当前位置:文档之家› 工程师必须懂得眼图分析方法解读

工程师必须懂得眼图分析方法解读

工程师必须懂得眼图分析方法解读
工程师必须懂得眼图分析方法解读

信号完整性分析基础系列之一

——关于眼图测量(上)

汪进进美国力科公司深圳代表处

内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。

您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。

您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。

在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。

网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。

“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无

法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适

当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。

二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是

由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。

在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器

上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图

能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用下图所示的图形来描述,由此图可以看出:

(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

图一眼图

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

(6)横轴对应判决门限电平。”

是该专门写篇文章详细讲解眼图了!写得不正确、不到位的地方,恳请大家指正,以使这篇文章将能不断修改完善,有益于广大工程师们的学习。

一、串行数据的背景知识

串行信号种类繁多,在图二所示的有PCI Express,Rapid IO,DVI,S-ATA,USB,SDH,XAUI,等,其实现在的流行总线还远不止这些。每年都出来一些新流行的串行总线。每些总线差不多都有一个权威机构来定义该总线的信号标准和测试规范,这些机构成员多是由来自于不同公司的专家兼职担任。当然,关于PC的串

行总线差不多由Intel来领导。图三所示某基于Intel Chipset的笔记本电脑的框架图中的各种总线,除了DDR和FSB是并行数据之外,其它都是串行数据了。这些权威机构除了定义规范,当然也会有一些利益博弈。所以有新的利益集团(这是一个中性的词策划推广的时候就可能有新的总线规范出台,这就象3G有三种标准一样。

你方唱罢我登场,搞得下游厂商手忙脚乱。

串行数据总线越来越多,权威机构定义的测试规范也纷繁芜杂,我一直觉得该将这么多的权威机构统一为一个权威机构,就叫“串行总线国际工程师协会”好了,如果力科最先发起并领导这个协会,然后定义一系列的串行信号测试规范中都只推荐力科示波器,那么亲爱的朋友们,这个Day Dream的最终结果是什么?示波器行业也许会重新大洗牌。人们总相信权威机构推荐的,譬如我们平时用牙膏等

都会相信“中华医学会”之类的推荐。

信号速率不断加倍再加倍,2004年我刚到力科的时候,主流的串行信号速率在PC行业是2.5Gb/s,在通信行业是3.125Gb/s,如今,PC行业已Double到5Gb/s,通信行业已Double到6.25Gb/s,而且PC行业的8Gb/s,通信行业的12.5Gb/s似乎已指日可待。速率越来越高,并行数据必然要让位于串行数据。串行数据传输的典型结构框图如图三所示,“万变不离其宗”,都是“两根差分线”。

相比于并行数据,串行数据的优点是:

1,信号线的数量减少。

2,消除了并行数据之间传输的延迟问题。

图二串行数据的整体特点

图三某笔记本电脑架构示意图

3,因为时钟是嵌入到数据中的,数据和时钟之间的传输延迟也同样消除了。

4, 传输线的PCB设计也更容易些。

5, 信号完整性测试也更容易。

图四串行信号实例

串行数据的测试点包括了芯片的发送端和接收端等不同节点。描述串行数据的常用单位是波特率和UI,譬如3.125Gb/s表示为每秒传送的数据比特位是3.125G比特(byte,对应的一个单位间隔(1UI)表示为一个比特位的宽度是波特率的倒数,1UI=1/(3.125Gb/s)=320ps。现在比较常见的串行信号码形是NRZ 码。正电平表示”1”,负电平表示“0”。图三所示是示波器捕获到的一组串行信号,虚线之间的时间间隔代表了一个UI,图中对应的码型是101100101010001。

二、眼图的一些基本概念

—“什么是眼图?”

—“眼图就是象眼睛一样形状的图形。”

眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。图七的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。图八的眼图非常漂亮,这可能是用采样示波器测量的眼图。

图五眼图定义

图六“双眼皮”眼图

眼图

眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形。观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”。从“眼图”上可以观察出码间串扰和噪声的影响,从而估计系统优劣程度。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

眼图的“眼睛” 张开的大小反映着码间串扰的强弱。“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大。

当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清。若同时存在码间串扰,“眼睛”将张开得更小。与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正。噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正。

眼图对于展示数字信号传输系统的性能提供了很多有用的信息:可以从中看出码间串扰的大小和噪声的强弱,有助于直观地了解码间串扰和噪声的影响,评价一个基带系统的性能优劣;可以指示接收滤波器的调整,以减小码间串扰。

( 1 )最佳抽样时刻应在“眼睛” 张开最大的时刻。

( 2 )对定时误差的灵敏度可由眼图斜边的斜率决定。斜率越大,对定时误差就越灵敏。

( 3 )在抽样时刻上,眼图上下两分支阴影区的垂直高度,表示最大信号畸变。

( 4 )眼图中央的横轴位置应对应判决门限电平。

( 5 )在抽样时刻上,上下两分支离门限最近的一根线迹至门限的距离表示各相应电平的噪声容限,噪声瞬时值超过它就可能发生错误判决。

( 6 )对于利用信号过零点取平均来得到定时信息的接收系统,眼图倾斜分支与横轴相交的区域的大小,表示零点位置的变动范围,这个变动范围的大小对提取定时信息有重要的影响。

眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。

在图1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰。

为便于说明眼图和系统性能的关系,我们将它简化成图2的形状。

衡量眼图质量的几个重要参数有:

指在最佳抽样点处眼图幅度“张开”的程度。无畸变眼图的开启度应为100%。

2.“眼皮”厚度2ΔU/U

3.交叉点发散度ΔT/T

4.正负极性不对称度

最后,还需要指出的是:由于噪声瞬时电平的影响无法在眼图中得到完整的反映,因此,即使在示波器上显示的眼图是张开的,也不能完全保证判决全部准确。不过,原则上总是眼睛张开得越大,实际判决越准确。所以,还是可以通过眼图的张开度来衡量和比较基带信号的质量,并以此为依据来调整信号在信道中的传输特性,使信号在通信系统信道中传输尽最大可能接近于最佳工作状态。

(a 无码间串扰时波形;无码间串扰眼图

在分析出眼圖後,需進一步從中定義各個參數,由此分析出信號完整度(Signal Integrity)的特性。常見於眼圖中的測試參數有九個,介紹如下

?(1Logic 0:邏輯為0的電壓位準值。

?(2Logic 1:邏輯為1的電壓位準值。

?(3Rising Time:一般定義為資料從10%上升到90%的轉態所需時間,不同規範如GB Ethernet中有定義20%至80%者。

?(4Falling Time:一般定義為資料從10%下降到90%的轉態所需時間。

?(5Eye Height:眼圖在垂直軸所開的大小,當通訊品質下降,雜訊就會升高使開口變小。

?(6Eye Width:眼圖在水平軸所開的大小,其定義為兩上緣與下緣交會的點(Crossing Point)間的時間差,當信號產生抖動、不對稱時,寬度便會變小。

?(7Jitter:抖動是彼此轉態間相對的時間的差異值,主因是反射所造成的影響,因其為一個機率的分布函數,常用於分析的有Jitter RMS、Jitter P-P。

?(8Eye Amplitude:邏輯1與0在統計上平均位準(Mean Value)的比值。

?(9Bit Rate:資料傳輸的速度,為眼圖寬度的倒數,單位為Bit Per Second。

(完整word版)SerDes知识详解

SerDes知识详解 一、SerDes的作用 1.1并行总线接口 在SerDes流行之前,芯片之间的互联通过系统同步或者源同步的并行接口传输数据,图1.1演示了系统和源同步并行接口。 随着接口频率的提高,在系统同步接口方式中,有几个因素限制了有效数据窗口宽度的继续增加。 ?时钟到达两个芯片的传播延时不相等(clock skew) ?并行数据各个bit的传播延时不相等(data skew) ?时钟的传播延时和数据的传播延时不一致(skew between data and clock) 虽然可以通过在目的芯片(chip #2)内用PLL补偿时钟延时差(clock skew),但是PVT变化时,时钟延时的变化量和数据延时的变化量是不一样的。这又进一步恶化了数据窗口。 源同步接口方式中,发送侧Tx把时钟伴随数据一起发送出去, 限制了clock skew对有效数据窗口的危害。通常在发送侧芯片内部,源同步接口把时钟信号和数据信号作一样的处理,

也就是让它和数据信号经过相同的路径,保持相同的延时。这样PVT变化时,时钟和数据会朝着同一个方向增大或者减小相同的量,对skew最有利。 我们来做一些合理的典型假设,假设一个32bit数据的并行总线, a)发送端的数据skew = 50 ps ---很高的要求 b)pcb走线引入的skew = 50ps ---很高的要求 c)时钟的周期抖动jitter = +/-50 ps ---很高的要求 d)接收端触发器采样窗口= 250 ps ---Xilinx V7高端器件的IO触发器 可以大致估计出并行接口的最高时钟= 1/(50+50+100+250) = 2.2GHz (DDR)或者1.1GHz (SDR)。 利用源同步接口,数据的有效窗口可以提高很多。通常频率都在1GHz以下。在实际应用中可以见到如SPI4.2接口的时钟可以高达DDR 700MHz x 16bits位宽。DDR Memory接口也算一种源同步接口,如DDR3在FPGA中可以做到大约800MHz的时钟。 要提高接口的传输带宽有两种方式,一种是提高时钟频率,一种是加大数据位宽。那么是不是可以无限制的增加数据的位宽呢?这就要牵涉到另外一个非常重要的问题-----同步开关噪声(SSN)。 这里不讨论SSN的原理,直接给出SSN的公式:SSN = L *N* di/dt。 L是芯片封装电感,N是数据宽度,di/dt是电流变化的斜率。 随着频率的提高,数据位款的增加,SSN成为提高传输带宽的主要瓶颈。图1.2是一个DDR3串扰的例子。图中低电平的理论值在0V,由于SSN的影响,低电平表现为震荡,震荡噪声的最大值达610mV,因此噪声余量只有1.5V/2-610mV=140mV。

鱼骨图分析法(完整篇)

编号:SY-AQ-01646 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 鱼骨图分析法(完整篇) Fishbone diagram analysis

鱼骨图分析法(完整篇) 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 鱼骨分析法是咨询人员进行因果分析时经常采用的一种方法,其特点是简捷实用,比较直观。现以上面提到的某炼油厂情况作为实例,采用鱼骨分析法对其市场营销题进行解析。 鱼骨分析法简介 鱼骨图是由日本管理大师石川馨先生所发展出来的,故又名石川图。鱼骨图是一种发现问题“根本原因”的方法,它也可以称之为“因果图”。鱼骨图原本用于质量管理。 问题的特性总是受到一些因素的影响,我们通过头脑风暴找出这些因素,并将它们与特性值一起,按相互关联性整理而成的层次分明、条理清楚,并标出重要因素的图形就叫特性要因图。因其形状如鱼骨,所以又叫鱼骨图(以下称鱼骨图),它是一种透过现象看本质的分析方法。 头脑风暴法(BrainStorming——BS):一种通过集思广益、

发挥团体智慧,从各种不同角度找出问题所有原因或构成要素的会议方法。BS有四大原则:严禁批评、自由奔放、多多益善、搭便车。 鱼骨图的三种类型 A、整理问题型鱼骨图(各要素与特性值间不存在原因关系,而是结构构成关系) B、原因型鱼骨图(鱼头在右,特性值通常以“为什么……”来写) C、对策型鱼骨图(鱼头在左,特性值通常以“如何提高/改善……”来写) 鱼骨图制作 制作鱼骨图分两个步骤:分析问题原因/结构、绘制鱼骨图。 1、分析问题原因/结构。 A、针对问题点,选择层别方法(如人机料法环等)。 B、按头脑风暴分别对各层别类别找出所有可能原因(因素)。 C、将找出的各要素进行归类、整理,明确其从属关系。 D、分析选取重要因素。

眼图常用知识介绍

眼图常用知识介绍 关于眼图及其测量大家已经做了较多的讨论传输指标测试大全其侧重于眼图的定义和测量光眼图分析张轩/22336著 以及色散对长距离传输后的眼图的影响 如下降时间消光比信噪比以及如何从各个方面来衡量一个眼图的优劣 现在我们公司常用的测量眼图的仪器为CSA8000 1眼图与常用指标介绍 下图为一个10G光信号的眼图右边一栏为这个光信号的一些测量值ExdB交叉点比例QF平均光 功率Rise下降时间峰值抖动 RMSJ 消光比定义为眼图中电平比电平的值传输距离又不同的要求G.957的建议 衡量器件是否符合要求除了满足建议要求之外 一般的对于FP/DFB直调激光器要求EML电吸收激光器消光比不小于10dBμ?ê??a2¢2?òa??×???1a±è

可以无限大将导致激光器的啁啾系数太大不利于长距传 输与速率的最低要求消光比大0.5~1.5dB???ùò???3??a?′ò???êy?μê?o|????1a±èì???á? μ????ó??2úéú?òí¨μà′ú??3?±ê??óD2úéú?ó??2¢?òí¨μà′ú???ú×???±êòa?ó?à′ó???éò? óéóú′?ê?1y3ì?Dμ????óê?2àμ???2?μ??à??óú·¢?í2àé?ò?±£?¤?óê?2àμ???2?μ?±èày?ú′ó??50ê1μ??óê?2àμ?áé???è×???ò?°?·¢?í2à??2?μ?±èày?¨òé?????ú4045 Q因子综合反映眼图的质量问题表明眼图的质量越好 光功率一般来说1???????ú2??ó1a?¥??μ??é????越高越好越高越好 如果需要准确地测量光功率 信号的上升时间下降的快慢 的变化的时间下降时间不能大于信号的周期的40如9.95G信号要求其上升 峰可以定性反映信号的抖动大小这两个测量值是越小越好如Agilint 的37718 在测量抖动的时候才能保证测量值相对准确 做为一个比较参考一般在发送侧的测量值都大于30dB

9、天气图分析

第九部分天气图分析(周长青) 基本天气图分析;辅助天气图分析;锋面分析;温压图(T-LogP)分析和应用 第一章基本天气图分析 一、了解不同投影底图的用途 兰伯特(Lambert)正形圆锥投影:适用于中纬度地区的天气图,如欧亚高空图和地面图都采用这种投影。 极射赤面投影:高纬度地区比较真实,一般用作北半球天气图和极地天气图。 墨卡托(Mercator)主要适用于作赤道或低纬地区的天气图底图。 二、熟悉地面、高空天气图填图符号的气象意义 以下是陆地测站(左)和船舶测站(右)填写格式 N 总云量,CH、CM和CL分别代表高、中、低云云状,以表2.1.2的符号表示。Nh代表低云量,图上填的为电码。电码和云量的关系见表2.1.3。“×”为不明或缺、错报,低云量和总云量相同时不填。h代表低云云高,以数字表示,以米为单位填写。TTT和TdTdTd :分别代表气温和露点。WW:现在天气现象。 VV :水平能见度。PPPP:海平面气压,以数字表示,以hPa为单位。填写后三位数字,最后一位为小数。如“035”,代表气压为1003.5hPa;“995”,代表气压为999.5hPa。PPP代表过去3小时气压变量。a :3小时气压倾向。“+”表示过去3小时气压升高,“—”过去3小时气压下降。“×”表示不明。W1W2:过去天气现象,定时绘图天气观测报告前6小时内出现的天气现象,补充定时绘图天气观测报告观测前3小时出现的天气现象。W1W2表示两种天气现象。RRR:6小时降水量“T”表示微量。Dd:风向。以矢杆表示,矢杆方向指向站圈,标示风的来向。静风时不填任何符号,在CH上面填有d时表示风向不明,后面的数字为风速ff 代表风速。以矢羽表示,矢羽一长划表示4m/s,一短划表示2m/s,一三角旗表示20 m/s,风速不明时,填“×”。 选填项目的符号及意义:P24P24 代表24小时气压变量。 云状符号:

第四章 天气图的基础知识

第一节天气图的一般知识 天气图底图投影方式:天气图底图是用来填写各测站气象观测资料而特制的空白地图。常用的天气图底图有:南、北半球天气图、中纬度区域天气图、热带低纬地区天气图等。制作底图的投影方式主要有以下三种。 1.兰勃特投影 兰勃特投影法又称等角正割圆锥投影。将地球体的30?和60?纬圈与圆锥面相割,经纬线及地形投影到圆锥形的图纸上,展开后经线呈放射形直线,纬线是同心圆弧。这种图最适宜作中纬度地区的天气图底图。我国、日本等国的天气图底图均采用这种投影。 2.极地平面投影 用这种投影法制成的底图,其经线为一组由极地向赤道发出的放射形直线,纬线为一组围绕极地的同心圆。这种投影适宜作北(南)半球天气图底图。 3.墨卡托投影 用一圆筒套在地球体上,地球赤道表面与圆柱面相切(或相割),光源放在地球中心进行投影。把圆筒展开便制成一张图,其经、纬线都为平行直线。由于低纬地区用这种投影与实况较为接近,而在高纬地区投影面积放大倍数太大。所以这种图主要适用于作赤道或低纬地区的天气图。 天气图的种类和图时: 1.天气图的种类 天气分布是三维空间的,为了比较全面地揭示天气状况,在气象分析和预报中,通常绘制三种类型的天气图,即地面天气图、高空天气图和辅助图。天气图的制作过程依次为观测、编报发送、收报、填图、分析。 地面天气图是根据地面观测资料绘制的,它是一种综合性天气图,是天气分析和预报中最基本的天气图。高空天气图就是等压面上的形势图,它是根据高空观测资料绘制的。辅助图是配合地面天气图和高空等压面图而使用的特定图。 2.天气图的图时 根据世界气象组织(WMO)的规定,通常地面天气图每天制作4次,分别在世界时00时、06时、12时、18时,即北京时08时、14时、20时、次日02时。此外,中间还有4次补充观测时间,所以实际上每隔3 h就有一地面天气图产生。高空天气图一天制作两次,世界时00时、12时,即北京时08时和20时。 第二节地面天气图 地面天气图的填绘:各地同一时刻观测的地面资料,传递到各大气象通信中心,然后再由通信中心向各地气象台传播。气象台接收到各地气象观测报文之后,要按照国际规定的统一格式,把收到的电码译成数字或符号填入天气图底图。由于观测资料的来源不同,又分为陆地测站填图格式和船舶测站填图格式。 1.陆地测站填图格式(图4-2-1)

怎样分析日本气象传真图

怎样分析日本气象传真图 天气图是在一张特制的底图上填有各地同一时刻的气象观测记录,能够反映一定区域内的天气情况的图。它是用来观察、监视和研究天气系统发生、发展演变和移动等情况的重要工具。气象台或气象站经常绘制的天气图有地面天气图、高空天气图及各种辅助图。船舶利用气象传真机,可接收到各种天气图。根据中华人民共和国港务监督局制定的《气象传真天气图分析》海船船员适任评估大纲的要求和船上实际工作需要,本篇主要介绍地面天气图、高空天气图及各种辅助图的基础知识。目前气象传真广播的覆盖范围几乎遍及全世界海洋。世界上许多国家通过传真广播,发布气象报告和天气预报,发送各种天气图、气候图和海况图,为船舶提供气象服务。船上装有气象传真接收机就可以方便而可靠地获得航行海区有关国家发布的气象、海况等传真资料,可以了解更多、更大范围的天气演变过程,掌握航行海区已经发生和将要发生的海洋气象情况,这对保证船舶航行安全、合理选择航线等,都有重要的意义。 一、世界气象传真广播台概况 气象传真台在欧洲、北美、太平洋地区分布较多,在印度洋、南半球分布较少,发送距离一般3000公里,如图1.1所示。 图1.1 世界主要气象传真广播台 图1.1中数字代号说明: 1.北京(中国),2.东京(日本),3.桑莱呷(菲律宾),4.关岛(美国),5.珍珠港、火奴鲁鲁(美国),6.旧金山(美国),7.埃德蒙顿(加拿大),8.弗罗比欧(加拿大),9.哈利法克斯(加拿大),10.布伦特伍德(美国),11.诺福克(美国),12.布拉克内尔(英国),13.巴黎(法国), 14.奥芬巴赫(德国),15.奥斯陆(挪威),16.诺尔彻干(瑞典), 17.罗马(意大利),18.罗塔(西班牙),19.布拉格(捷克斯洛伐克),20.莫斯科(俄罗斯),21.安卡拉(土耳其),22.埃皮斯科比(塞浦路斯),23.开罗(埃及),24.内罗毕(肯尼亚),25.达喀尔(塞内加尔), 26.比勒陀利亚(南非),27.新德里(印度),28.塔什干(乌兹别克斯坦),29.新西伯利亚(俄罗斯),30.伯力(俄罗斯),31.曼谷(泰国), 32.达尔文(澳大利亚),33.堪培拉(澳大利亚),34.里约热内卢(巴西),35.布宜诺斯艾利斯(阿根廷)

鱼骨图分析法(又名因果图)

鱼骨图Cause & Effect/Fishbone Diagram 第1章概念与来源 鱼骨图又名特性因素图是由日本管理大师石川馨先生所发展出来的,故又名石川图。鱼骨图是一种发现问题“根本原因”的方法,它也可以称之为“因果图”。鱼骨图原本用于质量管理。 问题的特性总是受到一些因素的影响,我们通过头脑风暴找出这些因素,并将它们与特性值一起,按相互关联性整理而成的层次分明、条理清楚,并标出重要因素的图形就叫特性要因图。因其形状如鱼骨,所以又叫鱼骨图(以下称鱼骨图),它是一种透过现象看本质的分析方法,又叫因果分析图。同时,鱼骨图也用在生产中,来形象地表示生产车间的流程。下图为鱼骨图基本结构: 一般可转化为三种类型: A、整理问题型鱼骨图(各要素与特性值间不存在原因关系,而是结构构成关系,对问题进行结构化整理) B、原因型鱼骨图(鱼头在右,特性值通常以“为什么……”来写) C、对策型鱼骨图(鱼头在左,特性值通常以“如何提高/改善……”来写) 第2章应用场景 鱼骨图常用于查找问题的根因时使用,如对于现场客户的需求进行分析整理时可使用该工具分析用户的本质需求。 第3章使用步骤 制作鱼骨图分两个步骤:分析问题原因/结构、绘制鱼骨图。 分析问题原因/结构

A、针对问题点,选择层别方法(如人机料法环测量等)。 B、按头脑风暴分别对各层别类别找出所有可能原因(因素)。 C、将找出的各要素进行归类、整理,明确其从属关系。 D、分析选取重要因素。 E、检查各要素的描述方法,确保语法简明、意思明确。 分析要点: a、确定大要因(大骨)时,现场作业一般从“人机料法环”着手,管理类问题一般从“人事时地物”层别,应视具体情况决定; b、大要因必须用中性词描述(不说明好坏),中、小要因必须使用价值判断(如…不良); c、脑力激荡时,应尽可能多而全地找出所有可能原因,而不仅限于自己能完全掌控或正在执行的内容。对人的原因,宜从行动而非思想态度面着手分析; d、中要因跟特性值、小要因跟中要因间有直接的原因-问题关系,小要因应分析至可以直接下对策; e、如果某种原因可同时归属于两种或两种以上因素,请以关联性最强者为准(必要时考虑三现主义:即现时到现场看现物,通过相对条件的比较,找出相关性最强的要因归类。) f、选取重要原因时,不要超过7项,且应标识在最未端原因; 绘制鱼骨图 鱼骨图做图过程一般由以下几步组成: 1.由问题的负责人召集与问题有关的人员组成一个工作组(work group),该组成员必须对问题有一定深度的了解。 2.问题的负责人将拟找出原因的问题写在黑板或白纸右边的一个三角形的框内,并在其尾部引出一条水平直线,该线称为鱼脊。 3.工作组成员在鱼脊上画出与鱼脊成45°角的直线,并在其上标出引起问题的主要原因,这些成45°角的直线称为大骨。 4.对引起问题的原因进一步细化,画出中骨、小骨……,尽可能列出所有原因 5.对鱼骨图进行优化整理。 6.根据鱼骨图进行讨论。完整的鱼骨图如图2所示,由于鱼骨图不以数值来表示,并处理问题,而是通过整理问题与它的原因的层次来标明关系,因此,能很好的描述定性问题。鱼骨图的实施要求工作组负责人(即进行企业诊断的专家)有丰富的指导经验,整个过程负责人尽可能为工作组成员创造友好、平等、宽松的讨论环境,使每个成员的意见都能完全表达,同时保证鱼骨图正确做出,即防止工作组成员将原因、现象、对策互相混淆,并保证鱼骨图层次清晰。负责人不对问题发表任何看法,也不能对工作组成员进行任何诱导。 鱼骨图使用步骤 (1)查找要解决的问题; (2)把问题写在鱼骨的头上; (3)召集同事共同讨论问题出现的可能原因,尽可能多地找出问题; (4)把相同的问题分组,在鱼骨上标出; (5)根据不同问题征求大家的意见,总结出正确的原因;

眼图形成及其基本知识归纳

1眼图基本概念 1.1 眼图的形成原理 眼图是一系列数字信号在示波器上累积而显示的图形,它包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。 用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。示波器一般测量的信号是一些位或某一段时间的波形,更多的反映的是细节信息,而眼图则反映的是链路上传输的所有数字信号的整体特征,如下图所示: 图示波器中的信号与眼图 如果示波器的整个显示屏幕宽度为100ns,则表示在示波器的有效频宽、取样率及记忆体配合下,得到了100ns下的波形资料。但是,对于一个系统而言,分析这么短的时间

内的信号并不具有代表性,例如信号在每一百万位元会出现一次突波(Spike),但在这100ns时间内,突波出现的机率很小,因此会错过某些重要的信息。如果要衡量整个系统的性能,这么短的时间内测量得到的数据显然是不够的。设想,如果可以以重复叠加的方式,将新的信号不断的加入显示屏幕中,但却仍然记录着前次的波形,只要累积时间够久,就可以形成眼图,从而可以了解到整个系统的性能,如串扰、噪声以及其他的一些参数,为整个系统性能的改善提供依据。 分析实际眼图,再结合理论,一个完整的眼图应该包含从“000”到“111”的所有状态组,且每一个状态组发生的次数要尽量一致,否则有些信息将无法呈现在屏幕上,八种状态形成的眼图如下所示: 图眼图形成示意图 由上述的理论分析,结合示波器实际眼图的生成原理,可以知道一般在示波器上观测到的眼图与理论分析得到的眼图大致接近(无串扰等影响),如下所示:

5M因素法(鱼骨图)分析案例

运用5M因素法(鱼骨图)分析及解决问题的实际操作案例 背景:某民营房地产集团公司下属商贸分公司,在自有房产基础上经营有超市5家,经营业种以生鲜食品、传统食品、日用日化为主,总营业面积10000平方米;百货一家,主要经营业种为服装针织、皮具、皮鞋、化妆品,小吃,营业面积4500平方米;正在筹备中的购物中心18000平方米。 问题1:经过统计商贸公司2001年9月—2002年3月的销售,总体毛利率为不到8%,注意:此毛利率是在公司无低毛利的家电以及百货毛利率近20%的基础上产生的总体毛利率,相对于市场状况以及竞争对手来讲,此毛利率偏低,从中反映了占销售比重近80%的超市经营毛利不正常。 问题2:经过进一步的市场调查,针对超市每个业种安排如下数量的市调(按销售数量排名),得出以下数据比较: 注:甲连锁店为一国营零售企业,在本地有34家连锁店,拥有诸多食品、日化产品的代理批发权; 乙连锁店为一民营连锁零售企业,现有18家分店,拥有部分食品、日化产品的批发代理权; 丙为一家200平方米左右的便利店; 将市调数据经过进一步分析,发现价格问题----[b]我司进价比竞争对手售价高[/h]的情况如下(先忽略在正常供价基础上零售价格异常状况): 感觉到问题的严重性,公司紧急召开了采购人员的专项会议,要求在规定时间内(一周)针对以上问题各采购主任做出解释并及时与供应商进行谈判,希望能得到实质性的解决。

一周过去了,供价问题依然没有得到明显的改善,高出比例依然居高不下。总结各采购主任的解释,主要如下: 1、甲、乙对手拥有诸多敏感商品的控制权,近水楼台先得月,人家有权利及有实力去进行降价; 2、公司政策对于供应商的通道利润要求过高,厂商在无奈情况下,只有提高供价,保持其基本利润,如果要求供应商降价,只有舍弃部分通道利润才可行; 3、公司要求的经营方式过于呆板,竞争对手部分商品是从批发市场上进行铲货来冲击市场,而公司没有此先例,都是以正常方式进行经营; 4、公司的付款方式问题:由于现金进货与押款进货的供价有区别,但是公司最低的付款要求为7天付款,因此在价格上没有办法降低; 5、竞争对手的恶意竞争行为:牺牲利润,亏本赚吆喝; 6、人手不够,杂事多,没有办法集中时间与精力与供应商谈判。 针对以上解释,公司明确回复:如果在有把握的情况下,以上由于公司自身原因造成的供价高的问题,可以放宽尺度与供应商进行交涉。 但是,一周时间过去了,问题仍然没有得到改善。 真的就是以上问题造成的吗?是主要的原因呢还是有其他的原因? 没有过多的责怪各采购主任,在随后的中层干部例会上,我将此问题谈了出来,然后让大家了解了什么是鱼骨图分析法(5M因素分析法),希望通过大家的理解来讨论这个问题产生的根源所在,主要问题主要出现在哪些环节,哪些是需要重点解决的问题,哪些是虽然是先天的因素,但是可以通过努力去改进的环节,哪些是虽然由于条件的限制暂时不能改进但是可以通过改进其他问题予以弥补的问题。 5M因素包括人、机、料、法、环5个方面,“人”指的是造成问题产生人为的因素有哪些;“机”通俗一点就象战斗的武器,通指软、硬件条件对于事件的影响;“料”就如武器所用的子弹,指基础的准备以及物料;“法”与事件相关的方式与方法问题是否正确有效;“环”指的是内外部环境因素的影响。 5个方面就象鱼的“主刺”一样,每个主刺上还有很多的小刺,这些小刺就是与主刺相关的问题,来构成了一条难以下咽的鱼骨头,如果不拔掉,一不小心就会卡住喉咙,让人痛苦不堪。

眼图有关最详细的知识讲解

眼图综述报告 -----------李洋 目录 1. 眼图的形成 (2) 1.1 传统的眼图生成方法 (2) 1.2 实时眼图生成方法 (3) 1.3 两种方法比较 (4) 2. 眼图的结构与参数介绍 (4) 2.1 眼图的结构图 (4) 2.2 眼图的主要参数 (5) 2.2.1 消光比 (5) 2.2.2 交叉点 (5) 2.2.3 Q因子 (6) 2.2.4 信号的上升时间、下降时间 (6) 2.2.5 峰—峰值抖动和均方根值抖动 (6) 2.2.6 信噪比 (6) 3. 眼图与系统性能的关系 (7) 4. 眼图与BER的关系 (7) 4. 如何获得张开的眼图 (8) 5. 阻抗匹配的相关知识 (9) 5.1 串联终端匹配 (9) 5.2 并联终端匹配 (10) 6. 眼图常见问题分析 (10) 7. 总结 (17)

1.眼图的形成 眼图是一系列数字信号在示波器上累积而显示的图形,其形状类似于眼睛,故叫眼图。 在用余辉示波器观察传输的数据信号时,使用被测系统的定时信号,通过示波器外触发或外同步对示波器的扫描进行控制,由于扫描周期此时恰为被测信号周期的整数倍,因此在示波器荧光屏上观察到的就是一个由多个随机符号波形共同形成的稳定图形。这种图形看起来象眼睛,称为数字信号的眼图。 示波器测量的一般信号是一些位或某一段时间的波形,更多的反映的是细节信息。而眼图则反映的是链路上传输的所有数字信号的整体特性。如下图: 1.1 传统的眼图生成方法 采样示波器的CLK通常可能是用户提供的时钟,恢复时钟,或者与数据信号本身同步的码同步信号.

图:采样示波器眼图形成原理 1.2 实时眼图生成方法 实时示波器通过一次触发完成所有数据的采样,不需附加的同步信号和触发信号.通常通过软件PLL方法恢复时钟。 图:实时示波器眼图形成原理 另一种示意图:

信号完整性分析:关于眼图测量

关于眼图测量 作者:汪进进美国力科公司深圳代表处 信号完整性分析基础系列之一——关于眼图测量(上) 眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用"万能"的Sigtest软件测量出来的眼图给出的Pass or Fail 结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google"眼图",看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google"眼图",仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 "在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只"眼睛",当传输三元码时,会显示两只"眼睛"。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的"眼睛","眼"开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起"眼"部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,"眼"开启得小了,因此,"眼"张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,

中尺度天气图分析技术规范(暂行稿).精讲

附件: 中尺度天气图分析技术规范 (暂行稿) 国家气象中心 二O 一O年三月

目次 引言 (1) 第一章高空分析 (2) § 概述 (2) § 925hPa分析 (3) § 850hPa分析 (5) § 700hPa分析 (8) § 500hPa分析 (11) § 200hPa分析 (14) 第二章地面分析 (15) § 概述 (15) § 气压场 (15) § 风场 (16) §温度场 (16) § 湿度场 (17) § 天气区 (18) § 边界线(锋) (18) 第三章综合图分析 (18) 第四章附录 (19) 附录I 术语和定义 (19) 附录Ⅱ中尺度天气分析符号 (21) 参考文献 (22)

引言 中尺度天气是指水平尺度几十公里至几百公里,时间尺度几小时到几十小时的天气现象[1],按其性质分为中尺度对流性天气和中尺度稳定性天气。中尺度对流性天气包括雷暴、短历时强降雨、冰雹、雷暴大风、龙卷以及下击暴流等[2],它是在一定的大尺度环流背景中,由各种物理条件相互作用形成的中尺度天气系统造成的。中尺度对流天气预报的成败,从根本上取决于在业务预报过程中所做的分析[3]。因为中尺度系统及其影响的中尺度对流天气现象的明显特征是生命史短、空间范围小且变化剧烈,所以业务预报员在进行中尺度对流性天气预报时,应更加关注比天气尺度更小的天气系统,并且关注大气中瞬变的系统和微小的变化[3]。 中尺度对流天气主观分析,是利用各种高空和地面观测资料、雷达和卫星等遥感探测资料、数值分析预报产品等资料,分析产生中尺度对流天气的中尺度对流系统及其发生发展的环境场条件。为了加强我国各级气象台站对中尺度对流天气发生发展条件的分析和诊断,规范中尺度天气分析的技术方法,参考美国空军全球天气预报中心和美国天气局风暴预报中心的强对流天气分析技术[3-4],参考我国的常规天气图分析要求和中尺度天气分析研究[5-6],国家气象中心制定了《中尺度对流天气的天气图分析技术指南》。本指南主要包括高空分析、地面分析和综合图分析三个部分。分析是在常规天气图分析的基础上,针对产生中尺度对流性天气的主要条件(水汽、稳定度、抬升和垂直风切变条件),分析各等压面上相关大气的各种特征系统和特征线,最后形成中尺度对流性天气发生、发展大气环境场“潜势条件”的高空和地面综合分析图。 本指南仅适用于地面、高空常规和加密观测以及自动站观测资料的分析和数值预报相关参量的分析。本指南中的等值线(如等温度线、等压线等)分析原则与大尺度天气图分析原则一致,其目的是为了分析各种特征系统和特征线,在业务中以客观分析为主,人工订正为辅。

眼图基本知识总结

通常定义: 在实际数字互连系统中 完全消除码间串扰是十分困难的 而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律 还不能进行准确计算。为 了衡量基带传输系统的性能优劣 在实验室中 通常用示波器观察接收信号形的方法来分析码间串扰和噪声对系统性能的影响 这就是眼图分析法。 如果将输入波形输入示波器的Y轴 并且当示波器的水平扫描周期和码元定时同步时 适当调整相位 使波形的中心对准取样时刻 在示波器上显示的图形很象人的眼睛 因此被称为眼图 Eye Map 。 二进制信号传输时的眼图只有一只“眼睛” 当传输三元码时 会显示两只“眼睛”。眼图是由各段码元波形叠加而成的 眼图中央的垂直线表示最佳抽样时刻位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下 波形无失真 每个码元将重叠在一起最终在示波器上看到的是迹线又细又清晰的“眼睛”“眼”开启得最大。当有码间串扰时 波形失真 码元不完全重合 眼图的迹线就会不清晰 引起“眼”部分闭合。若再加上噪声的影响 则使眼图的线条变得模糊 “眼”开启得小了 因此 “眼”张开的大小表示了失真的程度 反映了码间串扰的强弱。由此可知眼图能直观地表明码间串扰和噪声的影响 可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整 以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述。由此图可以看出 1 眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然最佳抽样时刻应选在眼睛张开最大的时刻。 2 眼图斜边的斜率 表示系统对定时抖动或误差的灵敏度斜率越大系统对定时抖动越敏感。 3 眼图左右角阴影部分的水平宽度表示信号零点的变化范围称为零点失真量在许多接收设备中定时信息是由信号零点位置来提取的对于这种设备零点失真量很重要。 4 在抽样时刻 阴影区的垂直宽度表示最大信号失真量。 5 在抽样时刻上、下两阴影区间隔的一半是最小噪声容限噪声瞬时值超过它就有可能发生错误判决。 6 横轴对应判决门限电平。 串行数据测试点: 串行数据的测试点包括了芯片的发送端和接收端等不同节点。描述串行数据的常用单位是波特率和UI 譬如3.125Gb/s表示为每秒传送的数据比特位是3.125G比特(bit) 对应的一个单位间隔 1UI 表示为一个比特位的宽度是波特率的倒数 1UI=1/ 3.125Gb/s =320ps。现在比较常见的串行信号码形是NRZ 码。正电平表示”1” 负电平表示“0”。 沿途测量方法: 眼图测量方法有两种 2002年以前的传统眼图测量方法和2002年之后力科发明的现代眼图测量方法。传统眼图测量方法可以用两个英文关键词来表示 “Triggered Eye”和“Single-Bit Eye”。现代眼图测量方法用另外两个英文关键

中尺度天气图分析技术规范(参考Word)

中尺度天气图分析技术规范 分析高度:925hpa 分析项目技术要求分析方式分析目的分析符号 风低空 急流 当有2个以上连续测站风速超过 12 m/s时,沿12m/s以上大风区 的几何中心分析低空急流轴,并 在急流轴上标注最大风速值。 人工分析 判断低层的辐合区;综合湿度 分析判断水汽输送条件;综合 其它层的风场分析判断垂直 风切变条件 灰色 显著 流线 当风速未达到低空急流的标准, 但有风速明显比周围大的最大风 带出现,且位于干湿气流区之间, 或者位于切变线、靠近急流轴的 位置时,分析显著流线,并在流 线上标注最大风速值。 人工分析 低空急流和辐合区的辅助分 析 灰色 切变 线 (辐 合 线) 当风场具有明显的风向切变时, 沿风的交角最大(风向改变最大) 的位置分析切变线。当风场具有 明显的风速辐合时,沿最大风速 的前端分析辐合线。 人工分析判断低层的辐合区 灰色 温度等温 度线 以0℃为基准,每隔2℃分析等温 线,如-2℃,0℃,2℃等。 在客观分 析基础上 进行人工 订正 确定温度脊 红色 温度 中心 分别标注暖、冷中心。 在客观分 析基础上 进行人工 订正 确定温度脊 暖中心N, 红色,冷中 心L,蓝色 温度 脊 从暖中心出发,沿等温度线曲率 最大处分析温度脊。 人工分析 判断低层增暖引起的不稳定; 综合低空急流及其显著流线 分析判断暖平流 红色 湿度等露 点温 度 以0℃为基准,每隔2℃分析等露 点温度线,如10℃,12℃,14℃ 等。 在客观分 析基础上 进行人工 订正 确定干线和湿区 绿色 等比 湿线 4-9月每隔2 g/kg分析等比湿线; 其它月每隔 1 g/kg分析等比湿 线。 在客观分 析基础上 进行人工 订正 确定干线和湿区 绿色 干线 (露 点 锋) 当相邻两站的露点温度相差 10℃以上时,沿湿度梯度最大处 分析干线(露点锋)。 人工分析 判断水平干湿分布不均匀引 起的大气不稳定。当有显著流 线自干线(露点锋)的干区一 侧吹向湿区时,强对流天气易 发生 灰色 等温 度露 点差 线 以1 ℃为基准,每隔2 ℃分析等 温度露点差线,如1 ℃,3 ℃,5 ℃ 在客观分 析基础上 进行人工 订正 确定湿舌 绿色

眼图的形成——超详细解释

眼图(Eye Diagram)超详细解释(FromNI) 眼图(Eye Diagram)可以显示出数字信号的传输质量,经常用于需要对电子设备、芯片中串行数字信号或者高速数字信号进行测试及验证的场合,归根结底是对数字信号质量的一种快速而又非常直观的观测手段。消费电子中,芯片内部、芯片与芯片之间经常用到高速的信号传输,如果对应的信号质量不佳,将导致设备的不稳定、功能执行错误,甚至故障。眼图反映的是数字信号受物理器件、信道的影响,工程师可以通过眼图,迅速得到待测产品中信号的实测参数,并且可以预判在现场可能发生的问题。 1 眼图的形成 对于数字信号,其高电平与低电平的变化可以有多种序列组合。以3个bit为例,可以有000-111共8中组合,在时域上将足够多的上述序列按某一个基准点对齐,然后将其波形叠加起来,就形成了眼图。如图1。对于测试仪器而言,首先从待测信号中恢复出信号的时钟信号,然后按照时钟基准来叠加出眼图,最终予以显示。 图1. 眼图的形成 2 眼图中包含的信息 ? 对于一幅真实的眼图,如图2,首先我们可以看出数字波形的平均上升时间(Rise Time)、下降时间(Fall Time)、上冲(Overshoot)、下冲(Undershoot)、门限电平(Threshold/Crossing Percent)等基本的电平变换的参数。

图2. 电平变换参数 ? 信号不可能每次高低电平的电压值都保持完全一致,也不能保证每次高低电平的上升沿、下降沿都在同一时刻。如图3,由于多次信号的叠加,眼图的信号线变粗,出现模糊(Blur)的现象。所以眼图也反映了信号的噪声和抖动:在纵轴电压轴上,体现为电压的噪声(Voltage Noise);在横轴时间轴上,体现为时域的抖动(Jitter)。 图3. 噪声和抖动 ? 由于噪声和抖动,眼图上的空白区域变小。如图4,在除去抖动和噪声的基础上,眼图上空白的区域在横轴上的距离称为眼宽(Eye Width),在眼图上叠加的数据足够多时,眼宽很好的反映了传输线上信号的稳定时间;同理,眼图上空白的区域在纵轴上的距离称为眼高(Eye Height),在眼图上叠加的数据足够多时,眼高很好的反映了传输线上信号的噪声容限,同时,眼图中眼高最大的地方,即为最佳判决时刻。

SI-list【中国】详解眼图(下)

SI-list【中国】详解眼图(下) 2.4 眼图时间(X轴)相关定义与幅度相似,在时间轴上与失真有关的指标也可从眼图中找到。大家普遍知道这些指标大多是通过脉冲图形来确定的,但也可以使用从眼图获得的直方图来确定。 2.4.1. 单位时间间隔在对该术语进行定义前,本节要先介绍一下单位时间间隔(UI)的概念。在理解单位时间间隔的基础后,可以更容易地定义与眼图的时间轴上的失真相关的术语。例如:在描述规范标准和数据表中的抖动特性时,通常使用术语“单位时间间隔”。 如图12所示,不论数据速率如何,“单位时间间隔”被定义为归一化的数据位宽度。由于单位时间间隔基本上与比特数相同,1个数据位的宽度为1个单位时间间隔。水平时间轴可以以1秒或单位时间间隔为单位来表示。例如:在25.78125 Gbps的数据流中,1个单位时间间隔为38.79ps;而在10.3125 Gbps的数据流中,1个单位时间间隔为96.97ps。由于单位时间间隔与数据速率无关,有时在水平时间轴上以单位时间间隔为单位会更容易理解。例如:如图13所示,在水平轴(而不是时间轴)上使用单位时间间隔单位,通过为不同数据速率的眼图显示相同的单位时间间隔计数,使其更容易比较。2.4.2. 抖动抖动是数据位事件与理想时

序间的时间漂移,它是在高速数字信号中使用的重要术语。如图14所示,抖动是在时间轴上位于眼交叉点的波动,抖动量是通过对时间轴直方图的分析来求出的。峰峰值(PP)抖动覆盖所述直方图的整个宽度,也可换句话说,它被定义为所有现存数据点的范围。均方根抖动被定义为直方图的一个标准偏差。图15显示了通过手动测得的抖动测量结果(左)和使用自动直方图处理功能所获得的自动直方图测量结果(右)的比较。在手动测量结果的左侧,在交叉点处的细直方图位置表示显示在眼图下方的抖动rms(0.893 ps)和抖动p-p(5.368 ps)值。在右侧的自动测量屏幕相应的数字数据值是抖动rms = 0.893 ps 和抖动p-p = 4.841 ps,其结果大致类似于手动测量。包括由被测装置(JDUT)所产生的抖动,抖动测量结果也包括测量仪器的固有抖动。如果固有数据的比例大,则该固有抖动可对测量结果产生很大的影响。固有抖动的比例由以下公式进行计算。该公式对于峰峰值抖动(抖动p-p)和均方根抖动(抖动rms)是不同的。数据表中描述了示波器的固有抖动。2.4.3. 上升和下降时间如图16所示,上升时间为眼图数据位在过渡到眼图的右上方所需时间的平均值,上升时间从所指示的两个直方图和眼图中可求得。细直方图是在20%电平处为该眼交叉点的左侧和在80%电平处为该眼交叉点的右侧水平所绘制的。根据逻辑电平1和0来确定20%和80%电平,并可从以下

气象业务辅助决策系统

气象业务辅助决策系统 2017年12月

第一章系统概述 气象业务辅助决策系统,是以先进的数字地球平台为底层,以行业应用需求为牵引,为用户提供四类服务: 1、信息的管理、查询与检索。该系统在数字地球上,融入天气专题信息图层,直观地展现作业点分布、河流分布、重点增雨区分布、气象观测仪器、气象检测实况等信息。 2、可视化专业信息,辅助业务人员决策。采用科学数据可视化技术直观展现气象雷达数据、云图数据中的强度、速度、谱宽等信息,建立气象数据与空间环境的对应关系,辅助业务人员进行分析判断。 3、模拟业务过程,辅助任务规划。该系统可根据用户输入需求,模拟飞机飞行过程,辅助用户进行航迹规划;可模拟火箭作业过程,评估任务结果。 4、链接传感器,与实际应用业务对接。系统可与飞机增雨地空通讯系统、地面车辆GPS监控系统、北斗定位系统实时对接,实现对增雨飞机和地面作业车辆的三维追踪和显示。

第二章三维地理信息平台 气象业务辅助决策系统依托DreamMap三维地理信息平台开发研制。该平台融合了地理信息技术和虚拟现实技术,可兼容调用多种政府用、军用、商用地理信息数据,逼真展现陆、海、空、天多维空间场景;可针对雨、雪、云、风等天气现象精细化建模,逼真展现天气动态变化;可提供距离、面积、高程、角度、剖面、最短距离等分析量算功能,定量了解空间环境;可标绘兴趣点、气象台站、侦察站等模型符号,并融合管理各模型属性信息。 一、空间环境展现 该平台可以逼真展现陆、海、空、天等多维环境信息,渲染矢量、注记等多种类型数据。 图1 大气环境

图2 地形环境 图3 海洋环境

图4 高精度影像数据 二、气象环境展现

天气图分析

11年5月8日—11日天气过程分析 天气过程分析: 5月8日—11日,受冷暖空气的共同影响,我国青藏高原中东部、西南地区东部、华南西部等地有小到中雨或阵雨,其中陕西南部、华北南部、黄淮北部、四川盆地、东北中部等地有大雨或暴雨,局部地区有暴雨,并伴有短时雷雨大风或冰雹等强对流天气。 受东移冷空气影响,新疆北部、甘肃中西部、内蒙古大部、东北地区、黄淮东部等地将有4~6级偏北或偏南风,新疆山口地区的风力有7~9 级;冷空气前锋过后,上述部分地区的气温将下降6~8℃,内蒙古中部、东北地区中南部局地降温幅度可达10℃以上。南疆盆地将有扬沙或浮尘天气。今年第2号台风"灿鸿"在菲律宾西部沿海登陆后,穿越吕宋岛进入西北太平洋洋面,强度明显减弱,逐渐变为热带低压。南海东部海面受"灿鸿"影响将有大风,"灿鸿"变为热低压并逐渐向西北方向移动。 高空环流形势: 5月8日在500hpa天气图上主要有3个低压中心,在西伯利亚地区有闭合低压系统,冷中心接近于低压中心,温度平流较弱。在贝加尔湖以东地区有一低压槽,冷中心落后于低压槽,槽后有冷平流。在鄂霍次克海附近有一大槽,冷中心落后于低压槽,等压线与等温线有很大的交角,槽后有很强的冷平流。中纬地区是平直的西风气流,亚洲南部受南支槽影响。 5月9日在500hpa天气图上,在西伯利亚地区有闭合低压系统,冷中心稍落后与低压中心,有不太强的冷平流,在贝加尔湖以东地区有一闭合低压中心,槽后有一横向的冷中心,有较强的冷平流,并且槽发展到了中国的东北地区。8日在鄂霍次克海附近的大槽移向了东北方向,并且槽后仍有很强的冷平流。中纬仍是平直的西风气流,亚洲南部为南支大槽。 5月10日在500hpa图上乌拉尔山高压脊减弱,西伯利亚地区的低压中心与冷中心近似重合,成为一个冷涡,槽后冷平流较弱。贝加尔湖东部的低压向东移走,鄂霍次克海的低压中心后面为暖中心,槽后有暖平流,低压槽将减弱,同

相关主题
文本预览
相关文档 最新文档