当前位置:文档之家› 整车及发动机主要参数

整车及发动机主要参数

整车及发动机主要参数
整车及发动机主要参数

整车及发动机主要参数:

座椅:19座高档座椅(全车安全带)

外形尺寸:长6970*宽2050*高2770(cm)

发动机型号:YC4FA130-40(国四)

最大功率:95Kw/3200rpm

变速器:5档

制动系统:鼓式双回路气压制动、中央鼓式机械制动

转向器:动力转向器

轮胎:真空子午线胎(带轮罩)ABS+自动间隙调整臂

空调:上海松芝空调非独立式内置式制冷量12000kcal/h

暖风:前除霜器

侧窗:全封闭玻璃

司机椅:靠背前后可调

仪表台:豪华仿桃木高档仪表台

天窗:1个

乘客门:豪华外摆式(带遥控门锁)

其他:遮阳板(双边)、后雨刷、后照地镜、侧裙防擦条、电子钟、电喇叭、高位刹车灯

固体火箭发动机设计复习题答案

1. 画简图说明固体火箭发动机的典型结构 参考书中的发动机图吧 2. 固体火箭发动机的质量比是什么?什么是质量比冲? 质量比:推进剂质量与发动机初始质量的比。 质量比冲:单位发动机质量所能产生的冲量。 3. 固体火箭发动机总体设计的任务是什么? 依据导弹总体提出的技术要求,选择并确定发动机总体设计方案,计算发动机性能,确定发动机主要设计参数、结构形式和主要结构材料,固体推进剂类别和药柱形式等。在此基础上提出发动机各部件的具体设计要求。 4.请写出齐奥尔科夫斯基公式 式vm 中为导弹理想飞行速度,Is 为发动机比冲,mp 为药柱质量,mm 为发动机结构质量,ml 为导弹载荷量(除发动机以外的一切质量) 5.举出两种实现单室双推力的方案 (1)不改变喷管喉径,采用不同燃速的两种推进剂药柱,这两种药柱可前后放置,也可同心并列放置。前者推力比受燃速比的限制较小,后者较大。 (2)不改变喷管喉径,采用一种推进剂的两种药形,通过燃面变化实现双推力。该方法简单易行,但推力比调节范围较小。 (3)采用不同燃速的推进剂和不同药形,即同时用调节燃速和燃面的方法实现双推力。该方法有较大的灵活性,推力比调节范围宽,实际应用较为广泛。 (4)采用可调喷管改变推力大小,可得到较宽的推力比调节范围,但结构复杂。 6.什么是最佳长径比? 最佳长径比——对应最佳直径的长径比 第二章 7.什么是肉厚分数? 8.什么是装填密度、装填分数、体积装填分数? ln 1p m s m L m v I m m ??=+ ?+??

9.星形装药燃面变化规律与几何参数的关系? 参考2-2节,P49 10.单根管状装药的设计过程?如何计算? 参考2-4节,P64 11.什么是线性粘弹性? 指当应力值低于某一极限值时,粘弹性态是近似线性的,即在给定的时间内,由阶跃应力所导致的应变与应力值成正比。 12.什么是时温等效原理? 各种温度条件下所获得的松弛模量(或其他力学性能数据),可以通过时间标度的适当移动而叠加;这也就是说,材料性能随温度的变化关系可以用改变时间标度相应地(等效)表示出来。反过来,材料性能依赖于时间的变化,也可以靠改变温度条件相应地表示出来。这种关系就叫做时-温等效原理 第三章 13.固体火箭发动机燃烧室的主要组成部分和功用。 对于贴壁浇铸推进剂药柱的燃烧室,通常由壳体、内绝热层和衬层组成;对于自由装填药柱的燃烧室,一般由壳体、内绝热层和挡药板组成。 壳体主要承受内压作用。由于壳体还是弹体外壳的一部分,所以还要承受外载荷的作用。内绝热层用来对壳体内壁进行热防护。 衬层的作用是防止界面间的分子迁移,使浇铸的药柱与内绝热层粘结更牢,并缓和药柱与内绝热层之间的应力传递。 挡药板用于防止自由装填的药柱的运动。 14.发动机燃烧室壳体受到的载荷有哪些?

热值与发动机匹配

一、火花塞热值的概念 火花塞热值 是火花塞的主要性能参数之一,是火 花塞在工作时承受热负荷能力大小 的一种热特性指标,通常用阿拉伯数 字来表示。 火花塞的热值与火花塞的内部 结构和所使用的材料有关,其主要决 定因素是陶瓷绝缘体/J、头的长度。如图1所示,该火花塞绝缘体/J、头很长,其吸热面积大而热传导路径长, 散热效果不好,火 花塞承受热负荷的 能力也差,火花塞 在工作时其电极和 绝缘体小头的温度 很高,我们把这种 火花塞叫做热型火 花塞。相反,图2所 示的火花塞绝缘体 裙部很短,其吸热 面积小而热传导路 好,火花塞承受热负荷的能力很强, 火花塞在工作时其电极和绝缘体小 头的温度相对较低,我们把这种火花 塞叫做冷型火花塞。 二、火花塞热值的标定及与火花 塞冷热之间的关系 火花塞型号中的热值数字是根 据一系列试验来标定的。热值的标定 方法和手段是多种多样的,但无论用 哪种方法进行标定,都会使用一种特 制的能承受高热负荷的试验发动机。 目前国际上主要有两种标定方法,一 种是采用平均有效指示压力测量的 方法进行标定,如美国的一些火花塞 制造公司使用LABECo发动机进 行的标定;还有一种是用离子流测量 的方法进行标定,如德国博世公司使 用Hatz发动机进行的标定。 不同国家、不同品牌的火花塞热 值数字的规定是不同的,世界上没有 一个统一的标准。用LABECo发动 机标定的火花塞热值数字越大火花

塞越冷,火花塞承受热负荷的能力越 强,而用Hatz发动机标定出的火花 塞热值数字越大则火花塞越热,火花 塞承受热负荷的能力就越差。 图1热型火花塞图2冷型火花塞径短,散热效果很如图3所示,我国的火花塞行业 雾祭祭雾撰;萍撰祭零零零祭零零零祭撰苫黾祭孪毯零≥浮.祭零祭寥L祭雾雾雾零雾零撰{旱。≥浮莽雾雾{≯。零雾;尹.祭;器 照射角方向的光度低于标准值,需要改进其模芯和材质。 安装在机动车上的各种灯具就像人的眼和口,通过 不同功能的灯具使车与路、车与车、车与人进行“语言”交 流,相互传递和明白信息,保证行车和路人安全。目前交 通事故中有相当一部分是因为车灯问题造成的,灯具生 产企业应高度重视产品质量,不能为了迎合美观而忽视 灯具配光要求,国家即将对机动车灯具实行3C强制性认 证,就是加强对涉及行车安全的灯具进行监督管理,整顿 和规范机动车灯具生产和流通市场,保证机动车在道路 上安全、快捷行驶。①

发动机的产品参数

◆数码发电机组 产品编号YT1000SM() 频率50HZ 额定电压230V 额定功率 最大功率 直流输出12V/5A 额定电流 相数单相 噪音水平(7M) 54-59分贝 起动方式手启动 油箱容积 净重(KG) 16 发动机型号汽油动力 发动机形式单缸四冲程 连续工作时间小时 尺寸(MM) 483*272*414 绝缘等级F级 排量(ml) 燃料型号汽油 机油容积

燃料90号以上汽油 耗油量(g/ 420 认证GS/CE/EPA/CARB/UL/ETL 产品编号YT2000SM 频率50HZ 额定电压230V 额定功率 最大功率2KVA 直流输出12V/ 额定电流7A 相数单相 噪音水平(7M) 54-59分贝 起动方式手启动 油箱容积 净重(KG) 23 发动机型号汽油动力 发动机形式四冲程 绝缘等级F级 排量(ml) 燃料型号90号以上汽油

机油容积1L 燃料90号以上汽油 耗油量(g/ 450 连续工作时间小时 尺寸(MM) 535×321×441 认证GS/CE/EPA/CARB/UL/ETL 型号 YT5000UME 额定频率(Hz)50 60 额定电压(V)230 120 额定输出功率(kw) 最大输出功率(kw) 短路保护时间(us)4

相数单相直流输出 12V/ 油箱容积(L)20 连续工作时间(H)6 噪音水平(dBA/7m) 60~65 尺寸(L×W×H)(mm) 860×610×760 净重/毛重(kg) 85/90 动力型号 JD290F 发动机型号 OHV250,单缸, 气冷四冲程排气量(ml) 291 缸径x行程(mm×mm) 80×58 额定速度(r/min) 3600

课程名称固体火箭推进基础及发展

课程名称:固体火箭推进基础及发展 一、课程编码:0100029 课内学时:48学分:3 二、适用学科专业:航空宇航科学与技术,固体推进剂专业 三、先修课程:高等数学,大学物理,航空宇航推进原理,固体火箭发动机设计,气体动力 学基础,工程热力学,传热学等 四、教学目标 通过本课程的学习,掌握先进固体火箭推进的基本原理,并了解其它新型推进方式的概貌,提升学生对固体火箭发动机全方面的认识,为从事固体火箭发动机相关工作奠定基础。 五、教学方式 教学方法以讲授为主,结合教学内容适当安排讨论课,内容以本阶段的讲授的内容和安排的课外阅读材料为主。 六、主要内容及学时分配 A卷 1.固体火箭发动机的燃烧与流动4学时 1.1稳态燃烧 1.2非稳态燃烧 2.燃烧流场的现代诊断技术4学时 2.1燃烧流场的速度诊断 2.2燃烧流场的温度诊断 2.3燃烧流场的密度组分和浓度诊断 2.4凝相粒度及其尺寸分布诊断 3.固体火箭发动机的结构与材料4学时 3.1燃烧室壳体 3.2推进剂装药结构完整性分析 3.3喷管结构烧蚀 3.4壳体尾管的绝热层和包覆层材料 4.固体火箭发动机的喷焰特性4学时 4.1火箭发动机喷焰的排气特征效应 4.2排气特征的测量技术研究 4.3排气特征的预估技术研究 4.4减少排气特征效应的若干措施 5.新型固体推进剂4学时 5.1高能推进剂 5.2高燃速推进剂 5.3复合平台推进剂 5.4固体推进剂的安全性 5.5推进剂技术的发展趋势 6.固体火箭发动机的现代设计与评估技术4学时 6.1固体火箭发动机的现代设计技术

6.2固体火箭发动机的现代评估技术 6.3固体火箭发动机的故障分析 6.4固体火箭发动机的参数辨识 7.现代战术导弹发动机的发展和固体火箭发动机的应用前景4学时 7.1战术导弹发动机的发展方向 7.2当前研究的重点 7.3固体短脉冲控制发动机 8.冲压发动机8学时 8.1冲压发动机的工作原理 8.2整体式冲压发动机的主要组成部件 8.3冲压发动机的发展 B卷 I Introduction2学时 II Overall Design Approach2学时III Propellant Properties and Selection2学时IV Ballistic Analysis and Grain Design2学时V General Procedure for a Propellant Grain-Design Optimization and Computer-Aided Preliminary Design2学时VI Some Specific Cases2学时七、考核与成绩评定 期末笔试:60% 平时分组讨论考核:20% 八、参考书及学生必读参考资料 1.Jensen,G.E and Netzer D.W.Tactical Missile Propulsion[M].Reston:Progress in Astronautics and Aeronautics,Vol.170,1996 2.阿兰.达文纳斯.固体火箭推进剂技术[M].北京:宇航出版社,1997 3.张平等著,固体火箭发动机原理,北京理工大学出版社,1992 4.李宜敏,固体火箭发动机原理北京航空航天大学出版社,1991 5.(苏)阿列玛索夫等著,张大钦等译,火箭发动机原理,北京:宇航出版社,1993 6.王守范编著,固体火箭发动机燃烧与流动,北京工业学院出版社,1987. 7.[美]萨顿G P,比布拉兹O著.火箭发动机基础.北京:科学出版社,2003. 九、大纲撰写人:王宁飞

固体火箭冲压发动机设计技术问题分析

第33卷第2期 固体火箭技术 J o u r n a l o f S o l i dR o c k e t T e c h n o l o g y V o l .33N o .22010 固体火箭冲压发动机设计技术问题分析 ① 徐东来,陈凤明,蔡飞超,杨 茂 (西北工业大学航天学院,西安 710072) 摘要:总结了自1965年以来固体火箭冲压发动机研制技术的总体发展特征和趋势,结合当前新一代战术导弹提出的大空域、宽M a 数和大机动性等越来越高的设计需求,从冲压发动机热力循环技术本质要求出发,分析了当前工程上普遍采用的固定几何进气道、固定几何喷管、燃烧室共用、无喷管助推器和变流量燃气发生器等5项主体设计技术固有的技术缺陷、不足和局限性,明确指出现行的折中设计思想是产生问题的根源,提出未来应遵循“开源节流”设计思想,优先突破喷管调节技术,积极开发进气道调节技术,努力提高现有燃气发生器变流量调节技术水平,切实完善固体火箭冲压发动机热力循环,以促其成功应用。 关键词:固体火箭冲压发动机;设计技术;进气道;喷管;燃气发生器 中图分类号:V 438 文献标识码:A 文章编号:1006-2793(2010)02-0142-06 A s s e s s m e n t o f d e s i g nt e c h n i q u e s o f d u c t e dr o c k e t s X UD o n g -l a i ,C H E NF e n g -m i n g ,C A I F e i -c h a o ,Y A N GM a o (C o l l e g e o f A s t r o n a u t i c s ,N o r t h w e s t e r nP o l y t e c h n i c a l U n i v .,X i 'a n 710072,C h i n a ) A b s t r a c t :T h e d e s i g n c h a r a c t e r i s t i c s a n d t r e n d s o f d u c t e d r o c k e t s s i n c e 1965a r e s u m m a r i z e d .A i m i n g a t d e m a n d i n g d e s i g nr e -q u i r e m e n t s p o s e d b y n e wg e n e r a t i o nt a c t i c a l m i s s i l e s ,n a m e l y ,l o n g r a n g e ,w i d e M a c hn u m b e r r a n g e ,a n dh i g hm a n e u v e r a b i l i t y ,e t c .,t h e i n h e r e n t l i m i t a t i o n s a n dd i s a d v a n t a g e s o f f i v ec o m m o n l y u s e d m a j o r d e s i g nt e c h n i q u e s ,i .e .t h e d e s i g no f f i x e d -g e o m e t r y i n l e t ,f i x e d -g e o m e t r y n o z z l e ,c o m m o nc o m b u s t i o nc h a m b e r ,n o z z l e l e s s b o o s t e r ,a n dv a r i a b l ef l o wg a s g e n e r a t o r ,a r e a n a l y z e df r o m t h ev i e w p o i n t o f e s s e n t i a l r e q u i r e m e n t s o f r a m j e t t h e r m o d y n a m i c c y c l e .T h e p a p e r c l e a r l y p o i n t s o u t t h a t t h e c o m p r o m i s e p h i l o s o p h y i s t h es o u r c e o f t h e s e p r o b l e m s a n d s u g g e s t s t h a t t h e o p t i m u m c o n t r o l i d e a ,i .e .,m a k i n g b r e a k t h r o u g hi nn o z z l er e g u l a t i o nt e c h -n i q u e f i r s t ,a c t i v e l y d e v e l o p i n g i n l e t r e g u l a t i o n t e c h n i q u e ,a n d i m p r o v i n g g a s g e n e r a t o r f l o wc o n t r o l t e c h n i q u e s h o u l db e f o l l o w e d t o p e r f e c t r a m j e t t h e r m o d y n a m i c c y c l e a n df a c i l i t a t e t h e a p p l i c a t i o n s u c c e s s f u l l y . K e yw o r d s :d u c t e dr o c k e t ;d e s i g nt e c h n i q u e s ;i n l e t ;n o z z l e ;g a s g e n e r a t o r 0 引言 固体火箭冲压发动机是第3代冲压发动机。除具 有传统冲压发动机主级比冲高、可提供导弹较远的动力射程且保持高速飞行等性能优势外,因其全固体设计,不仅燃烧稳定可靠,而且突破液体燃料稳定燃烧对于燃烧室的最小尺寸限制,更易于小型化,结构更为简单紧凑,方便贮存和使用维护。所以,被认为是最适合于中等超声速、中远程、小尺寸战术导弹使用的理想高速巡航动力装置。自1965年以来,世界各主要武器大国针对其竞相大力开展了技术研究。 但迄今为止,除前苏联在1965~1967年间研制定型,并成功用于S A -6近程防空导弹外,极少有固体火 箭冲压发动机成功研制和应用案例。特别是自1995年后,针对射程100k m 以上的小尺寸中等超声速超视距空空导弹,欧洲和俄罗斯正在分别大力研制“流星”(M e t e o r )导弹和R -77M 导弹,虽然均历经10余年努力研发,却都迟迟难以定型。不论欧洲等西方发达国家, 即便是继承前苏联衣钵的俄罗斯,历经近半个世纪不懈努力,技术上已经长足进步,却也难以取得研制成功。这究竟是何道理?特别值得深刻反思。 关于冲压发动机的技术发展,国外S o s o u n o v [1] 、W i l s o n [2] 、Wa l t r u p [3] 、F r y [4] 、S t e c h m a n [5] 、B e s s e r [6]和H e w i t t [7]等先后做了阶段性总结和探讨。其中,最具代表性的是在2004年F r y 总结提出的冲压发动机T o p 10 — 142—① 收稿日期:2009-12-28。 基金项目:武器装备预研基金项目(9140A 28030207H K 0332)。 作者简介:徐东来(1970—),男,博士生,主要研究方向为航空宇航推进理论与工程。

汽车发动机常见参数解析

对于多数车主而言,对车辆发动机是否有力、耐用、安静、省油等,都十分关心。然而打开发动机盖,林列于发动机舱内的发动机及其他机构,实在也让人眼花缭乱。大家都知道发动机的重要性,但却因为认识不够,关于发动机的知识也很少能有系统的按各机构、系统来了解,更不要说是每一个机构是如何运作的了。 空燃比(AFR——Air Fuel Ratio) 空燃比、容积效率、点火正时等参数在发动机的控制中十分重要,发动机要能发会最大性能及符合环保法规,这些参数必须正确的应用与设定。

空燃比是指燃料与空气的质量比,当我们说空燃比为13或13:1,即表示进入燃烧室的燃油质量是空气质量的13倍,空燃比数字越大,代表混合气越稀,数字越小则越浓。。依照汽油的燃烧化学式,燃油与空气的当量比为14.7左右,也就是当空燃比在14.7:1时,所有空气中的氧会与汽油完全反应。然而在发动机调校时,有一个调校项目叫做 LBT(Leanest Mixture That Gives Best Torque),就是在发动机能产生最大扭力下,给予最大 (最稀) 的空燃比,一般发动机在LBT时的空燃比都在12.5上下,原因是因为在这个空燃比下的混合气之燃烧速度最合适,能给予发动机最大的性能。然而当油门开启达到一定程度时,发动机会将空燃比设定小 (浓) 一些,以降低燃烧温度保护发动机及触媒转换器。 容积效率(VE——Volumetric Efficiency) 容积效率并不是某些人所谓「发动机马力除以排气量」,而是指在一大气压下,每一个进气行程中,被吸入汽缸之气体体积与该汽缸之排气量的比值。在一般发动机中,活塞自上死点移动至下死点所扫过的体积我们称为「排气量」,而排气量也等于发动机的进气量。

“固体火箭发动机气体动力学”课程 学习指南

1.课程属性 火箭武器专业(即武器系统与工程专业的火箭弹方向)的专业课程体系包括固体火箭发动机气体动力学、固体火箭发动机原理、火箭弹构造与作用、火箭弹设计理论和火箭实验技术。“固体火箭发动机气体动力学”属于专业基础课,是该专业的先修课程。 2.为什么要学习固体火箭发动机气体动力学课程 固体火箭发动机的工作过程是由推进剂燃烧和燃气流动构成的,燃气流动既是燃烧的直接结果,也是固体火箭发动机产生推进动力所需要的。因此,燃气流动是“固体火箭发动机原理”的重要组成部分。 “固体火箭发动机原理”课程将固体火箭发动机内的流动处理成燃烧室内的零维流和喷管中的一维流,如果不学习本课程,一方面不易理解固体火箭发动机内的流动过程,对学好“固体火箭发动机原理”课程是不利的;另一方面,对毕业后继续深造的学生而言,缺乏必要的气体动力学知识,难以深入开展本学科领域的基础理论研究,而本科毕业后直接从事固体火箭研制工作的学生将难以利用先进的计算工具进行工程设计与性能分析,不能适应时代发展和技术进步的要求。通过“固体火箭发动机气体动力学”课程的学习,学生既可以结合固体火箭发动机中的燃气流动问题,系统了解和掌握气体动力学的基本理论和计算方法,构建起完备的专业知识结构,同时也为学好后修课程奠定了坚实的理论基础,提高解决固体火箭发动机设计、内弹道计算、性能分析等实际工程技术问题的能力。 3.“固体火箭发动机气体动力学”的知识结构 把握课程的知识结构是学好“固体火箭发动机气体动力学”的前提。本课程由三个知识模块组成,即气体动力学基础知识、固体火箭发动机中一维定常流动和激波、膨胀波与燃烧波。 (1)气体动力学模块(14学时) 该模块由教材的第一至第三章组成,是相对独立、自成系统的知识模块,目的是建立起基本的气体动力学系统知识,为学习第二个知识模块奠定必要的气体动力学理论基础。该模块的主要知识点为 ?课程背景 ?流体与气体,气体的输运性质,连续介质假设,热力学基本概念与基础知识:系统,环境,边界,状态,过程,功,热量,焓,比热 比,热力学第二定律,理想气体,等熵过程方程,气体动力学基本 概念:控制体,拉格朗日方法,欧拉方法,迹线,流线,作用在流 体上的外力,扰动 ?拉格朗日方法与欧拉方法的关系,连续方程,动量方程,能量方程,熵方程 ?流动定常假设,一维流动假设,一维定常流的控制方程组,伯努利方程,气流推力,声速,对数微分,马赫数,马赫锥,理想气体一 维定常流的控制方程组,滞止状态,滞止过程,滞止参数,动压, 气体可压缩性,临界状态,最大等熵膨胀状态,速度系数,气体动 力学函数 (2)固体火箭发动机中的一维定常流动模块(8学时) 该模块为教材的第四章,是气体动力学知识在固体火箭发动机中的具体应用,分别针对喷管、长尾管、燃烧室装药通道展开讲述,最后简要介绍多驱动势广义一维流动。本知识模块的目的是为学生学习固体火箭发动机原理奠定理论基

发动机与各主要附件系统匹配设计说明

发动机及各主要附件系统匹配设计 一、发动机: 1、发动机分类及工作原理: 发动机是汽车的动力源。它是将某一形式的能量转变为机械能的机器。按燃烧种类分类可分为汽油机、柴油机、燃气机及代用燃料机等。按工作冲程分为四冲程发动机和二冲程发动机。按工作原理和构造可分为点燃式内燃机、压燃式内燃机、混合式内燃机、转子发动机、燃气轮机、外燃机及电动机等。也可按缸数、燃烧室型式等分类。柴油机是内燃机的一种,是把柴油和空气混合后直接输入机器内部燃烧而产生热能,然后再转变为机械能。它具有热效率高、体积小、便于移动、起动性能好等优点而得到广泛应用。车用内燃机,根据其将热能转变为机械能的主要构件的形式,可分为活塞式内燃机和燃气轮机两大类。活塞式内燃机按活塞运动方式分为往复活塞式和旋转活塞式两种,往复活塞式应用最广泛。在发动机内每一次将热能转化为机械能,都必须经过空气吸入、压缩和输入燃料,使之着火燃烧而膨胀做功,然后将生成的废气排出这样一系列连续过程,称为发动机的一个工作循环。对于活塞往复式发动机,可以根据每一工作循环所需活塞行程数来分类。凡活塞往复四个单程完成一个工作循环的称为四冲程发动机,活塞往复两个单程即完成一个工作循环的称为二冲程发动机。目前我厂产品所用发动机多为四冲程多缸柴油机。 2、柴油机的优缺点 与汽油机比较,柴油机因压缩比高,燃油消耗率平均比汽油机低30%左右,且柴油价格相对较低,所以燃油经济性好。柴油机的主要优点是热效率高、油耗低、可靠性高、耐久性好。一般载质量7t以上的货车大都用柴油机。柴油机的缺点是转速较汽油机低,工作粗暴,噪声大,质量大,制造和维修费用高。 3、发动机选用: 目前发动机以选用为主。各发动机主管在会同整车总布置人员满足整车性能和布置要求的前提下与发动机厂确定技术状态。不同的车型对匹配发动机的特性要求有一定差异,应在理论计算的基础上通过试验验证发动机是否满足要求,对不能满足使用要求的应通过发动机性能的优化和整车传动系速比的匹配使发动机与整车得到最优化匹配,在满足动力性要求的前提下取得较好的燃油经济性。

发动机匹配简述

发动机控制器匹配简述 一.发动机匹配工作和发动机管理系统(EMS) 一.发动机匹配工作的目标 发动机匹配工作的目标: 1 通过发动机台架的匹配,使发动机具有良好的稳态性能,在保证发动机工作可靠性(无爆震,无过热)的情况下,达到发动机的设计功率,扭矩和油耗性能。 2 通过对发动机在车辆上的匹配,使发动机与车辆其他系统(各种电器负载,传动系统,制动系统,三元催化转化器等等)协调工作,保证发动机在各种环境和工作条件下,都具有良好的起动怠速性能,良好的驾驶舒适性和排放性能。同时还要进行完善的车载诊断系统(OBD)的匹配。 3 通过高温,高寒和高原等道路环境试验,对匹配好的各种性能进行全方位地验证,保证发动机和车辆在各种情况下都能达到既定的安全,环保和驾驶舒适性等严格的指标。 对于汽油机来说,技术上就是控制进气(合理的配气相位,节气门开度等)、喷油(最佳的空燃比)及点火(合适的点火提前角)三者的配合。 需要加以说明的是,发动机的动力性能和经济性能的最大潜力取决于发动机的本体设计,发动机匹配工作只不过是努力使这些潜力得到挖掘或协调。例如,汽油机通过改变进气量来改变输出的扭矩和功率,进排气系统的设计决定了发动机的充气效率,因此当发动机结构

确定时,一定工况下发动机的最大充气量就已确定,发动机的动力性能也就确定;又如,发动机的工作效率,即燃油经济性,决定于燃烧效率及机械效率,通过改变喷油时间、喷油量以及点火提前角可以改善燃油经济性,但是不能突破由于发动机设计限定的燃油经济性极限。 二.发动机管理系统(EMS)和电子控制单元(ECU) 发动机管理系统(Engine Management System, 缩写为EMS):1979年,BOSCH公司将点火提前角电子控制与燃油定量电子控制融为一体,开发出Motronic,并引入爆震控制、排气再循环等,以满足更趋严格的性能和排放要求,其电子控制范围覆盖整个发动机,称为发动机电子管理系统,其核心是燃油定量和点火正时电子控制。 目前,各种发动机电子管理系统已经成为提高燃油经济性和满足更为严格的排放法规的决定性因素。 发动机管理系统以电子控制单元(Electronic Control Unit,以下简称ECU)为中心,ECU接受来自传感器的各种信息,经过处理、分析以后,发出控制信号给各种执行器。在发动机匹配工作中,就是通过各种匹配实验,对ECU各种参数进行设置,从而达到发动机匹配工作的目标。 三.发动机匹配工作 发动机匹配工作就是在某个确定的发动机管理系统(EMS)下,通过各种项目匹配,为发动机控制器(ECU)各类参数设置合适的值,以达到汽车的动力性、经济性、可靠性、安全性、排

多款发动机整车性能匹配方案对比分析.

多款发动机整车性能匹配方案对比分析 王丽荣 (北京欧曼重型汽车厂,北京怀柔红螺东路21#) 摘 要:通过使用AVL-Cruise软件,对不同性能曲线发动机与整车的匹配分析,得出不同车速、路况、载重情况下,整车的动力性与经济性,并对分析结果进行对比分析,优选出最适合所要求条件下的匹配结果。 关键词:动力性、经济性、方案对比 主要软件:AVL-Cruise 前言:随着交通运输工业的迅速发展,载货汽车的作用变得越来越重要,而对载货汽车整车性能的要求也更加严格和实际.如何开发出性价比高的实用型载货汽车,满足不同使用条件下的用户要求给汽车设计开发人员提出了新的课题。为了提升整车匹配分析的能力,我们公司利用AVL-Cruise软件在整车匹配分析方面的强大功能,在产品开发初期对整车动力性及经济性进行方案对比分析,取得了很好的成效。 1、任务的提出 1.1提出的原因 因潍柴发动机厂推出WD615.50工程版发动机,该工程版发动机在自卸车上和平板货车上匹配是否都会达到最好的效果,设计人员对此缺乏足够的依据。为了对比此发动机与普通型WD615.50发动机在同一款车型上匹配后,其整车动力经济性的区别,以车型BJ3251和BJ1251为例,运用AVL-Cruise软件对两款发动机匹配后,分析其在不同载荷、车速、路况情况下,动力性、经济性的情况。 1.2 两款发动机的万有特性曲线 普通型WD615.50发动机万有特性曲线 工程版WD615.50发动机万有特性曲线

1.3 分析的项目 (1)匹配两款发动机的整车在相同的各载荷条件下,分析其在30km/h、40km/h、50km/h、60km/h、70km/h稳定车速下整车经济性; (2)匹配两款发动机的整车在载荷分别为:12吨、40吨、50吨、60吨、70吨等工况下,分析最高车速、最大爬坡度、最大牵引力、超车加速能力和原地起步连续换档加速能力。 (3)匹配两款发动机的整车在六工况工况下的燃油经济性 (4)匹配两款发动机的整车在最大坡度工况下的后桥扭矩输出校核 2、分析过程 2.1分析模型的建立 Cruise软件模块化的建模理念使得用户可以便捷的搭建不同布置结构的车辆模型。运用其车辆建模组件中的车辆组件库、离合器组件库、变速箱组件库、发动机组件库、制动器组件库、特殊组件库、车轮组件库等搭建本次计算所需的模型。模型如图:2-1。 图2-1 BJ1251车型分析模型 2.2 模型组件关键参数设定 模型各组件参数要合理确定,特别象发动机万有特性数值、空气阻力系数、轮胎滚动阻力系数等参数。这些值的大小直接影响计算结果的准确性。本次计算中的发动机万有特性数值没有电子版的点对点的数据,模型中采用的数据完全是靠人为差值得到的,其计算结果的准确性难以保证,因此只能做定性分析,分析反映的趋势是正确的。参数如表:2-1。

固体火箭发动机工作原理及应用前景浅析

固体火箭发动机工作原理及应用前景浅析 摘要:本文主要介绍了固体火箭发动机的发展简史、基本结构和工作原理以及随着国民经济的日益发展,固体火箭发动机的应用前景。 关键词:火箭发动机工作原理应用 概述 火箭有着悠久的发展历史,早在公元九世纪中期人们便利用火药制成了火箭,并应用于军事。到了14~17世纪,火箭技术相继传入阿拉伯国家和欧洲,并对火箭的结构进行了改进,火箭技术得到进一步发展。19世纪早期,人们将火箭技术的研究从军事目的转向宇宙航行,从固体推进剂转向液体推进剂。到19世纪50年代,中、远程导弹和人造卫星的运载火箭,以及后来发展的各种航天飞船、登月飞行器和航天飞机,其主发动机均为液体火箭发动机,在这一时期,液体火箭推进技术得到了飞速发展。随着浇注成型复合推进剂的研制成功,现代固体火箭推进技术的发展也进入了一个新的时期。使固体火箭推进技术向大尺寸、长工作时间的方向迅速发展,大大提高了固体火箭推进技术的水平,并扩大了它的应用范围。 固体火箭发动机的基本结构 固体火箭发动机主要由固体火箭推进剂装药、燃烧室、喷管和点火装置等部件组成,如图一所示。 图一发动机结构图 1推进剂装药:包含燃烧剂、氧化剂和其他组分是固体火箭发动机的能源部份。装药必须有一定的几何形状和尺寸,其燃烧面的变化必须符合一定的规律,才能实现预期的推力变化要求。 2燃烧室:是贮存装药的容器,也是装药燃烧的工作室。因此不仅要有一定的容积,而且还需具有对高温、高压气体的承载能力。燃烧室材料大多采用高强度的金属材料,也有采用玻璃纤维缠绕加树脂成型的玻璃钢结构,可以大幅减轻燃烧室壳体的重量。 3 点火装置:用于点燃装药的装置。一般采用电点火,由电发火管和点火剂组成。

教你从汽车发动机参数看汽车(教你看懂汽车配置表—发动机)

教你看懂汽车配置表:发动机参数部分 出处:宁夏汽车网作者:李女士时间:2013-02-19 本期将向大家介绍发动机相关参数中的玄机。 ●排量(单位:mL) 活塞从气缸的上止点移动到下止点所通过的空间容积称为气缸排量,由于汽车发动机通常都有若干个气缸,所以发动机的排量就是所有气缸排量之和。

排量可以说是发动机最重要的参数之一,它直接关系到发动机的很多技术指标。通常来说,在自然吸气和增压发动机的各自范畴内,排量和动力是成正比的,同时排量也和油耗以及碳排放成正比,不过这也不是绝对的。比如当今一台1.6L自然进气发动机已经可以与几年前的1.8L甚至2.0L发动机的动力相媲美,而燃油经济性则更加出色,这就是技术发展所带来的成果。 如果整体来看,现今增压技术的广泛应用使得小排量增压发动机做到了更优的动力性和更少的燃油消耗。总的来说,一台发动机的排量基本代表了一辆车的定位,同排量发动机之间由于技术方面的原因在动力性(功率、扭矩)和油耗方面会有一定的差异。 ●进气方式 进气方式主要有两种:自然进气和增压进气。由于自然进气发动机是利用气缸运行中所产生的负压将外部空气吸入,所以这种进气方式的发动机也称为自然吸气式发动机, 也可以表示为“NA”。 前面我们提到,由于发动机的排量在一定程度上是和油耗以及碳排放成正比关系的,所以为了在有限的排量内尽可能增加发动机的动力,同时油耗和碳排放还能保持在相对合理的范围内,所以就此引入了增压进气的方式。简单来说,这种进气方式就是在进气口前加装一个“增压风扇”,通过风扇的转动强制增加发动机的进气量。进气量增大后,发动机电脑便可以适当的多喷油来提高发动机的动力。当前增压进气的方式主要有涡轮增压和机械增压两种。 ◆涡轮增压 涡轮增压器实际上就是一个空气压缩机,它利用发动机排出的废气气流作为动力来推动涡轮增压器内的涡轮,涡轮又带动同轴的叶轮,叶轮来压缩由空气滤清器管道送来的新鲜空气,然后再送入气缸。

火箭发动机工作原理

火箭发动机工作原理本文包括: 1. 1. 引言 2. 2. 推力和固体燃料火箭 3. 3. 液体推进剂及其他类型的火箭 4. 4. 了解更多信息 5. 5. 阅读所有太空学类文章 迄今为止,人类从事的最神奇的事业就是太 空探索了。它的神奇之处很大程度上是因为 它的复杂性。太空探索是非常复杂的,因为 其中有太多的问题需要解决,有太多的障碍 需要克服。所面临的问题包括: 太空的真空环境 热量处理问题 重返大气层的难题 轨道力学 微小陨石和太空碎片 宇宙辐射和太阳辐射

在无重力环境下为卫生设施提供后勤保障 但在所有这些问题中,最重要的还是如何产生足够的能量使太空船飞离地面。于是火箭发动机应运而生。 一方面,火箭发动机是如此简单,您完全可以自行制造和发射火箭模型,所需的成本极低(有关详细信息,请参见本文最后一页上的链接)。而另一方面,火箭发动机(及其燃料系统)又是如此复杂,目前只有三个国家曾将自己的宇航员送入轨道。在本文中,我们将对火箭发动机进行探讨,以了解它们的工作原理以及一些与之相关的复杂问题。 火箭发动机基本原理 当大多数人想到马达或发动机时,会认为它们 与旋转有关。例如,汽车里的往复式汽油发动 机会产生转动能量以驱动车轮。电动马达产生的转动能量则用来驱动风扇或转动磁盘。蒸汽发动机也用来完成同样的工作,蒸汽轮机和大多数燃气轮机也是如此。 火箭发动机则与之有着根本的区别。它是一种反作用力式发动机。火箭发动机是以一条著名的牛顿定律作为基本驱动原理的,该定律认为“每个作用力都有一个大小相等、方向相反的反作用力”。火箭发动机向一个方向抛射物质,结果会获得另一个方向的反作用力。 火箭发动机工作原 理

丰田发动机系列及参数

丰田车系 5A-FE 直列四缸1.5L 16气门DOHC 威驰9.8 68/6000 124/3200 8A-FE 直列四缸1.3L 16气门DOHC 威驰9.3 64/6000 110/3200 丰田5A FE发动机目前国内天津一汽04年至05年 1ZZ-FE 直列四缸1.8L 16气门DOHC、DIS(含铅汽油)花冠9.5 94/6000 162/4400 3ZZ-FE 直列四缸1.6L 16气门DOHC、VVT-i、DIS(无铅汽油)10.5 81/6000 146/4400 1NZ-FE 直列四缸1.5L 16气门DOHC、VVT-i、DIS(无铅汽油)威驰花冠 2NZ-FE 直列四缸1.3L 16气门DOHC、DIS(含铅汽油)威驰花冠 1MZ-FE V型6缸 3.0L 24气门DOHC,10.5 188/5200 203/4400 佳美94年后 1AZ-FE 直列四缸2.0L 16气门DOHC、VVT-i、DIS、ETCS-I 凯美瑞、 RA V4 9.8 108/6000 190/6000 2AZ-FE 直列四缸2.4L 16气门DOHC、VVT-i、DIS、ETCS-I 凯美瑞大霸王 RA V4 9.8 123/6000 224/4000 2TR-FE 直列4缸 2.7L 双凸轮轴16气门(VVT-i)霸道、海狮 1GR-FE V型六缸 4.0L 霸道、兰德酷路泽(第七代陆地巡洋舰) 2GR-FE V型六缸 3.5L 24气门DOHC、双VVT-i、DIS、ACIS、ETCS-i 新款凯美瑞10.8 204/6200 346/4700/ 3GR-FE V型六缸 3.0L 24气门DOHC、双VVT-i、DIS 2005款皇冠、锐志10.5 170/6200 300/4400 5GR-FE V型六缸 2.5L 24气门DOHC、双VVT-i、DIS 锐志10.0 145/6200 242/4400 1FZ-FE 直列六缸4.5L 陆地巡洋舰(第六代) 2UZ-FE V型八缸4.7L 兰德酷路泽(第七代陆地巡洋舰)

柴油机与整车的匹配.

柴油机与整车的匹配 柴油机与整车的匹配是由汽车设计人员来完成的。但是,作为柴油机设计、营销、服务人员也应适当了解、掌握这一方面的知识,有助于最大限度地发挥我们柴油机的卓越性能,避免由于不合理的匹配给我们柴油机造成的性能损害和声誉的影响。 1.柴油机在整车上的布置 1.1载货汽车 载货汽车一般均采用发动机前置后驱动方案,分为长头式、短头式和平头式。 长头式是将驾驶室布置在发动机后面,其优点是驾驶员安全感较好,发动机的维修方便;其缺点是视野较差,汽车的面积利用较低,因而在轻型货车上一般都不采用这种布置,在中、重型汽车有所采用。 短头式是将驾驶室的前围板中间部分做成凹形,将发动机的一小部分凸入驾驶室前围板中的凹形部分。这种布置可以改善长头式的缺点。在轻型和中型汽车上有采用的,但在重型汽车上一般不采用,因为重型汽车的发动机外形尺寸较大。 平头式是将驾驶室放在发动机上面,即将发动机布置在驾驶室里面。这种布置的优缺点与长头式正好相反。目前这种布置在各级别汽车上得到广泛的应用。 1.2客车 发动机在客车上有四种布置方式:发动机前置、卧式中置、后横置、后纵置,一般都用后轮驱动。 目前国内柴油客车只有两种布置方式即发动机前置和后纵置。一般来说轻

型客车上基本采用发动机前置、后轮驱动,即发动机布置在驾驶室正中、动力经传动轴传给后轮,类似于载货汽车。 现在大中型客车都以后置发动机布置型式为主流,其主要优点在于: ①改善前轴负荷,可以实现加长前悬;采用前开门结构,便于整车布置;轴荷分配合理,且车身结构刚性大,承担负荷性能好。②发动机布置在车厢后部,增大整车地板面积利用率,有利座椅布置;由于车辆两轴之间没有传动轴通过,便于在地板下布置较大行李仓,以及空调、暖风等设施,发动机与车厢隔绝,减少发动机废气、噪声、振动对车厢内的污染。此外,传动系统噪声振动向车内的传入也较小。当然,这种布置对于冷却、操纵等提出了较高的要求。 1.3发动机的支承 无论发动机前置还是后置,发动机的支架都是用橡胶减震垫安装在车架纵梁上或纵梁的支架上。应该注意的是:支架的位置和方向最好应使发动机扭振的横摆中心线通过发动机的质心,同时使该横摆中心线通过发动机和离合器总成后第一个万向节中心,以便发动机扭振的横摆振幅最小或为零。 2、柴油机的冷却 CY牌柴油机采用的是闭式强制循环冷却系统,它由发动机冷却水套、水泵、节温器、风扇和散热器等组成。冷却系统的功用在于维持发动机工作在适宜的温度,这就是说有两层含义:一方面冷却发动机,不使它过热;另一方面则要尽量防止发动机在过冷却状态,因为过冷也会导致发动机性能和寿命受损。 2.1冷却系统的上限设计 发动机的冷却元件水泵、风扇、散热器首先是按冷却的功能进行设计的,而且应满足最严重的工况的要求。例如对于载货汽车,一般按炎热夏季高气温(40℃)、汽车满负荷、爬坡大、行驶迎面风速极小来设计的。

发动机匹配标定方案

发动机匹配标定方案Engine Controls and Calibration 范明星应用工程师 意昂神州(北京)科技有限公司 北京市海淀区上地信息路26号 中关村创业大厦315-326室 电话:(010)8289-8056 传真:(010)8278-0433 电邮:Jeff.fan@https://www.doczj.com/doc/e39378454.html,

提纲 匹配标定的概念 标定的基本流程 基本标定系统的组成 基本标定工具 发动机标定和测量系统解决方案 系统配置 VISION标定和测量系统主要功能特点 VISION标定和测量系统竞争优势 发动机数据采集系统 CSM数据采集设备介绍 CSM与VISION基于CAN总线应用示意图 CSM测量设备与ETAS测量设备的对比 标定过程中常用空燃比测定仪

匹配标定概念 发动机控制策略与OBD策略包含了上万个自由参数(单值参数,二维表格,和三维表格等)。 对于一个新的车型应用,这些自由参数需要重新调整从而使该发动机: -在各种不同的环境下运转优良:高温、高寒、高原、水平面等 -满足要求的排放标准 -具有优良的驾驶性 -油耗最小 -冷热启动稳定等

标定基本流程 投放生产 整车验证 车辆标定 台架基本标定 三高标定试验 排放试验 故障诊断标定

一般情况下,标定系统都是由3部分组成: -标定软件:核心部分,标定工作全部都在其图形化界面内完成-接口硬件:提供了标定软件与ECU 及测量部分的接口通道-测量模块:提供了标定的依据 基本标定系统组成

标定软件: ATI VISION Thermo Scan Dual Scan USB HUB

相关主题
文本预览
相关文档 最新文档