当前位置:文档之家› 金属学与热处理第二版--复习总结

金属学与热处理第二版--复习总结

金属学与热处理第二版--复习总结
金属学与热处理第二版--复习总结

金属学与热处理第二版复习总结

哈工大(威海) 14级苏同学

此文档只总结了部分重要概念与影响因素(不包含第八章、第十二章、第十三章)

另外,第十章、十一章的热处理的具体工艺也是重点,此文档没有涉及。

概念

金属最外层的电子数很少,一般为1~2个,不超过3个。

金属键

?原子共用自由电子形成

?无饱和性和方向性。

金属晶体

原子排列密度高,能变形,导电,导热。

金属原子特点

?外层电子少,易失去

?有自由电子

?金属离子与自由电子形成键。

?金属键无方向性

?有良好的塑性

晶体:各向异性是晶体区别于非晶体的一个重要标志

柏氏矢量的意义及特征

?反映位错的点阵畸变总量

?反映晶体的滑移量及方向

?与位错线有确定的位置关系

?具有守恒性

相界

共格界面、半共格界面、非共格界面三类。共格界面界面能最低?界面处晶体缺陷集中,原子能量高

?界面是氧化、腐蚀的优先发生地

?界面是固态相变的有效形核位置

?界面原子的扩散速度远高于晶内

?存在内吸附现象。异类原子可降低界面能时,会向界面偏聚

?界面阻碍位错运动,组织越细小,强度硬度越高

?界面能越大,界面迁移速度越大;晶粒长大可以降低界面能。

固溶体结晶的特点

(1)异分结晶:固相成分与液相成分不同,晶体与母相成分不同称为异分结晶(选择结晶)。

(2)固溶体结晶需要在一定的温度范围:每一温度下,结晶出一定数量的固相。温度的降低,固相的数量增加成分分别沿着固相线和液相线变化

非平衡凝固总结:

(1)固相平均成分线和液相平均成分线偏离固相线与液相线。

冷却速度越快,偏离越严重

(2)固溶体成分不均匀。

先结晶部分总是富高熔点组元,后结晶的部分富低熔点组元。

区域偏析、晶内偏析、枝晶偏析

(3)结晶温度。凝固终结温度低于平衡凝固时的终结温度。

伪共晶——靠近共晶点附近合金得到全部共晶组织

离异共晶——共晶组织没有显示出共晶的特征

不平衡共晶——在不该出现共晶的合金里出现共晶组织

孪生变形的特点

(1)切应力作用下发生,临界切应力远大于滑移时。

(2)是一种均匀切变。

(3)孪晶有对称关系。在一定范围内改变了晶体的取向。

多晶体塑性变形的特点

?各晶粒变形不同时性

?晶粒间、晶粒内变形的不均匀性

?相邻晶粒变形的协调性

?配位数:一个原子周围最近邻并且等距离的原子的个数。致密度——晶胞中原子所占的体积

0.74

12

6

密排六方

0.74

12

4

面心立方

0.68

8

2

体心立方

致密度

配位数

原子数

原子半径

a

r

4

3

=

a

r

2

1

=

a

r

4

2

=

一种材料具有几种不同晶体结构的性质称多晶型性

晶体缺陷是指晶体结构中偏离完整晶格排列的微观区域。 ? 液态金属的结构

? 不是完全无序的

? 不断有近程有序的原子集团(晶胚)出现

? 这种结构时而形成,时而散开,称为结构起伏

? 液相的结构起伏提供了各种尺寸的有序原子集团,成为结晶时核胚的来源。 结构条件

? 等温等压条件下化学反应自发进行的条件是体系的自由能降低。热力学

在数值上,临界形核功等于形成的新相临界晶核界面能的1/3

抵消形成临界晶核时所增加的能量的是液相的能量起伏。这是均匀形核的能量条件

? 结构条件

? 要求原子排列接近晶体

? 可由液相结构起伏满足

? 热力学条件

? 要求结晶过程体系自由能降低

? 可由液相具有的过冷度满足

? 能量条件

? 要求能克服体系增加的临界形核功

? 可由液相中的能量起伏满足 322221

*161

3()Tm r Lm T T

Lm T

Gv =-T Tm Tm Gc Lm T T σπσ=

∝????∝??=∝

??结构条件:热力学条件:能量条件: ? 形核时能量变化包含体积自由能的降低和新相界面能的增加

? 形核时需要满足结构、热力学、能量三方面条件 ? 临界形核功等于新相界面能的1/3

? 过冷度显著影响均匀形核,金属材料的形核率随过冷度增大而增大。 ? 有效形核需要的过冷度较大

非均匀形核:实际金属结晶时依附于液相中的外来固体表面形核的方式 均质和异质形核具有相同的临界晶核半径 ? 长大过冷度

? 动态过冷度(ΔTk ):晶核长大需要的界面附近的过冷度。

? 粗糙界面与光滑界面的动态过冷度不同。

? 粗糙界面的晶核长大机制 垂直长大机制

? 光滑界面的晶核长大机制 a. 二维晶核长大

b. 螺型位错长大机制

表层细晶区

形成原因:

(1)过冷度ΔT大。

(2)模壁作为非均匀形核的位置。

特点:

——晶粒细小,组织致密,机械性能好

——薄,无实用意义

柱状晶区

形成原因:

(1) 细晶区形成后,模壁温度升高,结晶前沿过冷度ΔT较低,不易形成

新的晶核;

(2) 细晶区中某些取向有利的晶粒可以显著长大;

(3) 晶体沿垂直于模壁 (散热最快)相反方向择优生长成柱状晶。

特点:组织粗大而致密;为“铸造织构”

铸造织构:铸造过程中形成的一种晶体学位向一致的铸态组织。

——又称“结晶织构”

中心等轴粗晶区

形成原因:

(1)液体温度全部降到结晶温度以下,可同时形核。

(2)未熔杂质、冲断的枝晶分枝可作为非均匀形核的核心。

(3)散热失去了方向性,各方向长大速度相差不大。——长成等轴晶。

由于过冷度ΔT不大,晶粒较粗大。

固溶体

B组元的原子完全溶入固相的A组元,并保持A的晶体结构所形成的合金相。A,B分别称为溶剂组元与溶质组元。

间隙固溶体

原子半径很小的溶质原子溶入到溶剂中时,填入到溶剂晶格的间隙

中间相——金属化合物

概念:溶质含量超过溶解度极限时出现的具有全新晶体结构的新相。

键性:主要金属键,兼有离子键、共价键。

种类:

正常价化合物:符合化合物原子价规律,具有严格的化合比,成分固定不变。结构与相应分子式的离子化合物晶体结构相同

电子化合物:按一定价电子浓度的比值组成一定晶格类型的化合物。电子化合物的熔点和硬度都很高,而塑性较差。

间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,将形成具有简单晶体结构的金属间化合物

间隙化合物:当非金属原子半径与金属原子半径的比值大于0.59时,形成复杂晶体结构的金属间化合物,与间隙相相比,间隙化合物的熔点和硬度及化学稳定性都要低一些。

二元相图几何规律

1.相区接触法则——相邻相区相数差一

2.二元相图中的水平线——三相平衡,与三个单相区,三个两相区接触。

3.二元相图最大相数为3

4.两条水平线涉及的相有两个相同时,两条水平线之间是由这两个相组成的两相区

5.相界线的走向——两相区与单相区分界线与三相水平线相交时,其延长线应进入另一个两相区而不是单相区

结晶时从液相结晶出单相固溶体,这种结晶过程称为匀晶转变

平衡凝固的概念:

?凝固进行到任何温度都能够达到平衡

?意味着:指定的温度与压力下,各相间达到平衡时,组元在每一相中的浓度不随时间而改变(即各相成分不变)。

?是在极其缓慢的冷速下实现的。

成分过冷

平衡结晶温度随液相浓度的增加而降低由界面前沿液相中的成分差别引起平衡结晶温度与实际温度之差

同素异构转变

?物质在固态下晶体结构随温度变化而变化的现象称同素异构转变(或重结晶),属于相变之一(固态相变)

根据钢中氧含量和凝固时放出CO的程度,钢锭分为镇静钢,沸腾钢和半镇静钢

滑移系

?滑移面与该面上一个滑移方向的组合

临界分切应力是一材料的常数

位错运动——晶体滑移的主要方式

?特点:所需切应力小

?原因:仅需少量原子的弹性偏移

位错交割与塞积

?是形变强化现象的源头

?与位错运动受阻有关-割阶、扭折、平面塞积群

固溶强化现象:由于溶质原子的存在及其固溶度的增加,导致基体金属的变形抗力提高。

2.孪生

?一种特殊的塑性变形

?晶体中有限宽度的部分产生一个均匀切变

?切变得到孪晶

?孪生不改变晶体结构,但改变有限区域内的晶体位向

细晶强化(晶界强化)

室温下多晶体的强度随其晶粒(亚晶粒)细化而提高。

回复、再结晶、晶粒长大是形变金属退火时经历的基本过程

回复

? 指经过冷变形的金属在退火加热的过程中,于再结晶过程开始之前、仍保留着变形态组织特点的阶段。

?回复的驱动力是储存能

?回复阶段储能部分释放。

?不同温度,回复机制有差异

2.回复机理

a.低温回复

点缺陷的迁移——点缺陷密度降低

b.中温回复

位错在滑移面上运动——位错密度有所降低,缠结位错重新排列

c.高温回复

位错滑移、攀移——多边化及多边形亚晶形成,亚晶粒尺寸增大

回复退火的应用工业应用:去应力退火 效果:保留加工硬化,降低应力,防止应力腐蚀开裂

再结晶:指经过冷变形的金属退火过程中,于变形的基体中重新生成无畸变的等轴状的新晶粒的过程。

再结晶的特点

?再结晶的驱动力是储存能

?再结晶阶段剩余储能全部释放

?加工硬化消除

?是形核与长大的过程,不改变晶体结构

再结晶的应用

?消除加工硬化

?再结晶退火 中间退火

核心问题:

变形严重的区域位错密度高,而形成无缺陷的微区可以迅速降低能量。该微区可成为再结晶晶核的孕育地。

形核机理

(1).晶界弓出形核

(2)亚晶长大形核:亚晶移动机制,亚晶合并机制

2.再结晶晶核长大

长大驱动力为新晶粒与旧晶粒之间的应变能差。

临界变形度:在能引起再结晶的最小变形度附近变形后,再结晶后的晶粒特别粗大,称为“临界变形度”。一般为2-10%。

晶粒长大

?晶粒长大

指再结晶结束后,细小的等轴晶通过晶粒相互吞并导致的长大的过程。

晶粒异常长大——二次再结晶指当正常晶粒长大过程被分散相微粒、织构或表面热蚀沟等因素强烈阻碍时,局部位置此类因素的缺少或消失而造成的突发性的晶粒快速长大的现象。

再结晶退火的应用

?效果:消除加工硬化;去除应力

?应用:软化变形金属的中间退火

?温度:最低再结晶温度以上100-200℃

热加工软化:

1.动态回复——高层错能金属

?随着变形进行,硬化速度降低,直到实现在一个稳定应力下变形。变形金属内有异号位错的互毁和位错的重新分布。晶粒变形而亚晶粒为等轴状

2.动态再结晶——低层错能金属

?随着变形进行,硬化速度降低,软化,逐渐实现在一个稳定应力下变形。变形金属内发生再结晶,变形抗力小晶粒变为等轴状

热处理与钢中固态相变

?固态相变是热处理强化的前提

完全奥氏体化的温度为Ac3, Accm以上

过冷奥氏体——临界点以下存在的不稳定的奥氏体

共析钢的CCT曲线

?只有珠光体转变区

无贝氏体转变区

抗回火性又称回火稳定性。指淬火马氏体回火各阶段转变迟滞,能在较高温度依然保持较高的强度与硬度的性质。

二次硬化指在一定温度回火后由于析出特殊碳化物导致的硬度再次增加的性质。合金钢回火的二次硬化(500-600℃)

退火:将金属与合金加热到适当的温度,保持一定时间,缓慢冷却以达到接近平衡状态组织的热处理工艺。

完全退火

将钢件加热到Ac3以上20-30℃,完全奥氏体化后,缓慢冷却以获得近于平衡组织的热处理工艺。

作用:细化晶粒,均匀组织,降低硬度,消除内应力,改善切削加工性

不完全退火

将钢加热到Ac1~Ac3或Ac1~Accm之间保温后缓慢冷却,以获得接近于平衡态组织的热处理工艺。

球化退火

球化退火是使钢中碳化物球化,获得粒状珠光体的一种热处理工艺。

Ac1+(20~30)℃。

目的:降低硬度,改善切削性,为淬火做准备

均匀化退火(扩散退火)

将工件加热到略低于固相线温度长时间保温后缓慢冷却,以消除化学成分不均匀现象的热处理工艺。

加热温度: Ac3 (Accm )+150~300℃保温时间:10~15h

均匀化退火后需用完全退火或正火纠正粗大组织

去应力退火与再结晶退火

?去应力退火:为去除由于形变加工、锻造、焊接等引起的工件内存在的残余应力而进行的退火。Ac1以下,以500-650℃加热居多,退火后应缓冷

?再结晶退火:将冷变形后的金属加热到再结晶温度以上,保持适当时间,使变形晶粒重新变为均匀等轴晶粒、消除加工硬化的热处理工艺。

可用作合金与钢件的中间退火,也可作为冷变形成品的最终热处理使用

钢材再结晶:650-700℃加热,保温1-3h空冷

正火:将钢加热到Ac3 ( Accm )以上适当温度,保温后在空气中冷却以得到珠光体类组织的热处理工艺。

与完全退火相比:正火组织中P更多、更细小。正火后强度硬度更高

Ac3( Accm )+30~50℃

合金钢Ac3 +100~150℃

保温:透烧

冷却:空冷、风冷、雾冷

正火的应用

(1)消除热加工缺陷(粗大晶粒、带状组织、魏氏组织)

(2)改善低碳钢的切削加工性

(3)消除过共析钢的网状碳化物

(4)提高普通结构零件的机械性能

退火、正火工艺的选用

首先考虑硬度的要求

满足硬度要求后再考虑工艺的经济性的问题

低碳钢,C%<0.25%, 正火

中碳钢,0.25%

高碳钢,0. 5%

过共析钢,C%>0.75%, 球化退火

消除过共析钢组织中二次渗碳体,正火

一般结构件的最终热处理,正火

钢的淬火淬火是指将钢加热到Ac1或Ac3之上,保温一定时间后以大于临界冷却速度的冷却方法冷却,以获得马氏体或下贝氏体组织的热处理工艺。

亚共析钢:Ac3以上30~50℃

过共析钢:Ac1以上30~50℃

低合金钢:通常Ac3( Ac1)以上50~100℃

高合金钢:考虑合金元素加入的作用温度更高

?部分奥氏体化

?得到A+颗粒状Fe3C

淬透性的含义指钢淬火时获得马氏体的能力。

回火:将淬火钢在A1以下某一温度加热保温后冷却到室温,获得稳定回火组织的热处理工艺。

稳定组织、尺寸、性能

消除或降低淬火应力、降低脆性

获得适当的力学性能的配合

回火的种类与应用

?低温回火(150~250℃)

回火马氏体

强硬耐磨,工具、刃具、齿轮、滚动轴承

?中温回火(350~500℃)

回火托氏体

弹性极限高,弹性元件、锻模

?高温回火(500~650℃)(调质=淬火+高温回火)

回火索氏体

综合力学性能优秀,曲轴、连杆、主轴

1.钢的分类

用途:结构钢、工具钢、特殊性能钢

冶炼质量:普通钢、优质钢、高级优质钢

脱氧程度:镇静钢、沸腾钢

调质钢经过调质处理(淬火+高温回火)强化后使用的钢

中碳 0.25-0.45%——保证强韧性

?合金元素

?Cr, Mn, Si, Ni, B

提高淬透性,提高强度

?W, Mo, V, Ti

细化晶粒,减轻回火脆性

调质钢的热处理 45钢制造普通车床主轴,工艺路线为

锻造——预备热处理——机加工——最终热处理——装配

典型预备热处理与最终热处理工艺组合:

正火或退火->调质

正火或退火->调质+表面淬火+低温回火

①预备热处理

改善组织,便于切削加工

正火或完全退火 Ac3

正火+高温回火针对淬透性非常好的材料,获得回火索氏体,便于切削加工

②最终热处理

调质处理

获得回火索氏体组织

保证综合力学性能优秀

热处理工艺

Ac3+30-50℃加热保温,油淬(合金钢)

500-650℃回火,油冷(合金钢)

金属学与热处理知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法, 铸锭三晶区

的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,没有过冷度结晶就没有趋动力。根据Rk= 1..,T可知当过冷度T为零时临界晶核半 径R k为无穷大,临界形核功(1订2 )也为无穷大。临界晶核半径R k与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。 细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。 铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。 三、二元合金的相结构与结晶 重点内容:杠杆定律、相律及应用。 基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织。合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。 相律:f = c -p + 1其中,f为自由度数,c为组元数,p为相数。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。 合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质。 合金相:在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。 四、铁碳合金 重点内容:铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算 基本内容:铁素体与奥氏体、二次渗碳体与共析渗碳体的异同点、三个恒温转变。 钢的含碳量对平衡组织及性能的影响;二次渗碳体、三次渗碳体、共晶渗碳体相对量的计算;五种渗碳体的来源及形态。

金属学与热处理课后习题问题详解(崔忠圻版)

第十章钢的热处理工艺 10-1 何谓钢的退火?退火种类及用途如何? 答: 钢的退火:退火是将钢加热至临界点AC1以上或以下温度,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。 退火种类:根据加热温度可以分为在临界温度AC1以上或以下的退火,前者包括完全退火、不完全退火、球化退火、均匀化退火,后者包括再结晶退火、去应力退火,根据冷却方式可以分为等温退火和连续冷却退火。 退火用途: 1、完全退火:完全退火是将钢加热至AC3以上20-30℃,保温足够长时间,使 组织完全奥氏体化后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。 其主要应用于亚共析钢,其目的是细化晶粒、消除应力和加工硬化、提高塑韧性、均匀钢的化学成分和组织、改善钢的切削加工性能,消除中碳结构钢中的魏氏组织、带状组织等缺陷。 2、不完全退火:不完全退火是将钢加热至AC1- AC3(亚共析钢)或AC1-ACcm (过共析钢)之间,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。对于亚共析钢,如果钢的原始组织分布合适,则可采用不完全退火代替完全退火达到消除应力、降低硬度的目的。对于过共析钢,不完全退火主要是为了获得球状珠光体组织,以消除应力、降低硬度,改善切削加工性能。 3、球化退火:球化退火是使钢中碳化物球化,获得粒状珠光体的热处理工艺。 主要用于共析钢、过共析钢和合金工具钢。其目的是降低硬度、改善切削加工性能,均匀组织、为淬火做组织准备。 4、均匀化退火:又称扩散退火,它是将钢锭、铸件或锻轧坯加热至略低于固相 线的温度下长时间保温,然后缓慢冷却至室温的热处理工艺。其目的是消除铸锭或铸件在凝固过程中产生的枝晶偏析及区域偏析,使成分和组织均匀化。 5、再结晶退火:将冷变形后的金属加热到再结晶温度以上保持适当时间,然后 缓慢冷却至室温的热处理工艺。其目的是使变形晶粒重新转变为均匀等轴晶粒,同时消除加工硬化和残留应力,使钢的组织和性能恢复到冷变形前的状态。 6、去应力退火:在冷变形金属加热到再结晶温度以下某一温度,保温一段时间 然后缓慢冷却至室温的热处理工艺。其主要目的是消除铸件、锻轧件、焊接件及机械加工工件中的残留应力(主要是第一类应力),以提高尺寸稳定性,减小工件变形和开裂的倾向。 10-2 何谓钢的正火?目的如何?有何应用? 答: 钢的正火:正火是将钢加热到AC3或Accm以上适当温度,保温适当时间进行完全奥氏体化以后,以较快速度(空冷、风冷或喷雾)冷却,得到珠光体类组织的热处理工艺。正火过程的实质是完全奥氏体化加伪共析转变。 目的:细化晶粒、均匀成分和组织、消除应力、调整硬度、消除魏氏组织、带状组织、网状碳化物等缺陷,为最终热处理提供合适的组织状态。

金属学及热处理习题参考答案(1-9章)

第一章金属及合金的晶体结构 一、名词解释: 1 ?晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。 2?非晶体:指原子呈不规则排列的固态物质。 3 ?晶格:一个能反映原子排列规律的空间格架。 4?晶胞:构成晶格的最基本单元。 5. 单晶体:只有一个晶粒组成的晶体。 6?多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。 7?晶界:晶粒和晶粒之间的界面。 8. 合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。 9. 组元:组成合金最基本的、独立的物质称为组元。 10. 相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。 11. 组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。 12. 固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相 、填空题: 1 .晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。 2?常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。 3?实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。 4?根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。 5?置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。 6 ?合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。 7. 同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光—泽,正的电阻温度系数。 8. 金属晶体中最主要的面缺陷是晶界和亚晶界。 9. 位错两种基本类型是刃型位错和螺型位错,多余半原子面是刃型位错所特有的 10. 在立方晶系中,{120}晶面族包括(120)、(120)、(102)、(102)、(210)、(210)> (201)、

北京科技大学金属学与热处理期末考试资料

1、热处理的定义:根据钢件的热处理目的,把钢加热到预定的温度,在此温度下保持一定的时间,然后以预定的速度冷却下来的一种综合工艺。钢的热处理是通过加热、保温和冷却的方法,来改变钢内部组织结构,从而改善其性能的一种工艺。凡是材料体系(金属、无机材料)中有相变发生,总可以采用热处理的方法,来改变组织与性能。 2、Ac1、Ac 3、Accm的意义:对于一个具体钢成分来说,A1、A3、Acm是一个点,而且是无限缓慢加热或冷却时的平衡临界温度。加热时的实际临界温度加注脚字母“C”,用Ac1、Ac3、Accm表示;冷却时的实际临界温度加注脚字母“r”,用Ar1、Ar3、Arcm表示。 3、什么是奥氏体化?奥氏体化的四个过程?是什么类型的相恋?将钢加热到AC1点或AC3点以上,使体心立方的α-Fe铁结构转变为面心立方结构的γ-Fe,这个过程就是奥氏体化过程。从铁碳相图可知,任何成分碳钢加热到Ac1以上,珠光体就向奥氏体转变;加热到Ac3或Accm以上,将全部变为奥氏体。这种加热转变称奥氏体化。共析钢的奥氏体化过程包括以下四个过程:形核;长大;残余渗碳体溶解;奥氏体成分均匀化。加热时奥氏体化程度会直接影响冷却转变过程,以及转变产物的组成和性能。是扩散型相变。 4、碳钢与合金钢的奥氏体化有什么区别?为什么?在同一奥氏体化温度下,合金元素在奥氏体中扩散系数只有碳的扩散系数的千分之几到万分之几,可见合金钢的奥氏体均匀化时间远比碳钢长得多。在制定合金钢的热处理工艺规范时,应比碳钢的加热温度高些,保温时间长些,促使合金元素尽可能均匀化。 5奥氏体晶粒的三个概念(初始晶粒、实际晶粒和本质晶粒)?奥氏体的初始晶粒:指加热时奥氏体转变过程刚刚结束时的奥氏体晶粒,这时的晶粒大小就是初始晶粒度。奥氏体实际晶粒:指在热处理时某一具体加热条件下最终所得的奥氏体晶粒,其大小就是奥氏体的实际晶粒度。奥氏体的本质晶粒:指各种钢的奥氏体晶粒的长大趋势。晶粒容易长大的称为本质粗晶粒钢;晶粒不容易长大的称为本质细晶粒钢; 6为什么要研究奥氏体晶粒大小?奥氏体晶粒大小会显著影响冷却转变产物的组织和性能。 7、工厂中对奥氏体晶粒大小的表征方法是什么?本质晶粒度的测试方法?统一采用与标准金相图片比较,来确定晶粒度的级别。生产中为了便于确定钢的本质晶粒度,只需测出930度左右的实际晶粒度,就可以判断。 8过冷奥氏体:奥氏体冷至临界温度以下,牌热力学不稳定状态,称为过冷奥氏体。 9、钢的共析转变?珠光体组织的三种类型?钢的共析转变:钢奥氏体化后,过冷到A1至“鼻尖”之间区域等温停留时,将发生共析转变,形成珠光体组织,其反应如下:γ→P(α+Fe3C)结构:FCC、BCC、正交;含碳:0.77%、0.0218%、6.69%珠光体的三种类型:珠光体,索氏体,屈氏体。 10、什么叫钢的C曲线?如何测定?影响C曲线的因素?过冷奥氏体等温转变曲线,也称TTT曲线。因曲线形状象英文字母“C”,故常称C曲线。在过冷奥氏体的转变过程中有组织(相变)转变和性能变化,因此可用金相法、硬度法、膨胀法或磁性法等来测定过冷奥氏体的等温转变过程,其中金相法是最基本的。金相法测定过冷奥氏体等温转变图---C曲线(基本方法),以共析钢为例:①用共析钢制成多组圆片状试样(φ10×1.5);②取一组试样加热奥氏体化;③迅速转入A1以下一定温度熔盐浴中等温;④各试样停留不同时间后分别淬入盐水中,使未分解的过冷奥氏体变为马氏体;⑤这样在金相显微镜下就可以观察到过冷奥氏体的等温分解过程。钢的成分和热处理条件都会引起C曲线形状和位置的变化1)含碳量的影响2)合金元素的影响3)奥氏体化温度和保温时间的影响 11、什么叫CCT曲线?如何测定?连接冷却曲线上相同性质的转变开始点和终了点,得到钢种的连续冷却转变图称为CCT曲线。与测定C曲线的方法相同,一般也都用膨胀法或金相-硬度法等来测定CCT(Continuous Cooling Transformation)图;在测定时,首先选定一组具有不同冷却速度的方法,然后将欲测试样加热奥氏体化,并以各种冷却速度进行冷却,同时测

金属学与热处理章节重点总结

第1章金属和合金的晶体结构 1.1金属原子的结构特点:最外层的电子数很少,一般为1~2个,不超过3个。 金属键的特点:没有饱和性和方向性 结合力:当原子靠近到一定程度时,原子间会产生较强的作用力。结合力=吸引力+排斥力结合能=吸引能+排斥能(课本图1.2) 吸引力:正离子与负离子(电子云)间静电引力,长程力 排斥力:正离子间,电子间的作用力,短程力 固态金属原子趋于规则排列的原因:当大量金属原子结合成固体时,为使固态金属具有最低的能量,以保持其稳定状态,原子间也必须保持一定的平衡距离。 1.2晶体:基元在三维空间呈规律性排列。晶体结构:晶体中原子的具体排列情况, 也就是晶体中的这些质点在三维空间有规律的周期性的重复排列方式。 晶格:将阵点用直线连接起来形成空间格子。晶胞:保持点阵几何特征的基本单元 三种典型的金属晶体结构(要会画晶项指数,晶面指数) 共带面:平行或相交于同一直线的一组晶面组成一个晶带,这一组晶面叫做共带面 晶带轴:同一晶带中所有晶面的交线互相平行,其中通过坐标原点的那条直线。 多晶型转变或同素异构转变:当外部的温度和压强改变时,有些金属会由一种晶体结构向另一种晶体结构转变。 1.3合金:两种或两种以上金属元素,或金属元素与非金属元素,经熔炼、烧结或其它方法组合而成并具有金属特性的物质。组元:组成合金最基本的独立的物质,通常组元就是组成合金的元素。相:是合金中具有同一聚集状态、相同晶体结构,成分和性能均一,并以界面相互分开的组成部分。固溶体:合金的组元通过溶解形成一种成分及性能均匀的、且结构与组元之一相同的固相,称为固溶体。与固溶体结构相同的组元为溶剂,另一组元为溶质。 固溶体的分类:按溶质原子在溶剂晶格中的位置:置换固溶体与间隙固溶体。按溶质原子在固体中的溶解度:分为有限固溶体和无限固溶体。按溶质原子在固溶体内分布规则:分为有序固溶体和无序固溶体 固溶强化:在固体溶液中,随着溶质浓度的增加,固溶体的强度、硬度提高,塑性韧性下降。 间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,将形成具有简单晶体结构的金属间化合物。间隙化合物:与间隙相相反(比值大于0.59)。 1.4点缺陷:⑴空位⑵间隙原子⑶置换原子。线缺陷:线缺陷就是各种类型的位错。它是指晶体中的原子发生了有规律的错排现象。(刃型位错、螺型位错、混合型位错)滑移矢量:表示位错的性质,晶格畸变的大小的物理量(刃型位错的柏氏矢量与其位错线相垂直;螺形位错的柏氏矢量与其位错线平行。)。 面缺陷:晶体的面缺陷包括晶体的外表面(表面或自由界面)和内界面两类,其中的内界面又有晶界、亚晶界、 小角度晶界、大角度晶界:两相邻晶粒位向差小于或大于10° 相界面的结构有三类:共格界面、半共格界面、非共格界面 习题3 、5做一下 第2章纯金属的结晶 2.1结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 同素异构转变:金属从一种固态过渡为另一种固体晶态的转变 过冷度:理论结晶温度与实际结晶温度之差。过冷是结晶的必要条件。(金属不同过冷度也不同,金属纯度越高过冷度越大。过冷度的速度取决于,冷却速度越大过冷度越大实际洁净无度越低,反之) 金属结晶:孕育—出现晶核—长大—金属单晶体 2.2从液体向固体的转变使自由能下降.液态金属结晶时,结晶过程的推动力是 自由能差降低(△F)是自由能增加,阻力是自身放热

《金属学与热处理》(第二版)课后习题答案(20200628181724)

第一章习题 1作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2] [-2 1 1]、[3 4 6]等晶向 面心立方原子半径 R=Z2a/4贝卩a=4R/V2代入上式有 R=0.146X4R/ V 2=0.414R 10?已知铁和铜在室温下的晶格常数分别为 0.286nm 和0.3607nm,求 1cm3中铁和铜的原子数。 解:室温下Fe 为体心立方晶体结构,一个晶胞中含 2个Fe 原子, Cu 为面心立方晶体结构, 一个晶胞中含有4个Cu 原子 1cm3=1021 nm3 解:面心立方八面体间隙半径 r=a/2-V 2a/4=0.146a

令1cm3中含Fe的原子数为N Fe,含Cu的原子数为N Cu,室温下一个Fe的晶胞题解为V F e, 一个Cu晶胞的体积为V皿贝S N Fe=1021/V Fe=1021/(0.286)3=3.5x1018 N cu=1021/V cu=1021/(0.3607)3=2.8X1018 11一个位错环能不能各个部分都是螺型位错或者刃型位错,试说明之。 解:不能,因为位错环上各点的位错运动方向是不一样的,而柏氏矢量的方向是确定的。 15?有一正方形位错线,其柏式矢量如图所示,试指出图中各段线的性能,并指出任性位错额外串排原子面所在的位置。 AD、BC段为刃型位错; DC、AB段为螺型位错 AD段额外半原子面垂直直面向里 BC段额外半原子面垂直直面向外 第二章习题 1?证明均匀形核时,形成临界晶粒的△ Gk与其体积V之间的关系

(1)为△ G k = V/2△ G v 证明:由均匀形核体系自由能的变化 可知,形成半径为r k的球状临界晶粒,自由度变化为W —斗咖。+忸9 (2)对(2)进行微分处理,有 4 * d(AG)川一§ 叼"J

金属学与热处理试卷及答案 期末练习题

金属学与热处理期末练习题(含答案) 1、金属的机械性能主要包括强度、硬度、塑性、韧性、疲劳强度等指标,其中衡量金属材料在静载荷下机械性能的指标有____强度_______、_____硬度______、_________塑性__。衡量金属材料在交变载荷和冲击载荷作用下的指标有_______韧性____和____疲劳强度_______。 2、常见的金属晶格类型有___面心立方晶格____ 、___体心立方晶格___ ____和__密棑六方晶格_ ________。 3、常用的回火方法有低温回火、_中温回火__________ 和____高温回火_______ 。 4、工程中常用的特殊性能钢有___不锈钢______、耐热钢_________和耐磨刚。 5、根据铝合金成分和工艺特点,可将铝合金分为__变形铝合金_________和铸造铝合金两大类。 6、按冶炼浇注时脱氧剂与脱氧程度分,碳钢分为_镇静钢________、半镇静钢_________、特殊镇静钢_________和__沸腾钢_______。 7、铸铁中_________碳以石墨形式析出___________________的过程称为石墨化,影响石墨化的主要因素有_化学成分__________ 和冷却速度。 8、分别填写下列铁碳合金组织符号: 奥氏体A、铁素体F、渗碳体fe3c 、 珠光体P 、高温莱氏体ld 、低温莱氏体ld’。 9、含碳量小于%的钢为低碳钢,含碳量为的钢为中碳钢,含碳量大于% 的钢为高碳钢。 10、三大固体工程材料是指高分子材料、复合材料和陶瓷材料。 二、选择题(每小题1分,共15分) ( b )1、拉伸试验时,试样拉断前能承受的最大拉应力称为材料的()。 A 屈服点 B 抗拉强度 C 弹性极限 D 刚度 (b)2、金属的()越好,其锻造性能就越好。 A 硬度 B 塑性 C 弹性 D 强度 ( c )3、根据金属铝的密度,它属于()。 A 贵金属 B 重金属 C 轻金属 D 稀有金属 ( d )4、位错是一种()。

金属材料学总结

第一章 1、为什么钢中的硫和磷一般情况下总是有害的?控制硫化物形态的方法有哪些? 答:S与Fe形成FeS,会导致钢产生热脆;P与形成Fe3P,使钢在冷加工过程中产生冷脆性,剧烈降低钢的韧性,使钢在凝固时晶界处发生偏析。 硫化物形态控制:a、加入足量的锰,形成高熔点MnS;b、控制钢的冷却速度;c、改善其形态最好为球状,而不是杆状,控制氧含量大于0.02%;d、加入变形剂,使其在金属中扩散开防止聚焦产生裂纹。 2、钢的强化机制有哪些?为什么一般钢的强化工艺采用淬火加回火?答:a、固溶强化(合金中形成固溶体、晶格畸变、阻碍位错运动、强化) b、细晶强化(晶粒细化、晶界增多、位错塞积、阻碍位错运动、强化) c、加工硬化(塑性变形、位错缠绕交割、阻碍位错运动、强化) d、弥散强化(固溶处理的后的合金时效处理、脱溶析出第二相、弥散分布在基体上、与位错交互作用、阻碍位错运动、强化) 淬火处理得到强硬相马氏体,提高钢的强度、硬度,使钢塑性降低;回火可有效改善钢的韧性。淬火和回火结合使用提高钢的综合性能。 3、按照合金化思路,如何改善钢的韧性? 答:a、加入可细化晶粒的元素Mo、W、Cr; b、改善基体韧性,加Ni元素;

c、提高冲击韧性,加Mn、Si元素; d、调整化学成分; e、形变热处理; f、提高冶金质量; g、加入合金元素提高耐回火性,以提高韧性。 4、试解释40Cr13属于过共析钢,Cr12钢中已出现共晶组织,属于莱氏体钢。 答、Cr元素使共析点左移,当Cr量达到一定程度时,共析点左移到碳含量小于0.4%,所以40Cr13属于过共析钢;Cr12中含有高于12%的Cr元素,缩小Fe-C平衡相图的奥氏体区,使共析点右移。 5、试解释含Mn钢易过热,而含Si钢高淬火加热温度应稍高,且冷作硬化率高,不利于冷变性加工。 答:Mn在一定量时会促使晶粒长大,而过热就会使晶粒长大。 6、合金钢中碳化物形成规律①②③④⑤⑥⑦ 答:①、K类型:与Me的原子半径有关;②、相似相容原理;③、强碳化物形成元素优先于碳结合形成碳化物;④、NM/NC比值决定了K类型;⑤、碳化物稳定型越好,溶解越难,析出越难,聚集长大也越难。 第二章 1、简述工程钢一般服役条件、加工特点和性能要求。 答:服役条件:静载、无相对运动、受大气腐蚀。 加工特点:简单构件是热轧或正火状态,空气冷却,有焊接、剪切、

《金属学与热处理》(第二版)课后习题答案2

第一章习题 1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向 3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a。今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。 解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a,1/2a 化为最小简单整数分别为2,5,5 故该晶面的晶面指数为(2 5 5) 4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面 解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面间距为√3a/3 三个晶面晶面中面间距最大的晶面为(1 1 0) 7.证明理想密排六方晶胞中的轴比c/a=1.633 证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示 则OD=c/2,AB=BC=CA=CD=a 因△ABC是等边三角形,所以有OC=2/3CE

由于(BC)2=(CE)2+(BE)2 则 有(CD)2=(OC)2+(1/2c)2,即 因此c/a=√8/3=1.633 8.试证明面心立方晶格的八面体间隙半径为r=0.414R 解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a 面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有 R=0.146X4R/√2=0.414R 9.a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。 解:a)令面心立方晶格与体心立方晶格的体积及晶格常数分别为V面、V 踢与a面、a体,钢球的半径为r,由晶体结构可知, 对于面心晶胞有4r=√2a面,a面=2√2/2r,V面=(a面)3=(2√2r)3 对于体心晶胞有4r=√3a体,a体=4√3/3r,V体=(a体)3=(4√3/3r)3 则由面心立方晶胞转变为体心立方晶胞的体积膨胀△V为 △V=2×V体-V面=2.01r3 B)按照晶格常数计算实际转变体积膨胀△V 实 ,有 △V 实=2△V 体 -V面=2x(0.2892)3-(0.3633)3=0.000425nm3 实际体积膨胀小于理论体积膨胀的原因在于由γ-Fe转化为α-Fe时,Fe原子的半径发生了变化,原子半径减小了。 10.已知铁和铜在室温下的晶格常数分别为0.286nm和0.3607nm,求1cm3中铁和铜的原子数。 解:室温下Fe为体心立方晶体结构,一个晶胞中含2个Fe原子,Cu为面心立方晶体结构,一个晶胞中含有4个Cu原子 1cm3=1021nm3 令1cm3中含Fe的原子数为N Fe,含Cu的原子数为N Cu,室温下一个Fe 的晶胞题解为V Fe,一个Cu晶胞的体积为V Cu,则 N Fe=1021/V Fe=1021/(0.286)3=3.5x1018 N Cu=1021/V Cu=1021/(0.3607)3=2.8X1018 11.一个位错环能不能各个部分都是螺型位错或者刃型位错,试说明之。 解:不能,看混合型位错 13.试计算{110}晶面的原子密度和[111]晶向原子密度。 解:以体心立方{110}晶面为例 {110}晶面的面积S=a x √2a {110}晶面上计算面积S内的原子数N=2 则{110}晶面的原子密度为ρ=N/S= √2a-2 [111]晶向的原子密度ρ=2/√3a

《金属学与热处理》试题库

《金属学与热处理》试题库 一、名词解释 1、铁素体、奥氏体、珠光体、马氏体、贝氏体、莱氏体 2、共晶转变、共析转变、包晶转变、包析转变 3、晶面族、晶向族 4、有限固溶体、无限固溶体 5、晶胞 6、二次渗碳体 7、回复、再结晶、二次再结晶 8、晶体结构、空间点阵 9、相、组织 10、伪共晶、离异共晶 11、临界变形度 12、淬透性、淬硬性 13、固溶体 14、均匀形核、非均匀形核 15、成分过冷 16、间隙固溶体 17、临界晶核 18、枝晶偏析 19、钢的退火,正火,淬火,回火 20、反应扩散 21、临界分切应力 22、调幅分解 23、二次硬化 24、上坡扩散 25、负温度梯度 26、正常价化合物 27、加聚反应 28、缩聚反应 四、简答 1、简述工程结构钢的强韧化方法。(20分)

2、简述Al-Cu二元合金的沉淀强化机制(20分) 3、为什么奥氏体不锈钢(18-8型不锈钢)在450℃~850℃保温时会产生晶间腐蚀?如何防止或减轻奥氏体不锈钢的晶间腐蚀? 4、为什么大多数铸造合金的成分都选择在共晶合金附近? 5、什么是交滑移?为什么只有螺位错可以发生交滑移而刃位错却不能? 6、根据溶质原子在点阵中的位置,举例说明固溶体相可分为几类?固溶体在材料中有何意义? 7、固溶体合金非平衡凝固时,有时会形成微观偏析,有时会形成宏观偏析,原因何在? 8、应变硬化在生产中有何意义?作为一种强化方法,它有什么局限性? 9、一种合金能够产生析出硬化的必要条件是什么? 10、比较说明不平衡共晶和离异共晶的特点。 11、枝晶偏析是怎么产生的?如何消除? 12、请简述影响扩散的主要因素有哪些。 13、请简述间隙固溶体、间隙相、间隙化合物的异同点? 14、临界晶核的物理意义是什么?形成临界晶核的充分条件是什么? 15、请简述二元合金结晶的基本条件有哪些。 16、为什么钢的渗碳温度一般要选择在γ-Fe相区中进行?若不在γ-Fe相区进行会有什么结果? 17、一个楔形板坯经冷轧后得到相同厚度的板材,再结晶退火后发现板材两端的抗拉强度不同,请解释这个现象。 18、冷轧纯铜板,如果要求保持较高强度,应进行何种热处理?若需要继续冷轧变薄时,又应进行何种热处理? 19、位错密度有哪几种表征方式? 20、淬透性与淬硬性的差别。 21、铁碳相图为例说明什么是包晶反应、共晶反应、共析反应。 22、马氏体相变的基本特征?(12分) 23、加工硬化的原因?(6分) 24、柏氏矢量的意义?(6分) 25、如何解释低碳钢中有上下屈服点和屈服平台这种不连续的现象?(8分) 26、已知916℃时,γ-Fe的点阵常数0.365nm,(011)晶面间距是多少?(5分) 27、画示意图说明包晶反应种类,写出转变反应式?(4分) 28、影响成分过冷的因素是什么?(9分) 29、单滑移、多滑移和交滑移的意义是什么?(9分) 30、简要说明纯金属中晶粒细度和材料强度的关系,并解释原因。(6分)

最全的金属学与热处理知识总结

钢的热处理总结 晶向指数[UVW],晶向族;晶面指数(hkl),晶面族{hkl};六方晶系晶向指数[uvw]→u=(2U-V)/3,v=(2V-U)/3,t=-(u+v),w=W→[uvtw] 1. 空间点阵和晶体点阵:为便于了解晶体中原子排列的规律性,通常将实体晶体结构简化为完整无缺的理想晶体。若将其中每个院子抽象为纯几何点,即可得到一个由无数几何点组成的规整的阵列,称为空间点阵,抽象出来的几何点称为阵点或结点。由此构成的空间排列,称为晶体点阵;与此相应,上述空间点阵称为晶格。 2. 热过冷:纯全属在凝固时,其理论凝固温度(T m)不变,当液态金属中的实际温度低于T m 时,就引起过冷,这种过冷称为热过冷。 3. 成分过冷:在固液界面前沿一定范围内的液相,其实际温度低于平衡结晶温度,出现了一个过冷区域,过冷度为平衡结晶温度与实际温度之差,这个过冷度是由于界面前沿液相中的成分差别引起的,称为成分过冷。成分过冷能否产生及程度取决于液固界面前沿液体中的溶质浓度分布和实际温度分布这两个因素。 4. 动态过冷度:当界面温度T i

6. 能量起伏:液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间不停地变化,时高时低的现象。 7. 均匀形核:液相中各个区域出现新相晶核的几率都是相同的,是液态金属绝对纯净、无任何杂质,喝不喝型壁接触,只是依靠液态金属的能量变化,由晶胚直接生核的理想过程。临界半径 8. 非均匀形核:液态金属中总是存在一些微小的固相杂质点,并且液态金属在凝固时还要和型壁相接触,于是晶核就可以优先依附于这些现成的固体表面上形成,需要的过冷度较小。 临界半径 非均匀形核的临界球冠半径与均匀形核的临界半径是相等的。 晶核长大的微观结构:光滑界面和粗糙界面。 晶粒大小的控制:控制过冷度;变质处理;振动、搅动。 表面细晶区的形成:当液态金属浇入温度较低的铸型中时,型壁附近熔体由于受到强烈的激冷作用,产生很大的过冷度而大量非均质生核。这些晶核在过冷熔体中也以枝晶方式生长,由于其结晶潜热既可从型壁导出,也可向过冷熔体中散失,从而形成了无方向性的表面细等轴晶组织。 柱状晶区的形成:在结晶过程中由于模壁温度的升高,在结晶前沿形成适当的过冷度,使表面细晶粒区继续长大(也可能直接从型壁处长出),又由于固-液界面处单向的散热条件(垂直于界面方向),处在凝固界面前沿的晶粒在垂直于型壁的单向热流的作用下,以表面细等轴晶凝固层某些晶粒为基底,呈枝晶状单向延伸生长,那些主干取向与热流方向相平行的枝晶优先向内伸展并抑制相邻枝晶的生长,在淘汰取向不利的晶体过程中,发展成柱状晶组织。 中心等轴晶的形成:内部等轴晶区的形成是由于熔体内部晶核自由生长的结果。随着柱状晶的发展,熔体温度降到足够低,再加之金属中杂质等因素的作用,满足了形核时的过冷度要求,于是在整个液体中开始形核。同时由于散热失去了方向性,晶体在各个方向上的长大速度是相等的,因此长成了等轴晶。 10. 固溶体与金属化合物的区别:固溶体晶体结构与组成它的溶剂相同,而金属化合物的晶体结构与组成它的组元都不同,通常较复杂。固溶体相对来说塑韧性好,硬度较低,金属化合物硬而脆。 11. 影响置换固溶体溶解度的因素:原子尺寸因素;电负性因素;电子浓度因素;晶体结构因素。

金属学与热处理铸造合金期末考试题答案

本答案非标准答案,仅作参考,祝大家期末取的好成绩! 金属学与热处理铸造合金及其熔炼考试题纲 1.铁碳相图的二重性及其分析 从热力学观点上看,Fe-Fe3C相图只是介稳定的,Fe-C相图才是稳定的;从动力学观点看,在一定条件下,按Fe-Fe3C相图转变也是可能的,因此就出现了二重性。 分析:1)稳定平衡的共晶点C’的成分和温度与C点不同 2)稳定平衡的共析点S’的成分和温度与S点不同 2.稳定态和亚稳定态铁碳相图异同点 稳定平衡态的Fe-C相图中的共晶温度和共析温度都比介稳定平衡的高一点; 在共晶温度时,稳定平衡态的奥氏体的含碳量小于亚稳态平衡下奥氏体的含碳量。 3.用铁碳相图分析铸铁碳钢一二次结晶异同点 一次结晶:铁液降至液相线时,有初析石墨和初析奥氏体析出。温度继续下降,熔体中同时析出奥氏体和石墨,铸铁进入共晶凝固阶段。 当钢液温度降低至液相线时,有高温铁素体析出。温度下降至包晶温度时,发生包晶转变,生成奥氏体。温度继续下降,穿过L+γ区时,又有奥氏体自钢液中析出,此析出过程进行到固相线温度为止。 二次结晶:铸铁的固态相变即二次结晶。继续冷却,奥氏体中的含碳量沿E’S’线减小,以二次石墨的形式析出。当奥氏体冷却至共析温度以下,并达到一定的过冷度,就开始共析转变。两个固体相α与Fe3C相互协同地从第三个固体相长大(成对长大),形成珠光体。当温度下降至GS和PS线之间的区域是,有先共析铁素体α相析出。随着α相的析出,剩余奥氏体的含碳量上升。当温度达到共析转变温度时,发生共析转变,形成珠光体。结晶过程完了后,钢的组织基本上不在变化。 4.分析球状石墨形成过程 目前已基本肯定,球状石墨可以和奥氏体直接从熔体中析出。 在亚共晶或共晶成分的球墨铸铁中,首批小石墨在远高于平衡共晶转变温度就已成形,这是不平衡条件所造成的,但随着温度的下降,有的小石墨球会重新解体,而有的则能长大成球,随着这一温度的进行,又会出现新的小石墨球,说明石墨球的成核可在一定的温度范围内进行。 某些石墨球能在熔体中单独成长至一定尺寸,然后被奥氏体包围,而有的石墨球则很早的就被奥氏体包围,形成奥氏体外壳。总之,石墨球的长大包括;两个阶段,即:1)在熔体中直接析出核心并长大2)形成奥氏体外壳,在奥氏体外壳包围下成长。 5.灰铸铁的金相组织及其性能特点 灰铸铁的金相组织由金属基体和片状石墨所组成,还有少量非金属夹杂物。 特点:强度性能差;硬度特点,同一硬度时,抗拉强度有一个范围,同一强度时,硬度也有一定的范围;较低的缺口敏感性;良好的减震性;良好的减磨性。 6.流动性的概念及其影响因素

金属学与热处理课后习题答案第二章

第二章纯金属的结晶 2-1 a)试证明均匀形核时,形成临界晶粒的△Gk与其体积V之间关系式为△Gk=V△Gv/2 b)当非均匀形核形成球冠状晶核时,其△Gk与V之间的关系如何? 答: 2-2 如果临界晶核是边长为a的正方体,试求出△Gk和a之间的关系。为什么形成立方体晶核的△Gk比球形晶核要大。 答:

2-3 为什么金属结晶时一定要由过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么? 答: 金属结晶时需过冷的原因: 如图所示,液态金属和固态金属的吉布斯自由能随温度的增高而降低,由于液态金属原子排列混乱程度比固态高,也就是熵值比固态高,所以液相自由能下降的比固态快。当两线相交于Tm温度时,即Gs=Gl,表示固相和液相具有相同的稳定性,可以同时存在。所以如果液态金属要结晶,必须在Tm温度以下某一温度Tn,才能使G s<Gl,也就是在过冷的情况下才可自发地发生结晶。把Tm-Tn的差值称为液态金属的过冷度 影响过冷度的因素: 金属材质不同,过冷度大小不同;金属纯度越高,则过冷度越大;当材质和纯度一定时,冷却速度越大,则过冷度越大,实际结晶温度越低。 固态金属熔化时是否会出现过热及原因: 会。原因:与液态金属结晶需要过冷的原因相似,只有在过热的情况下,Gl<G s,固态金属才会发生自发地熔化。 2-4 试比较均匀形核和非均匀形核的异同点。 答: 相同点: 1、形核驱动力都是体积自由能的下降,形核阻力都是表面能的增加。

2、具有相同的临界形核半径。 3、所需形核功都等于所增加表面能的1/3。 不同点: 1、非均匀形核的△Gk小于等于均匀形核的△Gk,随晶核与基体的润湿角的变 化而变化。 2、非均匀形核所需要的临界过冷度小于等于均匀形核的临界过冷度。 3、两者对形核率的影响因素不同。非均匀形核的形核率除了受过冷度和温度的 影响,还受固态杂质结构、数量、形貌及其他一些物理因素的影响。 2-5 说明晶体生长形状与温度梯度的关系。 答: 液相中的温度梯度分为: 正温度梯度:指液相中的温度随至固液界面距离的增加而提高的温度分布情况。负温度梯度:指液相中的温度随至固液界面距离的增加而降低的温度分布情况。固液界面的微观结构分为: 光滑界面:从原子尺度看,界面是光滑的,液固两相被截然分开。在金相显微镜下,由曲折的若干小平面组成。 粗糙界面:从原子尺度看,界面高低不平,并存在着几个原子间距厚度的过渡层,在过渡层中,液固两相原子相互交错分布。在金相显微镜下,这类界 面是平直的。 晶体生长形状与温度梯度关系: 1、在正温度梯度下:结晶潜热只能通过已结晶的固相和型壁散失。 光滑界面的晶体,其显微界面-晶体学小平面与熔点等温面成一定角度,这种情况有利于形成规则几何形状的晶体,固液界面通常呈锯齿状。 粗糙界面的晶体,其显微界面平行于熔点等温面,与散热方向垂直,所以晶体长大只能随着液体冷却而均匀一致地向液相推移,呈平面长大方式,固液界面始终保持近似地平面。 2、在负温度梯度下: 具有光滑界面的晶体:如果杰克逊因子不太大,晶体则可能呈树枝状生长;当杰克逊因子很大时,即时在较大的负温度梯度下,仍可能形成规则几何形状的晶体。具有粗糙界面的晶体呈树枝状生长。 树枝晶生长过程:固液界面前沿过冷度较大,如果界面的某一局部生长较快偶有突出,此时则更加有利于此突出尖端向液体中的生长。在尖端的前方,结晶潜热散失要比横向容易,因而此尖端向前生长的速度要比横向长大的速度大,很块就长成一个细长的晶体,称为主干。这些主干即为一次晶轴或一次晶枝。在主干形成的同时,主干与周围过冷液体的界面也是不稳的的,主干上同样会出现很多凸出尖端,它们会长大成为新的枝晶,称为称为二次晶轴或二次晶枝。二次晶枝发展到一定程度,又会在它上面长出三次晶枝,如此不断地枝上生枝的方式称为树枝状生长,所形成的具有树枝状骨架的晶体称为树枝晶,简称枝晶。 2-6 简述三晶区形成的原因及每个晶区的特点。 答: 三晶区的形成原因及各晶区特点: 一、表层细晶区

金属学与热处理期末复习

历年试题 材料成型与控制专业01级金属学与热处理试题 一. 名词解释(每小题2分,共20分): 1.晶体 2.正火 3.无限固溶体 4. 金属间化合物 5.晶界 6.相起伏 7.共晶转变 8.比重偏析 9.马氏体 10. 同素异构转变 二. 在同一个立方晶胞中画出以下晶面和晶向:(111)、(110)、(122)、[110]、[210]。(5分) 三. 晶粒大小对合金的常温力学性能有何影响?试分析其原因。(15分) 四.T8钢的过冷奥氏体等温冷却曲线如图所示,试分析以图中标明的几种冷却条件冷却之后各得到什么组织?对比这几种组织各具有什么样的力学性能特点.(10分) 五..(15分) 六.冷塑性变形后的金属,在重新加热时其组织结构和力学性能各有何变化?(15分) 七.简述T8钢的奥氏体化过程由哪几个阶段组成?分析其中奥氏体晶核长大机理。(10分) 八.具有网状渗碳体的T12钢要获得回火马氏体,应进行哪些热处理?试说明每种热处理的加热温度和冷却条件。(10分) 02级材料加工各专业金属学与热处理期末考试题B 一. 名词解释(每小题3分,共30分) 1.非自发形核 2.滑移 3.再结晶 4.间隙固溶体 5.铁素体 6.珠光体 7.本质晶粒度 8.淬火 9.各向异性 10.合金

二. 填空(每空1分,共15分) 1.一个体心立方晶胞中包含()个原子,一个面心立方晶胞中包含()个原子,一个密排六方晶胞中包含()个原子。 2. 纯铁在加热时,在912℃纯铁的晶格由()转变为(),在1394℃纯铁的晶格由()转变为()。 3.结晶过程是依靠两个密切联系的基本过程来实现的,这两个基本过程分别是()和()。 4.纯金属的最低再结晶温度和熔点的关系是()。 5.马氏体的显微组织形态主要有()、()两种。其中()的韧性比较好。 6.钢的淬透性越高,则其C曲线位置越靠(),说明临界冷却速度越()。 三. 选择(每题1分,共10分) 1.具有体心立方晶格的金属有() a)Cu b)α-Fe c)γ-Fe 2.具有面心立方晶胞的金属有()个滑移系。 a) 6 b)8 c)12 3.固溶体的晶体结构()。 a) 与溶剂相同 b)与溶质相同 c) 与溶质和溶剂都不相同 4. 铁碳两个元素可能形成的相有()。 a) 间隙固溶体 b)间隙化合物 c) 置换固溶体 5. 下列金属中塑性最好的是() a) α-Fe b)Al c) Mg 6.冷变形金属再结晶后,()。 a) 形成等轴晶,强度升高 b)形成柱状晶,强度升高 c) 形成等轴晶,塑性升高 7.与铁素体相比,珠光体的力学性能特点是()。

相关主题
文本预览
相关文档 最新文档