当前位置:文档之家› 人工神经网络原理及实际应用解读

人工神经网络原理及实际应用解读

人工神经网络原理及实际应用解读
人工神经网络原理及实际应用解读

人工神经网络原理及实际应用

摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。

关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID

本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。

1.神经网络的基本原理

因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示:

从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。

对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。

突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。

神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。

神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。

而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。

2.BP神经网络

目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。

这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

BP 网络的原理是把一个输入矢量经过影层变换成输出矢量,实现从输入空间到输出空间的映射。由权重实现正向映射,利用当前权重作用下网络的输出与希望实现的映射要求的期望输出进行比较来学习的。为减少总误差,网络利用实际误差调整权重。BP 网络必须要求与输入相对应的希望输出构成训练模式队,因而需要指导学习,BP 网络在结构上具有对称性,网络中的每个输出处理元件基本具有相同的传递函数。

大致的工作原理就如上段所述,但要深入了解我们就先要了解一下BP 网络学习算法——反传学习算法(即BP 算法)。BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如

Q x e x f /11

)(-+=

式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。每一层神经元的状态只影响下一层神经元的状态。如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。

社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。为简便起见,指定网络只有一个输出y ,任一节点i 的输出为O i ,并设有N 个样本(x k ,y k )(k =1,2,3,…,N ),对某一输入x k ,网络输出为y k 节点i 的输出为O ik ,节点

j 的输入为

net jk =

∑i

ik

ij

O

W

并将误差函数定义为

∑=-=N k k k y y E 1

2

)(21

其中k y 为网络实际输出,定义E k =(y k -?k )2, k jk jk

E net δ?=?,且O jk =f (net jk ),于是 ik

jk

k ij jk jk k ij k O E W E W E net net net ??=????=??=δjk O ik

当j 为输出节点时,O jk =?k )net ()(net jk k k jk

k k k jk f y y y y E '--=????= δ (1) 若j 不是输出节点,则有

∑∑∑∑∑∑=??=????=????=??'??=????=??=

m i m mj mk mj mk k

m i

ik mi jk mk k m jk mk

mk

k jk k jk jk

k

jk jk jk k jk k jk W W E O W O E O E O E f O E O O E E δδnet net net net )net (net net

因此

?????=??'=∑ik mk ij

k

m mj

mk jk jk O W E W f δδδ)net ( (2)

如果有M 层,而第M 层仅含输出节点,第一层为输入节点,则BP 算法为: 第一步,选取初始权值W 。

第二步,重复下述过程直至收敛:

a. a. 对于k =1到N

a ). 计算O ik , net jk 和?k 的值(正向过程);

b ). 对各层从M 到2反向计算(反向过程);

b. 对同一节点j ∈M ,由式(1)和(2)计算δjk ;

第三步,修正权值,1111ij E W W W μ?=-?, μ>0, 其中N

k k ij ij

E E

W W ??=??∑。

从上述BP 算法可以看出,BP 模型把一组样本的I/O 问题变为一个非线性优化问题,它使用的是优化中最普通的梯度下降法。如果把神经网络的看成输入到输出的映射,则这个映射是一个高度非线性映射。

设计一个神经网络专家系统重点在于模型的构成和学习算法的选择。一般来说,结构是根据所研究领域及要解决的问题确定的。通过对所研究问题的大量历史资料数据的分析及目前的神经网络理论发展水平,建立合适的模型,并针对

所选的模型采用相应的学习算法,在网络学习过程中,不断地调整网络参数,直到输出结果满足要求。

3.实际工程中的应用

以上就是BP 神经网络的的基本工作原理,下面我们就来看一下它在实际工程中的应用,在水电厂水质调节系统自适应控制中的应用。

随着我国火电厂高参数大容量机主的投产,对水汽品质和水质工况控制的要求越来越严格。控制策略是决定水质调节效果的关键。整个火电厂水质调节系统采用Smith -PID 自适应控制方案,具体控制模型我们就不予考虑,这里就具体BP 神经网络在这一方案中的应用。

由于系统采用PID 算法中由三种控制作用,即互相联系又互相制约,且并不是简单的线性组合,必须用非线性方法在线自适应调整PID 参数,才能保证时变对象的控制效果。所以在此系统采用BP 神经网络在线整定PID 参数。所以整个系统结构如下图所示:

基于BP 神经网络的Smith-PID 控制系统

PID 参数BP 网络整定方法

选择如下图所示4—5 —3 结构的BP 网络,在线自学习整定系统Smith 控制系统中控制器Gc(s)的PID 参数,以给定值r(t) 、系统响应值y (t) 、偏差e ( t) 和常数1作为BP 网络的输入,网络的输出为需要整定的PID 参数kp 、ki 和kd 。

PID 参数整定BP 网络结构

对于BP 网络输入层,第j 个神经元的输入为

(1)j j O x = (3)

对于BP 网络的隐层,第i 个神经元的状态为

(2)

(2)

(1)0()()()M

i

ij j j Net k w k O k ==∑ (4) 对于第i 个神经元的输出为

(2)2()(())i i O k f Net k = (5)

式(1) ~式(3) 中, j = 1,2,…M; i = 1,2,… N 。M 、N 分别为输入层和隐层

神经元数; 上角标(1), (2) ,(3) 分别代表输入层、隐层和输出层。(2)

ij w 为隐

层权值, ()f 为隐层神经元的激发函数, 文中取()tanh()x x

x x e e f x x e e

---==+,可以

实现从输入到输出的任意非线性映射,且输出为连续量。 对于BP 网络输出层第p 个神经元的状态为

3

(3)(2)

0()()()N

p

pi i i Net k w k O k ==∑ (6) 第p 个神经元的输出为

(3)(3)(())p p O g Net k = (7)

其中()g 为输出层神经元激发函数, p = 1,2 ,…, L 。L 为输出层神经元数, 文

中L= 3 , (3)1O 、(3)2O 、(3)

3O 分别对应PID 参数的p k 、i k 、d k ,即

(3)1()p O k k =、(3)2()i O k k =、(3)

3()d O k k = (8)

由于PID 参数p k 、i k 、d k 取非负数,所以取max ()x

x x e g x u e e

-=+,其中max u 为

S 函数的饱和值,根据实际情况选定。

性能指标取二次型函数21

()[()()]2

E k r k y k =-,按()E k 对权值的负梯度方向

搜索调整,并附加使学习速度足够快且不易产生震荡的动量项,即得到按梯度法修改网络的权值

(3)(3)(3)

()

()(1)()

ij pi pi E k w k w k w k η

α??=-+?-? (9) 上式中η为按梯度搜索的步长,亦即学习速率。α为动量因子,它取决于过去权值的变化对目前权值变化的影响程度。而

(3)(3)

(3)(3)(3)(3)

()()

()()()()()()()()()()p p pi p p pi

O k Net k E k E k y k u k w k y k u k O k Net k w k ??????=?????? (10) 在式(8)中

2()1

[(()())]()()()()()2

E k r k y k r k y k e k y k y k ??=-=-=?? (11) ()()y k u k ??由商差近似,即()()(1)

()()(1)

y k y k y k u k u k u k ?--≈?-- (12)

3(3)(2)(2)

(3)(3)()[()()]()()

()

p pi i i i

pi pi Net k w k O k O k w k w k ??=

=??∑ (13) (3)(3)(3)

(3)(3)

()

[(())][()]()

()

p p p p p O k g Net k g Net k Net k Net k ??'=

=?? (14) 同时,由系统结构原理和式(8),得

(3)

1()

()(1)()

u k e k e k O k ?''=--? (15) (3)

2()

()()

u k e k O k ?'=? (16) (3)

3()

()2(1)(2)()

u k e k e k e k O k ?'''=--+-? (17) 从而得到BP 网络输出层权值得学习算法为

(3)(3)(3)

(2)()(1

)()()pi pi p i w k w k k O k αηδ?=?-+ (18) 其中(3)

(3)

(3)

()()()()

[()]()()

p p p y k u k k e k g Net k u k O k δ??'=??(p =1,2…,L ) (19) 同理有隐层权值得学习算法

(2)(2)

(2)1()(1)()()ij ij i j w k w k k O k αηδ?=?-+ (20)

其中

3

(2)

(2)(3)

(3)1()(())()()i

i

p pi p k f Net k k w k δδ='=∑ (i=1,2…,N ) (21) 在这一系统中,BP 神经网络进行适当得改善。常规BP 网络的缺陷是收敛速度慢和陷入局部极小,这将影响被整定的PID 参数对被控对象的跟踪性能。式(9) 中增加附加动量项,使网络在修正其权值时,不仅考虑误差在梯度上的作用,而且考虑在误差曲面上变化趋势的影响,允许网络忽略网络上的微小变化特性,起到了防止网络陷入浅的局部极小的作用。然而,附加动量不应该是固定不变的,而应该考虑到当修正的权值在误差中导致太大的增长结果时,新的权值应被取消,同时动量作用停止下来,使网络不进入较大误差曲面;当新的误差变化率对其旧值超过一个事先设定的最大误差变化率时,也得取消所计算的权值变化。

学习速率η决定了网络每一次循环训练中所产生的权值变化量, 大的学习速率可能导致系统的不稳定,而小的学习速率又使收敛太慢、训练时间太长。文中为了加速PID 参数的寻优,提高PID 参数整定对被控对象的跟踪性能,同时又

不至于导致振荡和发散,通过仿真研究,提出下列动量因子α和学习速率η在线自适应调整规则

0E(k)>1.05E(k-1)()0.95E(k)

=???当当其它

(1)(1)()(1)(1)k k k βηηβη+-?=?

--?

当E(k)

当E(k)>E(k-1) (22)

将上述系统进行工程应用仿真,可以得到该系统具有很好得快速稳定性和准确性、很强得抗干扰性和鲁棒性。所以在该系统中,将BP 神经网络和Smith 预估器组合成复合控制器的鲁棒控制策略,利用BP 网络的任意非线性逼近特性及很强的自学习能力,弥补了常规Smith 控制在解决模型不确定系统中的不足。该方法具有稳态精度高、过渡过程短、抗干扰性好、鲁棒性强,以及结构简单、适应性强、易于实时控制的特点,具有很高的应用价值。

从上述神经网络的基本原理,以及它在实际应用可知。神经网络从最初的概念和基础理论的提出到今天的全球性研究热热潮,已历经了近百年的历史,无论是历史研究,还是实践应用,都取得了令人瞩目得成果。由于科学技术迅猛发展,面对越来越多的各种复杂的多输入多输出的本质非线性的智能控制系统,科研人员对神经网络研究、应用情有独钟,必将投入大量的人力。物力、财力,在现代化生物学、微电子学、计算机科学的强有力的支撑下。神经网络理论的发展前景一定是十分辉煌。

当然、人工神经网络目前只是对生物神经系统的某种特定性能的简单模拟,设计规则也没有通用性,固有很大的发展前景。这就需要我们不断的去研究它.

参考资料:

1.刘军,常小军等神经网络原理及在控制中的应用青岛化工学院学报

1994年02期

2.张昆实,万家云等 BP神经网络在湖泊水质评价中的应用研究长江大

学学报 2004年Z1期

3.曹顺安,侯力等基于BP神经网络的火电厂水质调节系统的Smith_PID

自适应控制工业仪表与自动化装置 2004年06期

4.康天增神经网络的原理及应用机电设备 1996年05期

5.胡金滨,唐旭清人工神经网络的BP算法及其应用信息技术 2004年4

6.张立明人工神经网络的模型及应用复旦大学出版社1993.7

7.阎平凡,黄端旭人工神经网络;模型·分析与应用安徽出版社 1993.5

读书的好处

1、行万里路,读万卷书。

2、书山有路勤为径,学海无涯苦作舟。

3、读书破万卷,下笔如有神。

4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文

5、少壮不努力,老大徒悲伤。

6、黑发不知勤学早,白首方悔读书迟。——颜真卿

7、宝剑锋从磨砺出,梅花香自苦寒来。

8、读书要三到:心到、眼到、口到

9、玉不琢、不成器,人不学、不知义。

10、一日无书,百事荒废。——陈寿

11、书是人类进步的阶梯。

12、一日不读口生,一日不写手生。

13、我扑在书上,就像饥饿的人扑在面包上。——高尔基

14、书到用时方恨少、事非经过不知难。——陆游

15、读一本好书,就如同和一个高尚的人在交谈——歌德

16、读一切好书,就是和许多高尚的人谈话。——笛卡儿

17、学习永远不晚。——高尔基

18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向

19、学而不思则惘,思而不学则殆。——孔子

20、读书给人以快乐、给人以光彩、给人以才干。——培根

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

伯努利方程原理以及在实际生活中的运用

xx方程原理以及在实际生活中的运用 67陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。 xx方程 p+ρρv 2=c式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g 为重力加速度;c为常量。它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。伯努利方程的常量,对于不同的流管,其值不一定相同。 相关应用 (1)等高流管中的流速与压强的关系 根据xx方程在水平流管中有 ρv 2=常量故流速v大的地方压强p就小,反之流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。下面就是一些实例 伯努利方程揭示流体在重力场中流动时的能量守恒。由伯努利方程可以看出,流速高处压力低,流速低处压力高。三、伯努利方程的应用: 1.飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 2.喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。

3.汽油发动机的汽化器,与喷雾器的原理相同。汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。 4.球类比赛中的“旋转球”具有很大的威力。旋转球和不转球的飞行轨迹不同,是因为球的周围空气流动情况不同造成的。不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,转动轴通过球心且垂直于纸面,球逆时针旋转。球旋转时会带动周围得空气跟着它一起旋转,至使球的下方空气的流速增大,上方的流速减小,球下方的流速大,压强小,上方的流速小,压强大。跟不转球相比,旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。

人工神经网络及其在医学影像分析中的应用解析

人工神经网络及其在医学影像分析中的应用 作者:雷元义1陈海东2 摘要:人工神经网络(ANN)是在结构上模仿生物神经联结型系统,能够设计来进行模式分析,信号处理等工作。为了使医学生和医务工作者能对神经网络,特别是人工神经网络及其在医学图像和信号检测与分析中的应用有个全面了解,本文避免了繁琐的数学分析与推导,以阐明物理概念为主,深入浅出地就有关问题加以阐述,期望有所裨益。 关键词:人工神经网络;产生;原理;特点;应用 Application of man- made neural network and medical Image to analyses Abstract: Man- made neural network (ANN)is a binding system on structure to imitate biological neural to link. It can carry on pattern discriminate, Signal processing et. in order to let the me dical students and workers understand the neural network, esp ecially understand the man- made neural network which applies to the medical image to a nalyses, the article avoids complicated figure’s analysis and reasoning. It explains the concerned profound questions, mai nly about the physical concept. In simple terms. I hope it can work ! Key words: Man- made neural network; Produce; Principle; Characteristic; Applic ation 人工神经的出现与发展,从而解决了对于那些利用其它信号处理技术无法解决的问题,已成为信号处理的强有力的工具,人工神经网络的应用开辟了新的领域。二十世纪九十年代初,神经网络的研究在国际上曾经出现一股热潮,近年来有增无减,已广泛应用在民用、军用、医学生物等各个领域。 1 神经网络与人工神经网络 1.1 神经网络 神经网络就是由多个非常简单的处理单元彼此按某种方式相互连接而成的计算机系统。该系统是靠其状态对外部输入信息的动态响应来处理信息。 1.2 人工神经网络 1.2.1 神经元模型的产生 神经元(神经细胞)是神经系统的基本构造单位,是处理人体内各部分之间相互信息传递的基本单元。每个神经元都由一个简单处理作用的细胞体,一个连接其它神经元的轴突和一些向外伸出的其它较短分支——树突组成。人的大脑正是拥有约个神经元这个庞大的信息处理体系,来完成极其复杂的分析和推导工作。 人工神经网络(ARTIFICIALNEURALNETWORK,简称(A.N.N.)就是在对

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

基于人工神经网络的通信信号分类识别

基于人工神经网络的通信信号分类识别 冯 涛 (中国电子科技集团公司第54研究所,河北石家庄050081) 摘 要 通信信号的分类识别是一种典型的统计模式识别问题。系统地论述了通信信号特征选择、特征提取和分类识别的原理和方法。设计了人工神经网络分类器,包括神经网络模型的选择、分类器的输入输出表示、神经网络拓扑结构和训练算法,并提出了分层结构的神经网络分类器。 关键词 模式识别;特征提取;分类器;神经网中图分类号 TP391 文献标识码 A Classification and Identification of Communication Signal Using Artificial Neural Networks FE NG Tao (T he 54th Research Institute of CETC,Shijia zhuan g Hebei 050081,China) Abstract The classification and identificati on of communication signal is a typical statistical pattern identification.The paper discusses the theory and method of feature selection,feature extraction and classi fication &identificaiton of communication signal.A classifier based on artificial neural networks is designed,includin g the selection of neural network model,the input and output expression of the classifier,neural network topology and trainin g algorithm.Finally a hierarchical archi tecture classifier based on artificial neural networks is presented. Key words pattern recognition;features extraction;classifier;neural networks 收稿日期:2005-12-16 0 引言 在通信对抗侦察中,侦察接收设备在截获敌方通信信号后,必须经过对信号的特征提取和对信号特征的分析识别,才能变为有价值的通信对抗情报。通过对信号特征的分析识别,可以得到信号种类、通信体制、网路组成等方面的情报,从而为研究通信对抗策略、研制和发展通信对抗装备提供重要参考依据。 1 通信信号分类识别的原理 通信信号的分类识别是一种典型的模式识别应用,其作用和目的就是将某一接收到的信号正确地归入某一种类型中。一般过程如图1 所示。 图1 通信信号分类识别的一般过程 下面简单介绍这几部分的作用。 信号获取:接收来自天线的信号x (t),并对信号进行变频、放大和滤波,输出一个中频信号; A/D 变换:将中频模拟信号变换为计算机可以运算的数字信号x (n); 以上2步是信号空间x (t)到观察空间x (n )的变换映射。 特征提取:为了有效地实现分类识别,必须对原始数据进行变换,得到最能反映分类差别的特征。这些特征的选择和提取是非常重要的,因为它强烈地影响着分类器的设计和性能。理想情况下,经过特征提取得到的特征向量对不同信号类型应该有明显的差别; 分类器设计和分类决策:分类问题是根据识别对象特征的观察值将其分到某个类别中去。首先,在样本训练集基础上确定合适的规则和分类器结构,然后,学习训练得到分类器参数。最后进行分类决策,把待识别信号从特征空间映射到决策空间。 2 通信信号特征参数的选择与特征提取 2 1 通信信号特征参数的选择 选择好的特征参数可以提高低信噪比下的正确 识别率,降低分类器设计的难度,是基于统计模式识别方法最为关键的一个环节。试图根据有限的信号 信号与信息处理 24 2006Radio Engineering Vo1 36No 6

伯努利方程的原理及其应用

伯努利方程的原理及其应用 摘要:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,是流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。 关键词:伯努利方程发展和原理应用 1.伯努利方程的发展及其原理: 伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。伯努利方程的原理,要用到无黏性流体的运动微分方程。 无黏性流体的运动微分方程: 无黏性元流的伯努利方程: 实际恒定总流的伯努利方程: z1++=z2+++h w

总流伯努利方程的物理意义和几何意义: Z----总流过流断面上某点(所取计算点)单位重量流体的位能,位置高度或高度水头; ----总流过流断面上某点(所取计算点)单位重量流体的压能,测压管高度或压强水头; ----总流过流断面上单位重量流体的平均动能,平均流速高度或速度水头; hw----总流两端面间单位重量流体平均的机械能损失。 总流伯努利方程的应用条件:(1)恒定流;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是渐变流断面,但两过水断面间可以是急变流。(5)总流的流量沿程不变。(6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。(7)式中各项均为单位重流体的平均能(比能),对流体总重的能量方程应各项乘以ρgQ。 2.伯努利方程的应用: 伯努利方程在工程中的应用极其广泛,下面介绍几个典型的例子:

人工神经网络

人工神经网络(ANN)又称神经网络,是在现代神经科学研究成果的基础上,对生物神经系统的结构和功能进行数学抽象、简化和模仿而逐步发展起来的一种新型信息处理和计算系统。由于人工神经网络具有自学习、高容错、高度非线性描述能力等优点,现已广泛应用于经济、机器人和自动控制、军事、医疗、化学等领域[l ~ 3],并取得了许多成果。本文简要介绍人工神经网络的原理和特点,论述人工神经网络在高分子科学与工程领域的应用。 橡胶配方是决定橡胶制品性能的关键因素,由于材料配方与制品性能之间存在很复杂的非线性关系,多数情况下无法建立完整精确的理论模型,只能借助于回归方法得到经验公式。 传统的回归方法存在以下局限性: (1)使用不同的回9j方法可获得不同的经验公式,导致经验公式的繁多和不一致; (2)当配方项目及性能指标项目较多时,采用回归公式无法完全再现实验数据; (3)当实验进一步完善,实验数据增多的时候.其他人员再进行回归时,如果无法找到原来的回归方法、程序和实验数据,原来的回归公式将不能被利用,造成一定的浪费。随着计箅机的发展而出现的人工神经网络是人工智能方法.它不像回归方法那样,需预先给定基本函数,而是以实验数据为基础.经过有限次的迭代计算而获得的一个反映实验数据内在联系的数学模型,具有极强的非线性处理、自组织调整、自适应学习及容错抗噪能力,特别适用于研究像材料配方与制品性能之间关系的复杂非线性系统特性【¨】。因此,人们开始将人工神经网络应用于橡胶配方设计”J。 随着橡胶制品在各领域应用的拓展,橡胶配方设计变得越来越重要。人们进行橡胶配方设计主要有3个目的:提高制品的性能;改善加工工艺;降低生产成本。传统的橡胶配方设计方法有全因素设计、正交试验设计n_3]、均匀设计[4‘60等,而这些配方设计试验数据的处理方法无外乎方差分析和回归分析口]。由于材料的配方和性能之问存在非常复杂的非线性关系,回归分析只适合于单目标优化数据处理的模型,对于不同的性能,需要建立不同的模型,因此将其应用于配方设计有一定的局限性。近年来,发展日趋成熟的人工神经网络技术,尤其是BP神经网络凭借其结构简单、收敛速度快、预测精度高等优势越来越多地应用到橡胶配方设计试验中。 1橡胶配方设计 1.1橡胶配方设计概述 配方设计¨J是橡胶工业中的首要技术问题,在橡胶工业中占有重要地位。所谓配方设计,就是根据产品的性能要求和工艺条件,通过试验、优化、鉴定,合理地选用原材料,确定各种原材料的用量配比关系。 橡胶配方人员的主要工作就是要确定一系列变量对橡胶各项性能的定量或定性影响。变量可以是硫化剂、促进剂、填充剂、防老剂等,也可以是加工:[艺条件(如硫化温度、硫化时间等),总之是配方人员可能控制或测得的变量。橡胶各项基本性能包括拉伸强度、撕裂强度、硬度、定伸应力等物理机械性能,以 及加工性能、光洁度、外观等。 橡胶配方设计常常是多变量的试验设计,配方设计理论和试验设计方法对于 配方设计具有重要意义。

《人工神经网络原理与应用》试题

1 / 1 《人工神经网络原理与应用》试题 试论述神经网络的典型结构,常用的作用函数以及各类神经网络的基本作用,举例说明拟定结论。 试论述BP 算法的基本思想,讨论BP 基本算法的优缺点,以及改进算法的思路和方法。以BP 网络求解XOR 问题为例,说明BP 网络隐含层单元个数与收敛速度,计算时间之间的关系。要求给出计算结果的比较表格,以及相应的计算程序(.m 或者.c )试论述神经网络系统建模的几种基本方法。利用BP 网络对以下非线性系统进行辨识。 非线性系统 )(5.1) 1()(1)1()()1(22k u k y k y k y k y k y +-++-=+ 首先利用[-1,1]区间的随机信号u(k),样本点500,输入到上述系统,产生y(k), 用于训练BP 网络;网络测试,利用u(k)=sin(2*pi*k/10)+1/5*sin(2*pi*k/100),测试点300~500,输入到上述系统,产生y(k),检验BP 网络建模效果要求给出程序流程,matlab 程序否则c 程序,训练样本输入输出图形,检验结果的输入输出曲线。 试列举神经网络PID 控制器的几种基本形式,给出相应的原理框图。 试论述连续Hopfield 网络的工作原理,讨论网络状态变化稳定的条件。 谈谈学习神经网络课程后的心得体会,你准备如何在你的硕士(博士)课题中应用神经网络理论和知识解决问题(给出一到两个例)。《人工神经网络原理与应用》试题 试论述神经网络的典型结构,常用的作用函数以及各类神经网络的基本作用,举例说明拟定结论。 试论述BP 算法的基本思想,讨论BP 基本算法的优缺点,以及改进算法的思路和方法。以BP 网络求解XOR 问题为例,说明BP 网络隐含层单元个数与收敛速度,计算时间之间的关系。要求给出计算结果的比较表格,以及相应的计算程序(.m 或者.c )试论述神经网络系统建模的几种基本方法。利用BP 网络对以下非线性系统进行辨识。 非线性系统 )(5.1) 1()(1)1()()1(22k u k y k y k y k y k y +-++-=+ 首先利用[-1,1]区间的随机信号u(k), 样本点500,输入到上述系统,产生y(k), 用于训练BP 网络;网络测试,利用u(k)=sin(2*pi*k/10)+1/5*sin(2*pi*k/100),测试点300~500,输入到上述系统,产生y(k),检验BP 网络建模效果要求给出程序流程,matlab 程序否则c 程序,训练样本输入输出图形,检验结果的输入输出曲线。 试列举神经网络PID 控制器的几种基本形式,给出相应的原理框图。 试论述连续Hopfield 网络的工作原理,讨论网络状态变化稳定的条件。 谈谈学习神经网络课程后的心得体会,你准备如何在你的硕士(博士)课题中应用神经网络理论和知识解决问题(给出一到两个例)。

人工神经网络大作业

X X X X大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010年12月22日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1.1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1)神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。(3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型。②神经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后再与真实对象作比较(仿真处理方法)。 1.3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能,是一门新兴的前沿交叉学科,其概念以T.Kohonen.Pr的论述最具代表性:人工神经网络就是由简单的处理单元(通常为适应性)组成的并行互联网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1.4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题:模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1.5理论局限性 (1)受限于脑科学的已有研究成果由于生理试验的困难性,目前对于人脑思维与记忆机制的认识尚很肤浅,对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2)尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网,节点间互连强度构成的矩阵可通过某种学

人工神经网络大作业

X X X X 大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010 年12 月22 日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1. 1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元, 通过广泛的突触联系形成的信息处理集团, 其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1) 神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站, 它构成各神经元之间广泛的联接。(3) 大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物, 其变化是先天遗传信息确定的总框架下有限的自组织过程。 1. 2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系, 这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法: ①神经生物学模型方法, 即根据微观神经生物学知识的积累, 把脑神经系统的结构及机理逐步解释清楚, 在此基础上建立脑功能模型。②神经计算模型方法, 即首先建立粗略近似的数学模型并研究该模型的动力学特性, 然后再与真实对象作比较(仿真处理方法)。 1. 3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能, 是一门新兴的前沿交叉学科, 其概念以T.Kohonen. Pr 的论述最具代表性: 人工神经网络就是由简单的处理单元(通常为适应性) 组成的并行互联网络, 它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1. 4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题: 模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1. 5理论局限性 (1) 受限于脑科学的已有研究成果由于生理试验的困难性, 目前对于人脑思维与记忆机制的认识尚很肤浅, 对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2) 尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网, 节点间互连强度构成的矩阵可通过某种学

人工神经网络的发展及应用

人工神经网络的发展及应用 西安邮电学院电信系樊宏西北电力设计院王勇日期:2005 1-21 1 人工神经网络的发展 1.1 人工神经网络基本理论 1.1.1 神经生物学基础生物神经系统可以简略地认为是以神经元为信号的处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞,即神经元(neuron) 。 (1)神经元具有信号的输人、整合、输出三种主要功能作用行为,结构如图1 所示: (2)突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。 (3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.1.2 建模方法神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型;②神 经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后冉与真实对象作比较(仿真处理方法)。1.1.3 概

念人工神经网络用物理町实现系统采模仿人脑神经系统的结构和功能,是一门新兴的前沿交义学科,其概念以T.Kohonen.Pr 的论述 最具代表性:人工神经网络就是由简单的处理单元(通常为适应性神经元,模型见图2)组成的并行互联网络,它的组织能够模拟生物神 经系统对真实世界物体所作出的交互反应。 1.2 人工神经网络的发展 人工神经网络的研究始于40 年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的较为曲折的道路。1943 年,心理学家W.S.Mcculloch 和数理逻辑学家W.Pitts 提出了M—P 模型, 这是第一个用数理语言描述脑的信息处理过程的模型,虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949 年,心理学家D. O. Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。1957 年,计算机科学家Rosenblatt 提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络。1969 年,美国著名人工智能学者M.Minsky 和S.Papert 编写了影响很大的Perceptron 一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知能也不过如此,在这之后近10 年,神经网络研究进入了一个缓慢发展的萧条期。美国生物物理学家J.J.Hopfield 于1982年、1984 年在美国科学院院刊发表的两篇文章,有力地推动了神经网络的研究,引起了研究神经网络的

人工神经网络在聚类分析中的运用

摘要:本文采用无导师监督的som网络,对全国31个省市自治区的人民生活质量进行了综合评价,在没有先验信息的条件下,不采用人为主观赋予各指标权重的办法,转而运用自组织神经网络自组织竞争学习的网络方法来进行赋值、计算和评价,消除了主观确定各指标的权重的主观性,得到的结果较为符合各省市自治区的实际结果。 关键词:聚类分析;k-means聚类;系统聚类;自组织神经网络;人民生活质量 一、引言(研究现状) 自改革开放以来,我国生产力极大发展,生活水平总体上得到了提高。但是,地区间的发展不平衡始终存在,而且差距越来越大,不同地区人民的生活水平也存在显著的差异。据此,我们利用自组织人工神经网络方法对全国31个省市自治区的人民生活水平质量进行分析评价。 二、指标选取与预处理 1.指标选取 遵循合理性、全面性、可操作性、可比性的原则,从以下5个层面共11个二级指标构建了人民生活质量综合评价指标体系(如下表所示)。 人民生活质量综合评价指标体系 2.指标预处理 (1)正向指标是指标数据越大,则评价也高,如人均可支配收入,人均公园等。 正向指标的处理规则如下(1): kohonen 自组织神经网络 输入层是一个一维序列,该序列有n个元素,对应于样本向量的维度;竞争层又称为输出层,该层是由m′n=h个神经元组成的二维平面阵列其神经元的个数对应于输出样本空间的维数,可以使一维或者二维点阵。 竞争层之间的神经元与输入层之间的神经元是全连接的,在输入层神经元之间没有权连接,在竞争层的神经元之间有局部的权连接,表明竞争层神经元之间的侧反馈作用。训练之后的竞争层神经元代表者不同的分类样本。 自组织特征映射神经网络的目标:从样本的数据中找出数据所具有的特征,达到能够自动对样本进行分类的目的。 2.网络反馈算法 自组织网络的学习过程可分为以下两步: (1)神经元竞争学习过程 对于每一个样本向量,该向量会与和它相连的竞争层中的神经元的连接权进行竞争比较(相似性的比较),这就是神经元竞争的过程。相似性程度最大的神经元就被称为获胜神经元,将获胜神经元称为该样本在竞争层的像,相同的样本具有相同的像。 (2)侧反馈过程 竞争层中竞争获胜的神经元会对周围的神经元产生侧反馈作用,其侧反馈机制遵循以下原则:以获胜神经元为中心,对临近邻域的神经元表现为兴奋性侧反馈。以获胜神经元为中心,对邻域外的神经元表现为抑制性侧反馈。 对于竞争获胜的那个神经元j,其邻域内的神经元在不同程度程度上得到兴奋的侧反馈,而在nj(t)外的神经元都得到了抑制的侧反馈。nj(t)是时间t的函数,随着时间的增加,nj(t)围城的面积越来越小,最后只剩下一个神经元,而这个神经元,则反映着一个类的特征或者一个类的属性。 3.评价流程 (1)对n个输入层输入神经元到竞争层输出神经元j的连接权值为(6)式:

基于人工神经网络的图像识别

本文首先分析了图像识别技术以及bp神经网络算法,然后详细地阐述了人工神经网络图像识别技术。 【关键词】人工神经网络 bp神经网络图像识别识别技术 通常而言,所谓图像处理与识别,便是对实际图像进行转换与变换,进而达到识别的目的。图像往往具有相当庞大的信息量,在进行处理图像的时候要进行降维、数字化、滤波等程序,以往人们进行图像识别时采用投影法、不变矩法等方法,随着计算机技术的飞速发展,人工神经网络的图像识别技术将逐渐取代传统的图像识别方法,获得愈来愈广泛的应用。 1 人工神经网络图像识别技术概述 近年来,人工智能理论方面相关的理论越来越丰富,基于人工神经网络的图像识别技术也获得了非常广泛的应用,将图像识别技术与人工神经网络技术结合起来的优点是非常显著的,比如说: (1)由于神经网络具有自学习功能,可以使得系统能够适应识别图像信息的不确定性以及识别环境的不断变化。 (2)在一般情况下,神经网络的信息都是存储在网络的连接结构以及连接权值之上,从而使图像信息表示是统一的形式,如此便使得知识库的建立与管理变得简便起来。 (3)由于神经网络所具有的并行处理机制,在处理图像时可以达到比较快的速度,如此便可以使图像识别的实时处理要求得以满足。 (4)由于神经网络可增加图像信息处理的容错性,识别系统在图像遭到干扰的时候仍然能正常工作,输出较准确的信息。 2 图像识别技术探析 2.1 简介 广义来讲,图像技术是各种与图像有关的技术的总称。根据研究方法以及抽象程度的不同可以将图像技术分为三个层次,分为:图像处理、图像分析以及图像理解,该技术与计算机视觉、模式识别以及计算机图形学等学科互相交叉,与生物学、数学、物理学、电子学计算机科学等学科互相借鉴。此外,随着计算机技术的发展,对图像技术的进一步研究离不开神经网络、人工智能等理论。 2.2 图像处理、图像识别与图像理解的关系 图像处理包括图像压缩、图像编码以及图像分割等等,对图像进行处理的目的是判断图像里是否具有所需的信息并滤出噪声,并对这些信息进行确定。常用方法有灰度,二值化,锐化,去噪等;图像识别则是将经过处理的图像予以匹配,并且对类别名称进行确定,图像识别可以在分割的基础之上对所需提取的特征进行筛选,然后再对这些特征进行提取,最终根据测量结果进行识别;所谓图像理解,指的是在图像处理与图像识别的基础上,根据分类作结构句法分析,对图像进行描述与解释。所以,图像理解包括图像处理、图像识别和结构分析。就图像理解部分而言,输入是图像,输出是对图像的描述解释。 3 人工神经网络结构和算法 在上个世纪八十年代,mcclelland与rumelhant提出了一种人工神经网络,截止现在,bp神经网络已经发展成为应用最为广泛的神经网络之一,它是一种多层前馈神经网络,包括输入层、输出层和输入层输出层之间隐藏层,如图1所示,便是一种典型的bp神经网络结构。 bp神经网络是通过不断迭代更新权值使实际输入与输出关系达到期望,由输出向输入层反向计算误差,从而通过梯度下降方法不断修正各层权值的网络。 bp神经网络结构算法如下所述: (1)对权值矩阵,学习速率,最大学习次数,阈值等变量和参数进行初始化设置; (2)在黑色节点处对样本进行输入;

关于人工神经网络的分析

人工神经网络 分析 班级: 学号: 姓名: 指导教师: 时间:

摘要: 人工神经网络也简称为神经网络,是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 自从认识到人脑的计算与传统的计算机相比是完全不同的方式开始,关于人工神经网络的研究就开始了。半个多世纪以来,神经网络经历了萌芽期、第一次高潮期、反思低潮期、第二次高潮期、再认识与应用研究期五个阶段。而近年来,人工神经网络通过它几个突出的优点更是引起了人们极大的关注,因为它为解决大复杂度问题提供了一种相对来说比较有效的简单方法。目前,神经网络已成为涉及计算机科学、人工智能、脑神经科学、信息科学和智能控制等多种学科和领域的一门新兴的前言交叉学科。 英文摘要: Artificial neural networks are also referred to as the neural network is a neural network model of animal behavior, distributed parallel information processing algorithm mathematical model. This network relies on system complexity, achieved by adjusting the number of nodes connected to the relationship between, so as to achieve the purpose of processing information. Since the understanding of the human brain compared to traditional computer calculation and are completely different way to start on artificial neural network research began. Over half a century, the neural network has experienced infancy, the first high tide, low tide reflections, the second peak period, and again knowledge and applied research on five stages. In recent years, artificial neural networks through which several prominent advantage is attracting a great deal of attention because it is a large complex problem solving provides a relatively simple and effective way. Currently, neural networks have become involved in computer science, artificial intelligence, brain science, information science and intelligent control and many other disciplines and fields of an emerging interdisciplinary foreword. 关键字:

相关主题
文本预览
相关文档 最新文档