的边沿作为触发的条件。另外一种方法是将被测的串行信号同时输入到示波器的输入通道和硬件时钟恢复电路(CDR)通道,硬件CDR恢复出串行数据里内嵌的时钟作为触发源。这种同

平面度的测量

平面度测量 工作单位:广东技术师范学院机电学院机械精度检测实验室作者:刘涵章关键词:平面度平面度误差三远点法三角形准则对角线准则对角线法 目录 一、什么是平面度 二、平面度误差值的各种评定方法 三、误差值评定的步骤: 四、实验教学中的实验仪器和实验步骤: 五、平面度误差值的各种评定方法应用举例 六、总结

一、什么是平面度 首先谈一谈什么是平面度,平面度就是实际平面相对理想平面的变动量。换句话说,就是被测平面具有的宏观凹凸高度相对理想平面的偏差。也可以说成是平整程度。 平面度公差是实际表面对平面所允许的最大变动量。也就是用以限制实际表面加工误差所允许的变动范围。这个变动范围可以在图样上给出。(可以插入一个图) 二、平面度误差值的各种评定方法 1. 最小区域判别准则: 由两个平行平面包容实际被测平面S时,S上至少有四个极点分别与这两个平行平面接触,且满足下列条件之一:(1)至少有三个高(低)极点与一个平面接触,有一个低(高)极点与另一个平面接触,并且这一个极点的投影落在上述三个极点连成的三角形内(三角形准则);(2)至少有两个高极点和两个低级点分别与这两个平行平面接触,并且高极点连线和低极点连线在空间呈交叉状态(交叉准则);这两个平行平面之间的区域即为最小区域,该区域的宽度即为符合定义的平面度误差值。就是最高点与最低点的差值。如下图所示: 2.三远点平面法和对角线平面法: 平面度误差值还可以用对角线平面法和三远点法评定。对角线平面法是指以通过实际被测平面一条对角线(两个角点的连线)且平行另一条对角线(其余两个角点的连线)的平面作为评定基准,取各测点相对于它的偏离值中最大偏离值(正值或零)与最小偏离值(零或负值)之差作为平面误差值。 三远点平面法是指以通过被测平面上相距最远的三个点构成的平面作为评定基准,取各测点相对于它的偏离值中最大偏离值(正值或零)与最小偏离值(零或负值)之值差作为平面度误差值。应当指出,由于从实际被测平面上选取相距最远的三个点有多种可能,因此按三远点平面法评定的平面度误差值不是唯一的,有时候差别颇大。 评定过程就是根据上述判别准则去寻找符合最小条件的理想平面位置的过程。可有多种数据处理方法,其中旋转法为最基本的方法。此法适用于前述各种测量方法获得的统一坐标值的数据处理。 三、误差值评定的步骤:

平面度常识及测量方法

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 平面度误差测量数据处理。 在大中专学校机械类各专业中,《互换性与测量技术基础》是一门重要的技术基础课,该课程内容十分丰富,而教学课时相对较少,许多重点和难点内容难以作详细讲解。其中形位公差与技术测量的内容学生理解掌握更为困难,在四项形位公差中,直线度与平面度误差的测量是一般机械制造行业主要的检测项目,故要求学生重点学习和掌握。直线度误差的测量相对较为简单,而平面度误差的测量及数据处理比较复杂,且理解困难。本文仅对平面度误差的测量和数据处理作较为详细的介绍,希冀初学者能尽快掌握这一重点和难点内容。 一、平面度误差的测量 平面度误差是指被测实际表面对其理想平面的变动量。 平面度误差是将被测实际表面与理想平面进行比较,两者之间的线值距离即为平面度误差值;或通过测量实际表面上若干点的相对高度差,再换算以线值表示的平面度误差值。 平面度误差测量的常用方法有如下几种: 1、平晶干涉法:用光学平晶的工作面体现理想平面,直接以干涉条纹的弯曲程度确定被测表面的平面度误差值。主要用于测量小平面,如量规的工作面和千分尺测头测量面的平面度误差。

2、打表测量法:打表测量法是将被测零件和测微计放在标准平板上,以标准平板作为测量基准面,用测微计沿实际表面逐点或沿几条直线方向进行测量。打表测量法按评定基准面分为三点法和对角线法:三点法是用被测实际表面上相距最远的三点所决定的理想平面作为评定基准面,实测时先将被测实际表面上相距最远的三点调整到与标准平板等高;对角线法实测时先将实际表面上的四个角点按对角线调整到两两等高。然后用测微计进行测量,测微计在整个实际表面上测得的最大变动量即为该实际表面的平面度误差。 3、液平面法:液平面法是用液平面作为测量基准面,液平面由“连通罐”内的液面构成,然后用传感器进行测量。此法主要用于测量大平面的平面度误差。 4、光束平面法:光束平面法是采用准值望远镜和瞄准靶镜进行测量,选择实际表面上相距最远的三个点形成的光束平面作为平面度误差的测量基准面。 除上述方法可测量平面度误差外,还有采用平面干涉仪、水平仪、自准直仪等用于测量大型平面的平面度误差。 二、平面度误差的评定方法 平面度误差的评定方法有:三远点法、对角线法、最小二乘法和最小区域法等四种。 1、三远点法:是以通过实际被测表面上相距最远的三点所组成的平面作为评定基准面,以平行于此基准面,且具有最小距离的两包容平面间的距离作为平面度误差值。 2、对角线法:是以通过实际被测表面上的一条对角线,且平行于另一条对角线所作的评定基准面,以平行于此基准面且具有最小距离的两包容平面间的距离作为平面度误差值。 3、最小二乘法:是以实际被测表面的最小二乘平面作为评定基准面,以平行于最小

信号完整性分析基础系列之一__关于眼图测量(全)

信号完整性分析基础系列之一_——关于眼图测量(全) 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest 的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

位置度平面度的定义标注及测量

位置度平面度的定义标注及测量 笔者在数年建筑工程施工图审查工作中,通过多项建筑工程的施工图审查,发现了建筑设计中总平面图设计、建筑说明、建筑平面、立面、剖面、建筑构件有关深度设计及强制性条文等内容设计中较为常见的问题,现分别总结如下:一、总平面布置图送审的施工图文件中,总平面布置图基本上都有,但表达深度差别较大,大部分工程只做到平面定位图,不符合《建筑工程设计文件编制深度规定》的有关要求。主要问题有:1.总平面图要有一定的范围。只有用地范围不够,要有场地四邻原有规划的道路、建筑物、构筑物,多数施工图只有用地范围内的布置图。2.保留原地形和地物。场地测量坐标网及测量标高,包括场地四邻的测量坐标或定位尺寸,有些工程的总图设计往往无保留。3.竖向设计。往往只有标注建筑物的±0.000 设计标高的相对场地的测量标高数值,有的只有标注室内外高差数而已。结果是:1竖向设计标高不符合规划部门的控制标高。2场地内与场地外围的城市道路标高不衔接,不合理。3场地及其道路的标高不利于排水。4场地内道路无设计标高,特别是交接处、建筑物的入口处,也无标注道路坡长、坡向、坡度以及地面的关键性标高,也无路面的设计断面。4.没土方工程平衡设计。盲目的竖向设计,往往会带来不必要的挖方或填方,增加造价,造成经济损失。5.总图设计没有必要的详图设计。比如道路横断面、路面结构,反映管线上下、左右尺寸关系的剖面图,以及挡土墙、护坡排水沟、广场、活动场地、停车场、花坛绿地等详图,场地的排水、场地内道路与城市道路的关系,给施工带来困难,也无法保证总图的合理性。 6.消防车道宽度不满足消防要求。消防车道距离高层建筑外墙小于5 米,不满足消防登高面要求。二、建筑设计说明部分1.装饰做法光是文字说明表达不完整。最好是有各种材料做法一览表各部位装修材料一览表方能完整地表达清楚,少数能做到,多数工程还只是文字说明。总说明中占地面积一般都缺标注。2.门窗表。一般都有,但关键对一些组合窗,非标准窗表示不清楚,对组合窗及非标窗,应画出立面图,并应把拼接件选择、固定件、窗扇的大小、开启方式等内容标注清楚,如组合窗面积过大,请注明要经有资质的门窗生产厂家设计方可,还有就是对门窗性能,如防火、隔声、抗风压、保温、空气渗透、雨水渗透等技术要求应加以说明。比如建筑物1-6 层和七层及七层以上对门窗气密性要求不一样1-6 层为3 级,七层及以上为 4 级。3.防火设计说明普遍存在问题。按《建筑工程设计文件编制深度规定》要求每层建筑平面中要注明防火分区面积和分区分隔位置示意图,宜单独成图,如为一个防火分区,可不注防火分区面积。4.有关夏热冬冷地区节能设计的说明,也普遍存在问题居住建筑的节能设计:1外窗,特别东西窗缺保温隔热措施。2导热系数的主体部位值与平均值概念不清,把建筑主体部位的K 值作为平均K 值说明。3缺节能设计计算书及节能设计审查文件,造成节能设计不经济。5.幕墙工程。包括玻璃幕墙、金属幕墙、石材幕墙等及特殊的屋面工程,与其它特殊构造,对其设计、制作、安装等技术要求未加说明。6.缺电梯自动扶梯,选择及性能说明包括功能、载重量、速度、停站数、提升高度等等。 7.墙体预留孔及楼板预留孔,管道井楼层的封堵方式等未说明。 8.屋面防水等级未说明,或屋面具体做法不符合相应的防水等级要求。常见问题为:把屋面砼结构层作为一道防水设防,或卷材厚度不符合相应防水等级要求

眼图观测实验报告

眼图观测实验报告 一、实验目的 1、了解和掌握眼图的形成过程和意义。 2、掌握光纤通信系统中的眼图观测方法。 二、实验器材 主控&信号源模块 25号光收发模块 示波器 三、实验原理 1、实验原理框图 2、实验框图说明 本实验是以数字信号光纤传输为例,进行光纤通信测量中的眼图观测实验;为方便模拟真实环境中的系统传输衰减等干扰现象,我们加入了可调节的带限信道,用于观测眼图的张开和闭合等现象。如眼图测试实验系统框图所示,系统主要由信号源、光发射机、光接收机以及带限信道组成;信号源提供的数字信号经过光发射机和接收机传输后,再送入用于模拟真实衰减环境的带限信道;通过示波器测试设备,以数字信号的同步位时钟为触发源,观测TP1测试点的波形,即眼图。 3、眼图基本概念及实验观察方法 所谓眼图,它是一系列数字信号在示波器上累积而显示的图形。眼图包含了丰富的信息,反映的是系统链路上传输的所有数字信号的整体特征。利用眼图可以观察出码间串扰和噪声的影响,分析眼图是衡量数字通信系统传输特性的简单且有效的方法。 被测系统的眼图观测方法: 通常观测眼图的方法是,如下图所示,以数字序列的同步时钟为触发源,用示波器YT模式测量系统输出端,调节示波器水平扫描周期与接收码元的周期同步,则屏幕中显示的即为眼图。

眼图的形成示意图 一个完整的眼图应该包含从“000”到“111”的所有状态组,且每个状态组发送的此时要尽量一致,否则有些信息将无法呈现在示波器屏幕上。 八种状态如下所示: 眼图参数及系统性能 眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。眼图的张开度受噪声和码间干扰的影响,当光收端机输出端信噪比很大时眼图的张开度主要受码间干扰的影响,因此观察眼图的张开度就可以估算出光收端机码间干扰的大小。 其中,垂直张开度水平张开度 从眼图中我们可以得到以下信息: (1)最佳抽样时刻是“眼睛”张开最大的时刻。 (2)眼图斜边的斜率表示了定时误差灵敏度。斜率越大,对位定时误差越敏感。 (3)在抽样时刻上,眼图上下两分支阴影区的垂直高度,表示最大信号畸变。 (4)眼图中央的横轴位置应对应于判决门限电平。 (5)在抽样时刻上,眼图上下两阴影区的间隔距离的一半为噪声容限,若噪声瞬时值超过它就会出现错判。 (6)眼图倾斜分支与横轴相交的区域的大小,即过零点失真的变动范围;它对利用信号零交点的平均位置来提取定时信息的接收系统来说影响定时信息的提取。 四、实验步骤

平面度和粗糙度区别(天准)

平面度和粗糙度的区别 类别 项目 平面度粗糙度 定义平面度是指基片具有的宏观凹 凸高度相对理想平面的偏差。 平面度误差是将被测实际表面 与理想平面进行比较,两者之 间的线值距离即为平面度误差 值;或通过测量实际表面上若 干点的相对高度差,再换算以 线值表示的平面度误差值 表面粗糙度,是指加工表面具有的 较小间距和微小峰谷不平度。其两 波峰或两波谷之间的距离(波距) 很小(在1mm以下),用肉眼是难 以区别的,因此它属于微观几何形 状误差。表面粗糙度越小,则表面 越光滑。表面粗糙度的大小,对机 械零件的使用性能有很大的影响 表示符号 所属类别形位公差尺寸特征 测量方法1、平晶干涉法 平晶干涉法用 光学平晶的工作面体现理想平 面,直接以干涉条纹的弯曲程 度确定被测表面的平面度误差 值。 2、光波干涉法 光波干涉法常 利用平晶进行,可以把干涉图 案作为被检验表面的等高线, 因此可以画出该表面的形状。 3、打表测量法 打表测量法是 将被测零件和测微计放在标准 平板上,以标准平板作为测量 基准面,用测微计沿实际表面 逐点或沿几条直线方向进行测 量。 4、液平面法 液平面法是用 1.比较法 将被测量表面与标有一定数值 的粗糙度样板比较来确定被测表 面粗糙度数值的方法。比较时可以 采用的方法: Ra > μm 时目测 ~μm 时用放大镜Ra < μm 时用比 较显微镜。 特点:该方法测量简便,使用于车 间现场测量,常用于中等或较粗糙 表面的测量。 2.触针法 利用针尖曲率半径为 2微米左 右的金刚石触针沿被测表面缓慢滑 行,金刚石触针的上下位移量由电 学式长度传感器转换为电信号,经 放大、滤波、计算后由显示仪表指 示出表面粗糙度数值,也可用记录 器记录被测截面轮廓曲线。一般将 仅能显示表面粗糙度数值的测量工 具称为表面粗糙度测量仪,同时能

眼图分析

眼图测试及其疑难问题探讨 关键词:DWDM,眼图,城域网,MAN 摘要:目前,在长途干线和城域网中,密集波分复用(DWDM)系统的应用越来越多,对DWDM 系统的光接口测试要求也越来越高,其中包括光发送信号的眼图测试。在实际进行眼图测试时,经常遇到不符合标准模板的情况,在不断实践中发现,其中大部分是因为测试方法不完善造成的误判断,只有小部分真正不符合ITU-T规范。文章介绍正确测试眼图的要点。 1、码间串扰的形成 1.1光纤线路码 在光纤数字传输中,一般不直接传输由电端机传送来的数字信号,而是经过码型变换,变换成适合在光纤数字传输系统中传输的光纤线路码(简称线路码)。 有多种线路码型,最常用的有mBnB分组码、插入比特码和简单扰码。在选择线路码时,不仅要考虑光纤的传输特性,还要考虑光电器件的特性。一般来说,由于光电器件都有一定的非线性,因此采用脉冲的“有”、“无”来表示“1”和“0”的二进制码要方便得多。但是简单的二进制信号有三个实际问题需要解决,否则无法取得良好效果。a)不能有长连“0”或长连“1”出现。因为长连“0”和长连“1”会使定时信息消失,给再生中继器和终端接收机的定时提取带来困难。b)简单的二进制码中含有直流成分,“0”、“1”码出现个数的随机变化会使直流成分的大小也随机变化。目前,在光接收机中普遍采用交流耦合,直流成分的变化会引起信号基线浮动,给判决再生带来困难。c)简单的二进制信号在业务状态下无法监测线路误码率。为此,在光纤传输之前,需将简单二进制信号变换成适合光纤传输系统的光纤线

路码型。CCITT最终采用简单扰码方式(如RZ、NRZ码),目前又有基于RZ码新的编码方式,如CS-RZ、DCS-RZ、CRZ、D-RZ、DPSK-RZ码等。 1.2线性网络的无失真传输条件 密集波分复用(DWDM)的工作原理是:发送端将不同波长的光信号通过光合波器合成一束光,送入光纤中进行传输;在接收端由光分波器将这些不同波长的光信号区分开来,再经过光电转换送入线路终端设备。这个过程既包括光通道也包括电通道。 对于光通道来说,主要是光纤的色散和非线性效应引起传输的光脉冲展宽,导致“0”、“1”判决出错,增加了传输误码率。通过运用色散补偿光纤、色散斜率补偿技术等色散管理来降低光纤的色散。对于光纤非线性效应,一般可通过降低入纤功率,采用新型大孔径光纤、喇曼放大、奇偶信道偏振复用等方法加以抑制。采用特殊的码型调制技术也可有效提高光脉冲抵抗非线性效应的能力,增加非线性受限传输距离,从而达到光通道的无失真传输这种理想化的状态。 对于电通道来说,实际传输中无法满足无失真传输条件,特别是由于信道频率特性不理想,使矩形脉冲在经过传输后有明显的上升时间和下降时间,会使波形有明显展宽。每个符号(码元)在时间上前后展宽会对其前后符号(码元)造成干扰,通常把这类干扰称为符号(或码元)间干扰,它会引起传输系统的误码率恶化。 1.3时域均衡 系统线性失真引起的符号间干扰是影响传输质量的主要因素。线性失真的主要原因是发送滤波器、接收滤波器及信道共同组成的波形形成系统的传递函数偏离理想状态。在不考虑噪声影响时,大多数高、中速数字数据传输设备的判决可靠性都建立在消除取样点的符号间干扰的基础上,按此要求建立的线性失真补偿系统称为时域均衡器,其原理是利用接收波形本身进行补偿,消除取样点的符号间干扰,提高判决的可靠性。 时域均衡系统结构如图1所示。 图1时域均衡系统结构

相关主题
文本预览
相关文档 最新文档