当前位置:文档之家› 新材料概论——金刚石薄膜

新材料概论——金刚石薄膜

新材料概论

化学与化工学院

———金刚石薄膜指导教师:刘飞

主讲人:杨明德

邓秀晴

目录:主要内容

金刚石

金刚石薄膜

类金刚石薄膜

金刚石薄膜应用

金刚石

金刚石又名钻石,除了其绚丽的色彩受到人们的珍视外,其所具有独特的、无与伦比的优异物理和化学性能也备受人们的关注。

金刚石图片

定义

金刚石薄膜:金刚石薄膜属于立方晶系,面心立方晶胞,每个晶胞含有8个C原子,每个C原子采取sp3杂化与周围4个C 原子形成共价键,牢固的共价键和空间网状结构是金刚石硬度很高的原因。

类金刚石薄膜

类金刚石薄膜通常又被人们称为DLC 薄膜,是英文词汇Diamond Like Carbon的简称,它是一类性质近似于金刚石,具有高硬度.高电阻率.良好光学性能等,同时又具有自身独特摩擦学特性的非晶碳薄膜。

金刚石(diamond )—碳碳以sp3键的形式结合

石墨(graphite )—碳碳以sp2键的形式结合

类金刚石—碳碳则是以sp3和sp2键的形式结合

类金刚石膜同样是一种亚稳态长程无序的非晶材料

含氢的DLC 膜中还存在一定数量的C-H 键

金刚石薄膜的特点

?金刚石薄膜有很多优异的性质:硬度高、耐磨性好、摩擦系数效、化学稳定性高、热导率高、热膨胀系数小,是优良的绝缘体。

?金刚石薄膜的禁带宽,电阻率和热导率大,载流子迁移率高,介电常数小,击穿电压高,是一种性能优异的电子薄膜功能材料,应用前景十分广阔。

日本科学家Matsumoto 和Sato 等使用热丝化学气相沉积法首次成功地合

成了金刚石薄膜

美国的General Electric 公司成功地合成了金刚石

金刚石的优异性能,但受到天然金刚石有

限的限制

金刚石薄膜的发展

由来

发展

方法

金刚石与其它几种硬质材料的硬度比较硬度金刚石立方氮化硼碳化钨刚玉石英

压痕硬度

Knoop(kgf/mm2)7000450018801600~2000820

显微硬度

Hv(kgf/mm2)100008000~9000240020601120

莫氏硬度109.9~8.9-9.17.0

由上表得出以下结论

擦系数低,散热快

低的密度和弹性模量,

良好传播速度

优良的硬度、低摩擦系数,极高的耐磨性、导热率、弹性模量、杨氏模量、化学稳定性、低膨胀系数

离散热率,低摩擦系数

和透光性

高速切削加工有色金属及其合金、复合材料和硬脆非金属材料的最佳侯选刀具材料。高保真扬声器高音单元的振膜。宇航高速旋转的特殊轴承。军用导弹的整流罩材料。

天然金刚石与CVD金刚石薄膜的力学性质比较力学性能天然金刚石CVD金刚石薄膜

硬度/GPa10070~100

密度/(g/cm3) 3.515 2.8~3.5

熔点/℃4000接近4000

弹性模量/ Pa 1.04×1012

杨氏模量/GPa12001050

泊松比0.2

热冲击系数/(W/m)107

摩擦系数0.08~0.1

断裂韧性MPa?m1/2约3.41~8

拉伸强度σb/GPa约30.2~0.4

热膨胀系数/(×10-6/K)

1.0(300K) 1.0(300K)

2.7(500K) 2.7(500K)

4.4(1000K) 4.4(1000K)

金刚石与金刚石薄膜的主要电学性能电学性能天然金刚石CVD金刚石

禁带宽度/eV 5.45 5.45

电阻率Ω?cm1016>1012

击穿电压/(V/cm) 3.5×106

电子迁移率*cm2/(V?s)+2200

空穴迁移率*cm2/(V?s)+1600

饱和电子漂移速度/(cm/s) 2.5×107

相对介电常数 5.5 5.5

产生电子空穴对能量/eV13

质量密度/(g/cm3) 3.515 2.8~3.5

热导率/*W/(cm?K)+2010~20

制备方法

PVD物理气相沉积:其核心技术指的当一切处在真空条件下时,至少有一种沉积元素被雾化(原子化),进行的气相沉积工艺。CVD化学气相沉积乃是通过化学反应的方式,利用加热、等离子激励或光辐射等各种能源,在反应器内使气态或蒸汽状态的化学物质在气相或气固界面上经化学反应形成固态沉积物的

技术。

CVD法大大降低了金刚石的生产成本,因而得到广泛应用

金刚石膜CVD制备方法

目前,采用CVD合成金刚石膜的方法主要包括:热丝CVD法、电子加速CVD法、直流放电等离子体CVD法、直流等离子体喷射CVD法、微波等离子体CVD法、电子回旋共振CVD法、高频等离子体CVD 法、燃焰法、激光诱导CVD法、空心阴极等离子体CVD法等。在各种CVD方法中综合指标较好的是被研究单位广泛采用的微波CVD法和热丝CVD法。

CVD金刚石生长的化学机理

混合

(热丝或微波放电)气体粒子在那里获

得能量而激发

继续混合并经历一系列复杂的化学反应

后到达基片表面

如果所有的条件适宜,这种表面反应的

产物就会是金刚石

晶粒生长的影响因素

沉积温

其他沉淀

条件

含碳气

源浓度

工具领域

热沉领域

光学应用领域电子学应用领域

应用

CVD法大大降低了金刚石的生产成本,同时CVD金刚石薄膜的品质逐渐赶上甚至在一些方面超过天然金刚石,使得金刚石薄膜广泛用于工业的许多领域:

(1) 工具领域:随着科技的发展,需要大量加工和使用轻量化、高强度的材料,用具有最高硬度的金刚石制成的刀具所显示出来的长寿命、高加工精度、高加工质量等优越性是十分显著的,而将金刚石薄膜直接沉积在刀具表面不仅价格大大低于聚晶金刚石刀具,而且可以制备出具有复杂几何形状的金刚石涂膜刀具,在加工非铁系材料领域具有广阔的应用前景。

(2) 热沉领域:金刚石在室温下具有最高的热导率,是铜、银的5倍,又是良好的绝缘体,因而是大功率激光器件、微波器件、高集成电子器件的理想散热材料。

3) 光学应用领域:金刚石从真空紫外光波段到远红外光波段对光线是完全透明的,因此金刚石是最好的光学材料。金刚石膜作为光学涂层的应用前景非常好,在军事上可用作红外光学窗口和透镜的保护性涂层。在民用方面可用作在恶劣环境(如冶金,化工等)下工作的红外在线监测和控制仪器的光学元件涂层。

(4) 电子学应用领域:金刚石与现有半导体材料相比,具有最低的介电常数,最高的禁带宽度,很高的电子及空穴迁移率和最高的热导率。它有可能制备微波甚至于毫米波段超高速计算机芯片,高电压高速开关及固体功率放大器,工作温度可达600℃。金刚石制备电子器件的应用已取得了

初步的结果,如金刚石薄膜发光管、金刚石薄膜场效应管、金刚石薄膜热敏电阻等。同时成功地对金刚石膜进行P型

掺杂,对N型掺杂也取得了一定的进步。

类金刚石薄膜的分子动力学研究

Material Sciences 材料科学, 2014, 4, 145-151 Published Online July 2014 in Hans. https://www.doczj.com/doc/e47047884.html,/journal/ms https://www.doczj.com/doc/e47047884.html,/10.12677/ms.2014.44022 The Molecular Dynamics Simulation on the Diamond-Like Carbon Films Minyong Du1, Ming Zhang1*, Jizhou Wei1, Haoliang Deng1, Shangjie Chu1, Kun Ren2 1College of Materials Science and Engineering, BeiJing University of Technology, Beijing 2College of EE and CE, Beijing University of Technology, Beijing Email: duminyong@https://www.doczj.com/doc/e47047884.html,, *mzhang@https://www.doczj.com/doc/e47047884.html, Received: May 28th, 2014; revised: Jun. 25th, 2014; accepted: Jul. 4th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/e47047884.html,/licenses/by/4.0/ Abstract The research and application of the diamond-like carbon films are very extensive since it was found due to the superior properties. Therefore, we had begun to study using molecular simula-tion methods in order to get better properties and explore better structure as early as the 1980s. In this background, the paper describes the development of the case of the diamond-like carbon films’ study, and gives a brief summary for the representative study of each period. Then, we point out some of the key issues that the diamond-like simulation faces and give the prospect for its fu-ture development at the end of this paper. Keywords Diamond-Like Carbon Films, Molecular Dynamics Simulation, Interatomic Potentials 类金刚石薄膜的分子动力学研究 杜敏永1,张铭1*,魏纪周1,邓浩亮1,楚上杰1,任坤2 1北京工业大学,材料科学与工程学院,北京 2北京工业大学,电子信息与工程学院,北京 Email: duminyong@https://www.doczj.com/doc/e47047884.html,, *mzhang@https://www.doczj.com/doc/e47047884.html, 收稿日期:2014年5月28日;修回日期:2014年6月25日;录用日期:2014年7月4日 *通讯作者。

类金刚石薄膜 资料介绍

类金刚石膜技术基础 一、类金刚石薄膜发展史: 金刚石、类金刚石薄膜技术,是指利用各种光学薄膜制作技术制作接近天然金刚石和人造单晶金刚石特性(如在较宽光谱内均具有很高的光透过率--在2~15μm(微米)范围光的吸收率低到1%;具有很高的硬度、良好的导热性、耐腐蚀性以及化学稳定性高--1000℃(摄氏度)以上仍保持其化学稳定性等)的人造多晶金刚石薄膜、类金刚石薄膜(又称为硬碳膜、离子碳膜、或透明碳膜)的一种技术。 光学应用金刚石、类金刚石薄膜主要采用低压化学汽相沉积(CVD)技术制备。低压CVD 技术包括热丝CVD法、等离子体CVD法、离子束蒸镀法、光/激光CVD法附加活性氢激光CVD 法等。 目前,CVD法制作金刚石薄膜已取得丰硕成果,但作为红外光学薄膜应用还需进一步解决金刚石薄膜对红外光学材料的粘着性和光散射的问题。CVD法制作的金刚石薄膜与硅基片的粘着性是不错的,但是与其他材料(如锗、硫化锌等)基片的粘着性就甚差,或是根本就粘着不到一起去。对于光散射的问题,则是要求如何更好地控制金刚石薄膜表面形态和晶粒结构。理想的CVD法制造的红外光学应用的金刚石薄膜或许是一种单晶结构的膜,但是,目前使用CVD法还不能制造单晶结构的金刚石薄膜。此外,大面积薄膜的制作、膜的光洁度等技术课题以及金刚石薄膜的制作成本问题,都有待于继续研究解决。 1.1金刚石、类金刚石薄膜研究进程 自1963年在一次偶然的机会出现了不寻常的硬度和化学性能好的化学汽相沉积(CVD)碳形式的薄膜后,国外有不少研究单位开始研究金刚石薄膜的沉积工艺.1971年,艾森伯格(Aisenberg)和沙博(Chabot)等人,利用离子束蒸镀法,以石墨作薄膜材料,通过氩气弧光放电使石墨分解电离产生碳离子。碳离子经磁场聚焦成束,在比较高的真空条件下,在低压沉积室内的室温下的基片上沉积出了硬碳膜。这种硬碳膜具有近似于金刚石的一些特性-如透明度高、电阻抗大、硬度高等。当时,这种膜被人们称作i形碳。直到1976年,斯潘塞(Spencer)等人对这种应碳膜的结构进行了探讨,结果确认膜中有金刚石等数种碳系结晶,后才被人们称之为类金刚石膜。就在这一年,德贾吉恩(Derjaguin)等人利用化学转变法合成出了金刚石薄膜。从此之后,低压CVD金刚石薄膜工艺引起了人们的注意。70年代中期,前苏联的科学家,论证了实用的CVD金刚石薄膜技术,接下来日本人又模仿和发展了此项技术。进入80年代后,低压CVD金刚石薄膜研究在日本蓬勃开展起来。在从1963~1987年的25年中,各国相继发表的有关金刚石薄膜制作技术及其相关材料的专利,共有672篇。其中美国

类金刚石薄膜界面结合力的改善技术

类金刚石薄膜界面结合力的改善技术 赵洋1 (1.西南大学材料科学与工程学院,重庆400715) [摘要] 本文对当前国内外改善DLC薄膜界面结合力的技术进行了综述,包括改善沉积工艺、掺杂、过渡层设计等,为改善DLC薄膜结合力提供依据。 [关键词]类金刚石薄膜;内应力;结合力 technology of improving the interfacial adhesion of DLC films Zhao Yang1 (1.School of Materials Science and Engineering,Southwest University,Chongqing 400715,China;) [Abstract] Current domestic and international technology of improving the interfacial adhesion of DLC films are summarized in this paper in order to supply the accordance of improving the adhesion,which includes the changing of deposition parameters, doping, interlayers, and so on. [Key words] DLC films; intrinsic force;adhesion 1 引言 类金刚石薄膜(DLC),具有类似于天然金刚石的性质,是一种新型的硬质润滑功能薄膜材料[1],薄膜中的碳原子部分处于sp2杂化状态,部分处于sp3杂化状态,同时也有极少数处于sp1杂化状态[2]。由于具有优良的光、电和力学特性, 在工业上具有广泛的应用前景[3~4], 近年来DLC膜在许多方面已得到了工业化应用, 如在切削刀具, 自动化机械零部件等的表面涂层处理上。 然而,DLC膜的一个致命弱点是内部应力很高, 有些DLC膜应力高达10G Pa,使得薄膜的结合力特性较差、不易厚膜化,从而极大地限制了它的应用范围。这主要是由于DLC薄膜在沉积过程中,离子对基体表面的轰击和注入,使得膜基之间存在较大的应力,再加上本身具有的化学惰性, 难以与基体形成化学健合, 使得其与一些常用的衬底材料难于形成强固的粘合层。为改善DLC薄膜的特性,尤其是界面结合力,许多科研工作人员从多方面进行了探索和研究。目前,国内外改善DLC薄膜界面结合强度主要是从本征应力和界面应力的控制两方面来着手。其中,通过改变工艺参数、掺杂第三元素[5]、引入中间过渡层或进行退火后处理[6]等方式来改善DLC膜结合力是目前技术研究的热点。 2 DLC结合力改善技术

金刚石材料的功能特性研究与应用

陶瓷专题 金刚石材料的功能特性研究与应用 高 凯,李志宏 (天津大学材料科学与工程学院,天津 300072) Study and Application on Functional Properties of Diamond Materials GAO Kai,LI Zhi hong (S chool of M ater ial S cience and Engineer ing,T ianj in Univer sity,T ianj in300072,China) Abstract:Functional properties of diamo nd mater ials and its study and application recent years on w ide bandg ap semiconducto rs,ultraviolet detectors,sing le pho to n source for quantum computer,so nic surface diffusion and electronic encapsulatio n w ere reviewed in this paper,and other po tential application on func tional proper ties of the diamond materials w ere expected. Key words:Diamo nd,Functional proper ty,Study,Application 摘要:本文综述了金刚石的功能特性及其近年来在宽禁带半导体、紫外探测器、量子计算机用单光子源、声波材料和电子封装等方面的研究与应用进展,并对金刚石材料在其它功能特性方面的开发与应用前景提出了展望。 关键词:金刚石;功能特性;研究;应用 中图分类号:TB33 文献标识码:A 文章编号:1002-8935(2010)04-0009-05 金刚石是目前工业化生产的最硬材料,其前通常利用其硬度特性广泛地作为加工、研磨材料。但它除了具有高硬度之外,其许多优异特性被逐渐发现和挖掘,如室温下高热导率、极低的热膨胀系数、低的摩擦系数、良好的化学稳定性、大的禁带宽度(5 5eV)、高的声传播速度、掺杂诱导的半导体特性以及高的光学透过率,使其在机械加工、微电子器件、光学窗口及表面涂层等许多领域有着广阔的应用前景。因此,金刚石材料的功能特性研究与应用引起了人们极大的兴趣,并在很多领域取得了突破和进展。 1 在宽禁带半导体方面的研究与应用 金刚石作为一种宽禁带半导体,在光电子学中的应用前景无疑是最引人注目的。但是由于n型金刚石半导体掺杂存在着一定的困难,使制备同质结的困难加大,目前领先的依然是麻省理工学院有关于金刚石薄膜p n结的研究[1],2001年麻省理工学院的Koizumi等第一次制备了金刚石薄膜p n结,在金刚石单晶的(111)面上以同质外延生长的方法制备了两层金刚石薄膜,p型半导体使用B元素掺杂金刚石薄膜而成,n型半导体则以P元素掺杂制备,然后他们对这个装置进行了改进,在施加20V 偏压电路的情况下,装置被激发出了紫外光,并且指出,该装置可以在高温下运作。Alexo v A等[2]则在掺杂B元素后的金刚石薄膜上用同质外延法制备了一层掺杂N元素的金刚石薄膜,但是并没有详细报道此p n结的电致发光等特性。之后有关同质结的报道很不常见,估计主要是还是因为金刚石n型半导体掺杂的可重复性存在着一定的困难所致,目前报道都集中于金刚石半导体异质结上,比如,已在Si晶片上生长含B金刚石薄膜[3],或者是制备肖特基二极管(Schottky diodes)和场效应晶体管(Field effect transisto rs,FET)。 1987年化学气相沉积(CVD)法制备含B金刚石薄膜的方法并不完善,所以Geis等[4]用合成含B 金刚石单晶的方法制备了由W元素接触的首个金刚石肖特基二极管,并在700下考察了样品的性能,确定了样品具有很高的击穿场强。同一课题组的相关人员进一步考察了不同金属元素接触对金刚石肖特基二极管性能的影响[5],大量的工作表明,使用Al,Au,H g元素作为含B金刚石的表面接触元

类金刚石薄膜制备和应用

类金刚石膜调研 类金刚石薄膜发展史: 金刚石、类金刚石薄膜技术,是指利用各种光学薄膜制作技术制作接近天然金刚石和人造单晶金刚石特性(如在较宽光谱内均具有很高的光透过率--在2~15μm(微米)范围光的吸收率低到1%;具有很高的硬度、良好的导热性、耐腐蚀性以及化学稳定性高--1000℃(摄氏度)以上仍保持其化学稳定性等)的人造多晶金刚石薄膜、类金刚石薄膜(又称为硬碳膜、离子碳膜、或透明碳膜)的一种技术。 光学应用金刚石、类金刚石薄膜主要采用低压化学汽相沉积(CVD)技术制备。低压CVD 技术包括热丝CVD法、等离子体CVD法、离子束蒸镀法、光/激光CVD法附加活性氢激光CVD 法等。 目前,CVD法制作金刚石薄膜已取得丰硕成果,但作为红外光学薄膜应用还需进一步解决金刚石薄膜对红外光学材料的粘着性和光散射的问题。CVD法制作的金刚石薄膜与硅基片的粘着性是不错的,但是与其他材料(如锗、硫化锌等)基片的粘着性就甚差,或是根本就粘着不到一起去。对于光散射的问题,则是要求如何更好地控制金刚石薄膜表面形态和晶粒结构。理想的CVD法制造的红外光学应用的金刚石薄膜或许是一种单晶结构的膜,但是,目前使用CVD法还不能制造单晶结构的金刚石薄膜。此外,大面积薄膜的制作、膜的光洁度等技术课题以及金刚石薄膜的制作成本问题,都有待于继续研究解决。 1.1金刚石、类金刚石薄膜研究进展 自1963年在一次偶然的机会出现了不寻常的硬度和化学性能好的化学汽相沉积(CVD)碳形式的薄膜后,国外有不少研究单位开始研究金刚石薄膜的沉积工艺.1971年,艾森伯格(Aisenberg)和沙博(Chabot)等人,利用离子束蒸镀法,以石墨作薄膜材料,通过氩气弧光放电使石墨分解电离产生碳离子。碳离子经磁场聚焦成束,在比较高的真空条件下,在低压沉积室内的室温下的基片上沉积出了硬碳膜。这种硬碳膜具有近似于金刚石的一些特性-如透明度高、电阻抗大、硬度高等。当时,这种膜被人们称作i形碳。直到1976年,斯潘塞(Spencer)等人对这种应碳膜的结构进行了探讨,结果确认膜中有金刚石等数种碳系结晶,后才被人们称之为类金刚石膜。就在这一年,德贾吉恩(Derjaguin)等人利用化学转变法合成出了金刚石薄膜。从此之后,低压CVD金刚石薄膜工艺引起了人们的注意。70年代中期,前苏联

金刚石薄膜的性能研究

金刚石薄膜的性能研究 金刚石薄膜的应用 由于金刚石的优异性质,加上CVD法大大降低了金刚石的生产成本而CVD金刚石薄膜的品质逐渐赶上甚至在一些方面超过天然金刚石而使得金刚石薄膜广泛地用于工业的许多领域: 1 工具领域 随着汽车、航空和航天工业的发展以及对材质轻量化、高比强度的要求日益提高,有色金属、碳纤维增强塑料(CFRP)、玻璃纤维增强塑料(GFRP)、纤维增强金属(FRM)以及石墨、陶瓷等新材料在工业中的应用日益广泛,因而对加工这些材料的刀具提出了更高的要求,金刚石的高硬度,耐磨损,高热导,低热膨胀系数,低摩擦系数,化学惰性等优点使得金刚石是加工非铁系材料的理想工具材料。HTHP金刚石在二十世纪60年代就被用于刀具领域,但由于其制备工艺复杂,价格昂贵,刀具种类受限而限制了其在工业上的广泛应用;将金刚石薄膜直接沉积在刀具表面,能极大地延长刀具的使用寿命,加工质量也大为提高。 2 热沉领域 目前国内半导体功率器件采用铜作热沉,在同时要求绝缘的场合采用氧化铍陶瓷。但氧化铍在制备过程中有剧毒物质产生,在发达国家已禁止使用。金刚石在室温下具有最高的热导率,是铜、银的5倍,又是良好的绝缘体,因而是大功率激光器件、微波器件、高集成电子器件的理想散热材料 采用金刚石热沉(散热片)的大功率半导体激光器已经用于光通信,在激光二极管、功率晶体管、电子封装材料等方面都有应用;金刚石热沉商品也已在国外市场出现。金刚石热沉的另一应用前景是用于正在发展之中的多芯片技术(MCMs,Multi Chip Modules),这一技术的目标是把许多超大规模集成电路芯片以三维的方式紧密排列结合成为超小型的超高性能器件,而这些芯片的散热则是该技术的关键,显然金刚石薄膜是解决这一技术难题最理想的材料。 3 光学应用领域 金刚石的光学吸收在0.22μm左右,相当于真空紫外光波段,从此位置直到毫米波段,除位于~5μm附近由于双声子吸收而造成的微弱吸收峰(吸收系数~12.3cm-1)外,不存在任何吸收峰。 金刚石膜作为光学涂层的应用前景非常好。在军事可用作红外光学窗口和透镜的涂层。在民用方面可用作在恶劣环境(如冶金,化工等)下工作的红外在线监测和控制仪器的光学元件涂层。CVD金刚石膜通常沉积温度在800~1000℃左右,大多数光学材料衬底都不允许在这样高的温度下沉积金刚石膜,因此在低温下沉

类金刚石薄膜的性能与应用

学科前沿知识讲座论文

类金刚石薄膜的性能与应用 摘要: 类金刚石膜(Diamond-like Carbon)简称DLC,是一类性质类似于金刚石如具有高硬度、高电阻率、耐腐蚀、良好的光学性能等,同时其又具有自身独特摩擦学特性的非晶碳膜。作为功能薄膜和保护薄膜,其广泛应用于机械、电子、光学、医学、航天等领域中。类金刚石膜制备方法比较简单,易实现工业化,具有广泛的应用前景。 关键词:超硬材料类金刚石薄膜制备气象沉积表面工程技术引言 磨损是工程界材料功能失效的主要形式之一,由此造成的资源、能源的浪费和经济损失可用“巨大”来表示。然而,磨损是发生于机械设备零部件表面的材料流失过程,虽然不可避免,但若采取得力措施,可以提高机件的耐磨性。材料表面工程主要是利用各种表面改性技术,赋予基体材料本身所不具备的特殊的力学、物理或化学性能,如高硬度、低摩擦系数、良好的化学及高温稳定性、理想的综合机械性能及优异的摩擦学性能,从而使零部件表面体系在技术指标、可靠性、寿命和经济性等方面获得最佳效果。硬质薄膜涂层因能减少工件的摩擦和磨损,有效提高表面硬度、韧性、耐磨性和高温稳定性,大幅度提高涂层产品的使用寿命,而广泛应用于机械制造、汽车工业、纺织工业、地质钻探、模具工业、航空航天等领域。

一、超硬薄膜材料 随着材料科学和现代涂层技术的发展,应用超硬材料涂层技术改善零部件表面的机械性能和摩擦学性能是21世纪表面工程领域重要的研究方向之一。超硬薄膜是指维氏硬度在40GPa以上的硬质薄膜。到目前为止,主要有以下几种超硬薄膜: 1 金刚石薄膜 金刚石薄膜的硬度为50~100GPa(与晶体取向有关),从20世纪80年代初开始,一直受到世界各国的广泛重视,并曾于20世纪80年代中叶至90年代末形成了一个全球范围的研究热潮。金刚石膜所具有的最高硬度、最高热导率、极低摩擦系数、很高的机械强度和良好化学稳定性的优异性能组合使其成为最理想的工具和工具涂层材料。金刚石薄膜在摩擦学领域应用的突出问题,就是在载荷条件下薄膜与基体之间的粘附强度以及薄膜本身的粗糙度问题,目前,己经有针对性地开展了大量的研究工作。随着研究工作的不断深入,金刚石薄膜将会为整个人类社会带来巨大的经济效益。 2 立方氮化硼(c-BN)薄膜 立方氮化硼(c-BN)薄膜的硬度为50~80GPa,它具有与金刚石相类似的晶体结构,其物理性能也与金刚石十分相似。与金刚石相比,c-BN的显著优点是具有良好的热稳定性和化学稳定性,适用于作为超硬刀具涂层,特别是用于加工铁基合金的刀具涂层。 3 碳氮膜 碳氮膜是新近开发的超硬薄膜材料,理论预测它具有达到和

化学气相沉积金刚石薄膜及其应用进展

化学气相沉积金刚石薄膜及其应用进展 摘要:化学气相淀积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。本文简单综述了化学气相淀积金刚石薄膜,又简单介绍了金刚石薄膜在各工业领域内的应用进展情况,并对其发展前景作了展望。 关键词:金刚石薄膜热灯丝CVD法微波等离子体CVD法 前言金刚石在所有已知物质中具有最高的硬度,室温下有最高的热导率,对光线而言从远红外区到深紫外区完全透明,有最低的可压缩性,极佳的化学惰性,其生物兼容性超过了钛合金等等。然而由于天然金刚石数量稀少,价格昂贵,尺寸有限等因素,人们很难利用金刚石的上述优异的性能。根据天然金刚石存在的事实以及热力学数据,人们一直想通过碳的另一同素异形体——石墨来合成金刚石。但由于金刚石与石墨之间存在着巨大的能量势垒,要将石墨转化为金刚石,必须使用高温高压技术来人工合成,使得人工高温高压合成的金刚石价格昂贵。 20世纪80年代初开发的化学气相沉积(CVD)制备的金刚石薄膜,不仅成本低,质量高,而又可大面积制备,使人们大规模应用金刚石优异性质的愿望,通过CVD法合成金刚石薄膜得以实现。金刚石膜具有极其优异的物理和化学性质,如高硬度、低磨擦系数、高弹性模量、高热导、高绝缘、宽能隙和载流子的高迁移率以及这些优异性质的组合和良好的化学稳定性等,因此金刚石薄膜在各个工业领域有极其广泛的应用前景。 1金刚石薄膜制备 在低温低压下利用化学气相沉积CVD技术生长金刚石膜;含碳化合物和氢气是最主要的原料,前者提供碳源,后者提供原子态的氢,促使更多的碳转变为sp3的金刚石结构,除去未转变为金刚石的其它形态碳(sp2石墨碳或非晶碳、sp1碳)。 金刚石薄膜制备的主要CVD方法:(1)热灯丝CVD(HFCVD);(2)微波等离子体CVD(MWPCVD);(3)直流等离子体CVD(DC-CVD);(4)直流电弧等离子体射流CVD(DC-JET);(5)电子增强CVD(EACVD);(6)磁微波等离子体

类金刚石薄膜

类金刚石薄膜材料 班级:材料物理081401 姓名:谭旭松 学号:200714020124

1.1类金刚石薄膜材料的概述 类金刚石薄膜(Diamond Like Carbon)简称DLC,它是一类性质近似于金刚石,以sp3和 sp2键杂化的碳原子空间网络结构的亚稳态非晶碳膜。依据制备方法和工艺不同,DLC的性质可以在非常大的范围变化,既可能非常类似与金刚石,也可能非常类似与石墨。其硬度、摩擦系数、导热率、光学带隙、光学透光率、电阻率等都可以依据需要进行“调制”。一般类金刚石薄膜沉积温度较低、膜面平整光滑,因而在机械电子光学声学计算机的很多领域得到应用,如耐磨层、高频扬声器振膜、光学保护膜等,因此对DLC的开发研究引起很多材料工作者的极大关注。自从1971年Aisenberg 和Chabot 两位科学家利用碳离子束沉积出DLC 薄膜以来,人们已经成功地研究出了许多物理气相沉积、化学气相沉积以及液相法制备DLC 薄膜的新方法和新技术。这之中有两个法分别为气相法和沉积法。 1.2类金刚石薄膜材料的结构和分类 常态下碳有三种键和方式:sp1,sp2,sp3。在sp3态碳原子的四个电子按四面体形状分布成sp3杂化轨道,形成强σ键;在sp2态,碳原子的四个电子中的三个形成在同一平面内的三次轴对称的sp2杂化轨道,它们可形成强σ键第四个电子轨道与该平面垂直,形成π键;在sp1态,仅两个电子形成σ键,另两个电子形成π键。金刚石(diamond)—碳碳以 sp3键的形式结合;石墨(graphite)—碳碳以sp2键的形式结合;而类金刚石(DLC)—碳碳则是以sp3和 sp2键的形式结合,生成的无定形碳的一种亚稳定形态,它没有严格的定义,可以包括很宽性质范围的非晶碳,因此兼具了金刚石和石墨的优良特性;所以由类金刚石而来的DLC膜同样是一种亚稳态长程无序的非晶材料,碳原子间的键合方式是共价键,主要包含sp2和sp3两种杂化键,因而类金刚石薄膜的结构和性能介于金刚石和石墨之间,收沉积环境和沉积方式影响类金刚石薄膜中还可能含有H等杂质,形成一定数量的C-H键。 类金刚石薄膜(DLC)是1种非晶薄膜,可分为无氢类金刚石碳膜(a-C)和氢化类金刚石碳膜(a-C:H)两类。无氢类金刚石碳膜有a-C膜(主要由sp3和sp2键碳原子相互混杂的三维网络构成),以及四面体非晶碳(tetrahedral carbon,简称ta-C)(主要由超过80%的sp3键碳原子为骨架构成);氢化类金刚石碳膜(a-C:H)又可分为类聚合物非晶态碳(polymer—like carbon,简称PLC)、类金刚石碳、类石墨碳3种,其三维网络结构中同时还结合一定数量的氢. 类金刚石碳膜(diamond-like carbon films,简称DLC膜),的基本成分是碳,由于其碳的来源和制备方法的差异,DLC膜可分为含氢和不含氢两大类。DLC膜是一种亚稳态长程无序的非晶材料,碳原子间的键合方式是共价键,主要包含sp2和sp3两种杂化键,在含氢DLC膜中还存在一定数量的C-H键。我们从1996年起开始磁过滤真空弧及沉积DLC膜研究,正在完善工业化技术。如等离子体源沉积法、离子束源沉积法、孪生中频磁控溅射法、真空阴极电弧沉积法和脉冲高压放点等。不同的制备方法,DLC膜的成分、结构和性能不同。类金刚石碳膜作为新型的硬质薄膜材料具有一系列优异的性能,如高硬度、高耐磨性、高热导率、高电阻率、良好的光学透明性、化学惰性等,可广泛用于机械、电子、光学、热学、声学、医学等领域,具有良好的应用前景。我们开发了等离子体-

oDLC类金刚石镀膜技术知识介绍

oDLC类金刚石镀膜技术知识介绍 DLC(类金刚石薄膜)定义: 类金刚石薄膜是近年兴起的一种以sp3和 sp2键的形式结合生成的亚稳态材料,兼具了金刚石和石墨的优良特性,而具有高硬度.高电阻率.良好光学性能以及优秀的摩擦学特性。类金刚石薄膜通常又被人们称为DLC薄膜,是英文词汇Diamond Like Carbon的简称,它是一类性质近似于金刚石,具有高硬度.高电阻率.良好光学性能等,同时又具有自身独特摩擦学特性的非晶碳薄膜。 DLC薄膜性能 机械性能:高硬度和高弹性模量、优异的耐磨性、低摩擦系数 电学性能:表面电阻高化学惰性大 光学性能:DLC膜在可见光区通常是吸收的,在红外去具有很高的透过率稳定性:亚稳态的材料、热稳定性很差,400摄氏度 oDLC镀膜技术解析: oDLC镀膜技术,是指通过纳米镀膜技术将DLC(类金刚石薄膜)均匀地沉积于钢化玻璃或者物质表面,形成一层独特的保护膜。借助类金刚石薄膜自身的高硬度优势提高钢化玻璃的表面硬度,改善其防刮抗压性能。、 oDLC镀膜技术的应用 由于DLC类金刚石有着和金刚石几乎一样的性质,因此,它的产品被广泛应用到机械、电子、光学和医学等各个领域。同时类金刚石膜有着比金刚石膜更高的新能价格比,所以相当广泛的领域内可以代替金刚石膜。 1、机械领域的应用 ①用于防止金属化学腐蚀和划伤方面 ②磁介质保护膜 2、电子领域的应用 ①UISI芯片的BEOL互联结构的低K值的材料 ②碳膜和DLC薄膜交替出现的多层结构构造共振隧道效应的多量子阱结构 3、光学领域的应用 ①塑料和聚碳酸酯等低熔点材料组成的光学透镜表面抗磨损保护层 ②DLC膜为性能极佳的发光材料之一:光学隙带范围宽,室温下光致发光和

金刚石薄膜

金刚石薄膜 类金刚石薄膜是近来兴起的一种以sp3和sp2键的形式结合生成的亚稳态材料,兼具了金刚石和石墨的优良特性,而具有高硬度。高电阻率。良好光学性能以及优秀的摩擦学特性。 结构 类金刚石薄膜通常又被人们称为DLC薄膜,是英文词汇DiamondLikeCarbon的简称,它是一类性质近似于金刚石,具有高硬度.高电阻率.良好光学性能等,同时又具有自身独特摩擦学特性的非晶碳薄膜。碳元素因碳原子和碳原子之间的不同结合方式,从而使其最终产生不同的物质:金刚石(diamond)-碳碳以sp3键的形式结合;石墨(graphite)-碳碳以sp2键的形式结合;而如同绪论里所述类金刚石(DLC)-碳碳则是以sp3和sp2键的形式结合,生成的无定形碳的一种亚稳定形态,它没有严格的定义,可以包括很宽性质范围的非晶碳,因此兼具了金刚石和石墨的优良特性;所以由类金刚石而来的DLC膜同样是一种亚稳态长程无序的非晶材料,碳原子间的键合方式是共价键,主要包含sp2和sp3两种杂化键,而在含氢的DLC膜中还存在一定数量的C-H键。 由两个相同或不相同的原子轨道沿轨道对称轴方向相互

重叠而形成的共价键,叫做σ键。σ键是原子轨道沿轴方向重叠而形成的,具有较大的重叠程度,因此σ键比较稳定。σ键是能围绕对称轴旋转,而不影响键的强度以及键跟键之间的角度(键角)。根据分子轨道理论,两个原子轨道充分接近后,能通过原子轨道的线性组合,形成两个分子轨道。其中,能量低于原来原子轨道的分子轨道叫成键轨道,能量高于原来原子轨道的分子轨道叫反键轨道。以核间轴为对称轴的成键轨道叫σ轨道,相应的键叫σ键。以核间轴为对称轴的反键轨道叫σ*轨道,相应的键叫σ*键。分子在基态时,构成化学键的电子通常处在成键轨道中,而让反键轨道空着。 σ键是共价键的一种。它具有如下特点: 第一点,σ键有方向性,两个成键原子必须沿着对称轴方向接近,才能达到最大重叠;第二点,成键电子云沿键轴对称分布,两端的原子可以沿轴自由旋转而不改变电子云密度的分布;第三点,σ键是头碰头的重叠,与其它键相比,重叠程度大,键能大,因此,化学性质稳定。共价单键是σ键,共价双键有一个σ键,π键,共价三键由一个σ键,两个π键组成。 分类 类金刚石薄膜(DLC)是1种非晶薄膜,可分为无氢类金刚石碳膜(a-C)和氢化类金刚石碳膜(a-C:H)(图2)两类。无氢类金刚石碳膜有a-C膜(主要由sp3和sp2键碳原子相互混杂

几种CVD制备金刚石薄膜的方法

几种CVD制备金刚石薄膜的方法 1.热丝CVD法 此法又称为热解CVD法,Matsumoto等人采用热丝CVD法成功地生长出了金刚石薄膜。该法是把基片(Si、Mo、石英玻璃片等)放在石英玻璃管做成的反应室内,把石英管内抽成真空后,把CH4和H2的混合气体输人到装在管中的钨丝附近(两种气体的流量比为0.5%-5%)。用直流稳压电源加热钨丝到约2000℃,反应室内温度为700~900℃,基片温度为900℃左右,室内气体压力为1×103-1×105Pa。在这样的反应条件下,CH4和H2混合气中的H2被热解,产生原子态氢,原子态氢与CH4反应生成激发态的甲基,促进了碳化氢的热分解,促使金刚石SP3杂化C-C键的形成,使金刚石在基片上沉积,获得立方金刚石多晶薄膜。沉积速率为8-10μm/h 我国的金曾孙等人也用热丝CVD法生长出质量很好的金刚石薄膜。实验表明,基片温度和甲烷的浓度是薄膜生长最为重要的参数,它们对金刚石薄膜的结构、晶形、膜的质量和生长速率影响甚大。该法的特点是装置结构简单、操作方便、容易沉积出质量较好的金刚石膜。 2.电子加速CVD法 此法是在用热丝CVD法沉积金刚石薄膜过程中,用热电子轰击基片表面,加速金刚石在基片上沉积。与热丝CVD法不同的是,该法把电压正极接在用铝制成的基片架上,经加热的钨丝发射电子,电子在电场作用下轰击阳极的基片。CH4和H2的混合气体被输送到基片表面,由于热反应和热电子轰击的双重作用,使气体发生分解,形成各种具有活性的碳氢基团,促使具有双键和三键的碳离解,加速金刚石的成核和生长。基片可选用Si、SiC、Mo、WC、A12O3等材料。一般的工艺参数是:甲烷为ψ(CH4)=0.5%~2.0%;气体流速为5-50cm3/min;基片温度在500~750℃之间;钨丝温度为2000℃;基片支架的电流密度为10mA/cm2,电压150V。用此法沉积出的金刚石薄膜的性质与天然金刚石基本相同,晶形完整,生长速率一般为3~5μm/h。此法的特点是通过电子轰击基片,从而加速了CH4和H2的分解,增加了基片表面上金刚石的成核。不足之处是金刚石薄膜中夹杂有少量的无定形碳、石墨和氢。这可通过调节工艺参数加以解决。 3.直流放电等离子体CVD法 等离子体CVD包括直流等离子体、高频等离子体和微波等离子体等3种。其原理是把CH4和H2混合气体等离子化,分解成C、H2、H、C x H y基团,形成等离子体。等离子体中依靠电子的适当浓度保持电中性。因此,电子的能量高于离子或中性粒子,有各种状态的游离基发生,促使碳与基片接触,从而沉积出金刚石薄膜。由于等离子体化学反应过程很复杂,反应的机理目前还不十分清楚。 Suzuki等人用直流等离子体装置,进行了沉积实验,取得了较好的结果。他们以CH4和 H2为气源,CH4浓度为ψ(CH4)=0.3%一4.0%(体积分数),混合气体以20mL/min通人反应室,反应室的压力保持在2.67×104Pa,安装基片的阳极位于阴极上方20mm处,在1kV的电压和4 A/cm2电流密度下进行直流放电。由于电子轰击,基片温度可达800℃,此时基片上便有金刚石析出。其中基片温度可通过冷却水的流速来调节,用该法生长出的金刚石结晶形态好,薄膜的生长速率高达2Oμm/h。该方法的特点是设备相对简单,放电区域大,可做出较大面积且均匀的金刚石薄膜。

200915010121化学气相沉积(CVD ) 金刚石薄膜

化学气相(CVD ) 金刚石薄 膜的 主要制备方法及应用

?金刚石又名钻石, 是碳的同素异构体, 属于立方晶系, 具有面心立方结构, 典型的原子晶体。金 刚石具有很多无与伦比的优异性能, 机械特性、 热学特性、透光性、纵波声速、半导体特性及化 学惰性等, 在自然界所有的材料中均是首屈一指的。例如: 金刚石硬度是自然界中硬度最高的, 热导率是已知材料中最高的(是铜的热导率5 倍) , 高绝缘性和从红外到紫外极宽的透光性??。由于 自然界中金刚石储量极少,

, 因此价格昂贵, 而且无论天然金刚石还是高温高压下合成的人造金刚石都是离散的颗粒状, 应用范围受到了很大限制。近几年, 发达国家对化学气相沉积(简称CVD) 金刚石膜制备及应用开发研究进行了大量投资。由于CVD 金刚石制造成本低, 可以大面积化、曲面化, 而且其厚度可按需要从不足1Lm 直至数毫米, 而且制备出的CVD 金刚石薄膜物理性和天然金刚石基本相同或接近, 化学性质完全相同, 使金刚石的应用领域大大扩大。

制备方法1. 1热灯丝CVD 法 (HFCVD) (如图1)

热灯丝CVD 法是在基片表面的附近用5 0. 15mm 左右螺旋钨丝通电加热、钨丝温度控制2000~2200℃。真空室压力控制40 乇左右, 基片温度控制在700~1000℃左右, 基片与钨丝距离l<10mm , 然后通入CH4 和H2 混合气体,使它们激发离解, 从而在基片表面生成金刚石。此法的改良形式是EACVD 法,实际上就是在热丝CVD 基础上给基片加一个150V 左右偏压, 使薄膜在沉积过程中同时受到电子的轰击, 可使薄膜中沉积速率得到提高。 此方法简单易行,缺点是沉积速度较慢v <10Lm?h , 不均匀, 工艺稳定性差, 易污染。

金刚石膜的应用以及制备方法

金刚石膜的应用以及制备方法 ——————微波等离子体CVD制备金刚石膜 前言: 随着对金刚石的深入研究以及广泛应用,对硬质碳素材料有了进一步探索和需求,因此渴望找到一种可以代替金刚石的的材料。自从1971年Aisenberg和Chabot第一次利用碳的离子束沉积技术制备出具有金刚石特征的非晶碳膜以后,全球范围内掀起了制备类金刚石薄膜的浪潮。金刚石膜具有高硬度、低摩擦系数、高弹性模量、高热导、高绝缘、高稳定性、宽能隙和载流子高迁移率等优异性质和这些优异特性的组合,是一种在传统工业、军事、航天航空和高科技领域具有广泛应用前景的新材料,被称为是继石器时代、青铜器时代、钢铁时代、硅时代以来的第五代新材料,亦被称为是继塑料发明以来在材料科学领域的最伟大的发明。 微波等离子体化学气相沉积金刚石膜(简称:CVD金刚石膜),具有沉积速度快、纯度高、成膜均匀、面积大、结晶好、成本低等优点,是当今国际上制备金刚石膜的最先进方法,亦是金刚石膜制备技术的发展方向。世界上各大金刚石膜制品公司皆主要采用微波等离子体化学气相法制备金刚石膜。 一、金刚石膜在当代社会中的重要作用。 (1)金刚石膜刀具应用 金刚石膜硬度高、热导率高、摩擦系数低、生物相容性好以及这些优异性能的组合,可制成金刚石膜的切削刀具、机芯、密封件、人工关节等。使用金刚石膜工具不仅可以极大提高工具的使用寿命与工效,还可以极大提高加工精度。更重要的是解决了超硬合金、陶瓷材料、碳纤维、玻璃纤维等超难加工材料的切削加工难题,为高、新、精、尖技术和工艺的发展奠定了基础。 (2)金刚石膜光学应用

使用微波等离子体化学气相法沉积金刚石膜于镜头、钟表、仪表等表面,可制造真正的永不磨损镜头和钟表等,并极大提高光学镜头的适用范围和成像质量,适应各种恶劣的环境。美国哈勃望远镜的镜头使用了表面沉积金刚石薄膜技术,以适应外太空的恶劣环境和提高成像质量。 (3)金刚石膜航天应用 金刚石膜具有良好的抗辐照性能,以金刚石膜为基底的电子器件在高空电离辐射、热辐射和宇宙射线的作用下仍能保持良好的工作性能,在航天器中具有重要的应用。使用微波等离子体化学气相法沉积金刚石膜于窗口表面,可以充分利用其高硬度、高热导等特性,制造各种航天器和深海设备的观察窗口。美国发射的金星探测器的观察窗口就使用了金刚石膜技术。 (4)金刚石膜军事应用 用金刚石膜窗口制作各种激光制导、红外制导导弹的头罩,可以极大地提高导弹的飞行速度和命中率。当导弹以10马赫飞行时,温度升到5000℃,此时制导窗口不仅要经受高温的考验,还要经受空气中微尘、水分子和空气分子的高速撞击,使用传统的ZnS、ZnSe 、Ge等材料制成的窗口即已受热变软、变形、打毛甚至变盲,而金刚石膜窗口却能安然无恙。 美国洛克希德导弹和空间公司(Lockheed Missiles and Space Company)采用CVD金刚石膜制造导弹拦截窗口,起到了很好的保护效果,并在单面镀金刚石膜后可增加透过率13%,双面镀膜后增加透过率26%。“AIM-9L Sidewinder”空对空热寻导弹,因为使用了金刚石膜窗口,大大提高了热寻的灵敏度。 (5)金刚石膜热沉应用 金刚石膜系高热导的绝缘体,用作大功率电器件的散热衬底而无需专门的冷却系统,在提高电子设备紧凑度的同时,减轻了重量,提高了电子器件的可靠性,这对于航空航天等高技术领域具有重要意义。美国F16战机的分频电路就使用了CVD金刚石膜衬底。如果卫星上全部使用金刚石膜作为电路的衬底,冷却系统将减少90%的重量,不仅尺寸大大减小,结构紧凑,而且改善了工作环境,增强了电子系统的功能和可靠性,使卫星总重量降低50%以上,发射效率成倍提高。 (6)金刚石膜电子学应用 《美国国家关键技术报告》认为:“电子和光学器件领域将是金刚石膜最终

相关主题
文本预览
相关文档 最新文档