当前位置:文档之家› 疲劳寿命设计方法

疲劳寿命设计方法

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

疲劳分析方法

疲劳寿命分析方法 摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况,重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。 疲劳是一个既古老又年轻的研究分支,自Wohler将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。 金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert在1829年前后完成的。他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。1843年,英国铁路工程师W.J.M.Rankine对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。1852年-1869年期间,Wohler对疲劳破坏进行了系统的研究。他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。1874年,德国工程师H.Gerber开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。Goodman讨论了类似的问题。1910年,O.H.Basquin提出了描述金属S-N曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。Bairstow通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。1929年B.P.Haigh研究缺口敏感性。1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。1945年M.A.Miner 在J.V.Palmgren工作的基础上提出疲劳线性累积损伤理论。L.F.Coffin和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin—Manson公式,随后形成了局部应力应变法。 中国在疲劳寿命的分析方面起步比较晚,但也取得了一些成果。浙江大学的彭禹,郝志勇针对运动机构部件多轴疲劳载荷历程提取以及在真实工作环境下的疲劳寿命等问题,以发动机曲轴部件为例,提出了一种以有限元方法,动力学仿真分析以及疲劳分

材料疲劳裂纹扩展设计研究综述

材料疲劳裂纹扩展研究综述 摘要:疲劳裂纹扩展行为是现代材料研究中重要的内容之一。论述了组织结构、环境温度、腐蚀条件以及载荷应力比、频率变化对材料疲劳裂纹扩展行为的影响。总结出疲劳裂纹扩展研究的常用方法和理论模型,并讨论了“塑性钝化模型”和“裂纹闭合效应”与实际观察结果存在的矛盾温度、载荷频率和应力比是影响材料疲劳裂纹扩展行为的主要因素。发展相关理论和方法,正确认识影响机理,科学预测疲劳裂纹扩展行为一直是人们追求的目标。指出了常用理论的不足,对新的研究方法进行了论述。 关键词: 温度; 载荷频率; 应力比; 理论; 方法; 疲劳裂纹扩展 1 前言 19世纪40年代随着断裂力学的兴起,人们对于材料疲劳寿命的研究重点逐渐由不考虑裂纹的传统疲劳转向了主要考察裂纹扩展的断裂疲劳。尽量准确地估算构件的剩余疲劳寿命是人们研究材料疲劳扩展行为的一个重要目的。然而,材料的疲劳裂纹扩展研究涉及了力学、材料、机械设计与加工工艺等诸多学科,材料、载荷条件、使用环境等诸多因素都对疲劳破坏有着显著的影响,这给研究工作带来了极大困难。正因为此,虽然对于疲劳的研究取得了大量有意义的研究成果,但仍有很多问题存在着争议,很多学者还在不断的研究和探讨,力求得到更加准确的解决疲劳裂纹扩展问题的方法和理论。 经过几十年的发展,人们已经认识到断裂力学是研究结构和构件疲劳裂纹扩展有力而现实的工具。现代断裂力学理论的成就和工程实际的迫切需要,促进了疲劳断裂研究的迅速发展。如Rice的疲劳裂纹扩展力学分析(1967年) ,Elber的裂纹闭合理论(1971年) ,Wheeler 等的超载迟滞模

型(1970年) ,Hudak等关于裂纹扩展速率标准的测试方法,Sadananda和Vasudevan ( 1998年)的两参数理论等都取得了一定成果。本文将对其研究中存在问题、常用方法和理论模型、以及温度、载荷频率和应力比对疲劳裂纹扩展影响的研究成果和新近发展起来的相关理论进行介绍。 2 疲劳裂纹扩展研究现存问题 如今,人们在分析材料裂纹扩展问题时最常用到的是“塑性钝化模型”和裂纹尖端因“反向塑性区”等原因导致的“裂纹闭合效应”理论。而它们是否正确,却一直在人们的验证和争论之中。 根据现有的研究结果,有学者提出,若按照“塑性钝化模型”理论,强度高的材料应具有较低的裂纹扩展速率,但实验结果却不能证实这一预测。另外,该“模型”认为的“裂纹尖端的钝化是在拉应力达到最大值时完成的”这一观点在理论上不妥,也与实测结果不符。观察结果表明,裂纹尖端钝化是一个渐进的过程,钝化半径与外载荷大小成正比。 而疲劳裂纹在扩展过程中的“裂纹闭合效应”在什么情况下存在,能否对材料的裂纹扩展速率产生重要影响,考虑“裂纹闭合”的实验室数据能否用于工程中等问题也一直在人们的争论之中。由于“裂纹闭合效应”理论推出的结论是:“对载荷比的依赖性不是材料的内在行为,而是源于裂纹表面提前闭合后应力强度因子幅(△K) 的变化”,所以早在1984年S.Suresh等人就指出[1],“裂纹闭合”不是一个力学参数,它受构件形状、载荷、环境和裂纹长度等因素的影响。因此,除非在实际使用过程中测量构件的裂纹闭合情况,否则在实验室里做出来的试验结果不能用来预测构件中的裂纹扩展速率。1970年,Ritchie研究钢中裂纹扩展的近门槛值时发现:在真空环境下,应力比R对门槛值几乎没有影响,首度质疑了裂纹闭合的存在性和所起的作用。在前人研究的基础上,美国海军实验室的

塑料齿轮疲劳寿命分析

1 的疲劳破坏 疲劳是一种十分有趣的现象,当材料或结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比屈服极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料或结构的破坏现象就叫做疲劳破坏。 如图1所示,F表示齿轮啮合时作用于齿轮上的力。齿轮每旋转一周,轮齿啮合一次。啮合时,F由零迅速增加到最大值,然后又减小为零。因此,齿根处的弯曲应力or也由零迅速增加到某一最大值再减小为零。此过程随着齿轮的转动也不停的重复。应力or随时间t的变化曲线如图2所示。 图1 齿轮啮合时受力情况 图2 齿根应力随时间变化曲线 在现代工业中,很多零件和构件都是承受着交变载荷作用,工程塑料齿轮就是其中的典型零件。工程塑料齿轮因其质量小、自润滑、吸振好、噪声低等优点在纺织、印染、造纸和食品等传动载荷适中的轻工机械中应用很广。

疲劳破坏与传统的静力破坏有着许多明显的本质差别: 1)静力破坏是一次最大载荷作用下的破坏;疲劳被坏是多次反复载荷作用下产生的破坏,它不是短期内发生的,而是要经历一定的时间。 2)当静应力小于屈服极限或强度极限时,不会发生静力破坏;而交变应力在远小于静强度极限,甚至小于屈服极限的情况下,疲劳破坏就可能发生。 3)静力破坏通常有明显的塑性变形产生;疲劳破坏通常没有外在宏观的显着塑性变形迹象,事先不易觉察出来,这就表明疲劳破坏具有更大的危险性。 工程塑料齿轮的疲劳寿命,是设计人员十分关注的课题,也是与实际生产紧密相关的问题。然而,在疲劳载荷作用下的疲劳寿命计算十分复杂。因为要计算疲劳寿命,必须有精确的载荷谱,材料特性或构件的S-N曲线,合适的累积损伤理论,合适的裂纹扩展理论等。本文对工程塑料齿轮疲劳分析的最终目的,就是要确定其在各种质量情况下的疲劳寿命。通过利用有限元方法和CAE软件对工程塑料齿轮的疲劳寿命进行分析研究有一定工程价值。 2 工程塑料齿轮材料的确定 超高分子量聚乙烯(UHMWPE)是一种综合性能优异的新型热塑性工程塑料,它的分子结构与普通聚乙烯(PE)完全相同,但相对分子质量可达(1~4)×106。随着相对分子质量的大幅度升高,UHMWPE表现出普通PE所不具备的优异性能,如耐磨性、耐冲击性、低摩擦系数、耐化学性和消音性等。 UHMWPE耐磨性居工程塑料之首,比尼龙66(PA66)高4倍,是碳钢、不锈钢的7—8倍。摩擦因数仅为~,具有自润滑性,不粘附性。因此,本文选用UHMWPE 作为工程塑料齿轮材料进行研究。UHMWPE性能见表1。 由于UHMWPE导热性能较差,所以与其啮合的齿轮选用钢材料。这样导热性好、摩损小,并能弥补工程塑料齿轮精度不高的缺点。2啮合齿轮均为标准直齿圆柱齿轮,参数为:UHMWPE齿轮齿数30,钢齿轮齿数20,模数4mm,齿宽20mm,压力角取为20°。

材料的疲劳性能

材料的疲劳性能 一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随机变动应力两种。 1、表征应力循环特征的参量有: ①最大循环应力:σmax; ②最小循环应力:σmin; ③平均应力:σm=(σmax+σmin)/2; ④应力幅σa或应力范围Δσ:Δσ=σmax-σmin,σa=Δσ/2=(σmax-σmin)/2; ⑤应力比(或称循环应力特征系数):r=σmin/σmax。 2、按平均应力和应力幅的相对大小,循环应力分为: ①对称循环:σm=(σmax+σmin)/2=0,r=-1,大多数旋转轴类零件承受此类应力; ②不对称循环:σm≠0,-1σm>0,-1

③脉动循环:σm=σa>0,r=0,齿轮的齿根及某些压力容器承受此类应力。σm=σa<0,r=∞,轴承承受脉动循环压应力; ④波动循环:σm>σa,0

疲劳寿命设计方法

寿命设计方法 -王光建

目录 …什么是疲劳失效 …无限寿命设计方法 ?S-N曲线(wohler curve)及疲劳极限?基于疲劳极限的评判 ?考虑平均应力的损伤修正…有限寿命设计方法 ?Miner法则(疲劳损伤线性累积) ?雨流计数法?寿命计算…疲劳寿命仿真计算 …疲劳寿命计算的不足

疲劳失效 …疲劳是一种机械损伤过程 …特点: 在这一过程中即使名义应力低于材料屈服强度;破坏前无明显塑性变形,突然发生断裂…本质: ?交变载荷+金属缺陷?金属的循环塑性变形(微观) ?疲劳一般包含裂纹萌生和随后的裂纹扩展两个过程 ?疲劳是损伤的累积 金属内部缺陷微裂纹产生裂纹扩展断裂 (晶体位错) 疲劳发生过程 …疲劳的判断: 金属材料的疲劳断裂口上,有明显的光滑区域与颗粒区域,光滑区域是疲劳断裂区,颗粒区域是脆性断裂区 粗糙的脆性断裂区 光滑的疲劳区 裂纹源

-S-N曲线(Wohler curve)及疲劳极限…S-N曲线是根据材料的疲劳强度实验数据得出的应力和疲劳寿命N的关系曲线 …S-N曲线用于描述材料的疲劳特性 σ S-N curve 1871年,Wohler首先对铁路车轴进行了系统的疲劳研究,发展了S-N曲线及疲劳极限概念

-S-N曲线(Wohler curve)及疲劳极限…疲劳极限:一般规定,循环次数107所对应的最大应力为疲劳极限 σ σ limit S-N curve

-基于疲劳极限的评判 …Alternating stress 作为判断应力 Alternating stress=(σ - σmin)/2 max …判断标准 σAlternating stress<σ limit σσ limit σ √ 2 S-N curve σ × 1

公路桥梁结构桥梁抗疲劳设计方法应用

公路桥梁结构桥梁抗疲劳设计方法应用 摘要:随着我国社会既经济的发展,公路桥梁工程建设越发的完善,但是由于我国人口众多,私家车拥有量也是与日俱增,这就导致我国公路桥梁工程的消耗使用比较严重,部分公路桥梁由于长期处于疲劳工作状态下使得其结构出现严重破损,影响交通工程的安全性。其中,桥梁工程出现疲劳的现象比较多,所以,在进行公路桥梁结构看疲劳设计时要将工作重点放在桥梁抗疲劳设计上,从而促进公路桥梁抗疲劳性能。 关键词:公路桥梁;结构桥梁;抗疲劳设计;方法应用 引言 随着我国社会经济的发展,结构桥梁工程的建设越来越多,但是在发展的同时也会越到需索刁钻的问题,其中,抗疲劳设计就是一项比较复杂而且艰难的工作。在施工与运行的过程中如果略了各类问题,就会导致工程在启动之后出现抗疲劳强度不足,出现桥梁使用年限缩小的情况。 一、影响桥梁结构抗疲劳强度因素 1.残余应力 在我国现阶段的桥梁建设中普遍采用钢结构作为桥梁的主要材料,而钢结构的抗疲劳性能基本上是受加工材料性能的影响,例如在加工阶段中冶炼、轧制、焊接等过程,都与可能会出现受热不均的现象,致使钢结构内部存在残余应力,对于钢结构桥梁来说,其一般只能承受翼缘内周期性压力应力,在高残余拉应力范围内便会出现开裂问题,而影响桥梁结构抗疲劳性能。针对钢结构中的残余应力,如果不能够完全掌握受力的峰值,还有受力的分布区域,这就很可能会造成残余应力影响钢结构质量的问题出现,尤其是对桥梁结构疲劳强度影响十分明显。 2.低温冷脆循环作用 在一般情况下,钢结构桥梁工程的施工过程对下弦和桥墩支座连接位置的集中应力以及流限状态的研究不够全面,这种钢结构桥梁受到低温冷脆循环很容易会发生脆断的现象。除此之外,当钢结构材料厚度为B≥2.5(KIC/σys)2时,钢结构平面应力逐渐趋于脆性状态,是钢结构桥梁施工设计的要点。 3.其余因素 3.1钢结构的材料特性

疲劳强度考试整理

1.疲劳的定义:材料在循环应力或循环应变作用下,由于某点或某些点产生了局部的永久 结构变化,从而在一定的循环次数以后形成裂纹或发生断裂的过程称为疲劳。 2.疲劳的分类: (1)按研究对象可以分为材料疲劳和结构疲劳 材料疲劳——研究材料的失效机理,化学成分和微观组织对疲劳强度的影响,使用标准试件。结构疲劳——则以零部件、接头以至整机为研究对象,研究它们的疲劳性能、抗疲劳设计方法、寿命估算方法和疲劳试验方法。 (2)按失效周次可以分为高周疲劳和低周疲劳 高周疲劳——材料在低于其屈服强度的循环应力作用下,经104-105以上循环产生的失效。低周疲劳——材料在接近或超过其屈服强度的应力作用下,低于104-105次塑性应变循环产生的失效。 (3)按应力状态可以分为单轴疲劳和多轴疲劳 单轴疲劳——单向循环应力作用下的疲劳,零件只承受单向正应力或单向切应力。 多轴疲劳——多向应力作用下的疲劳,也称复合疲劳。 (4)按载荷变化情况分为恒幅疲劳、变幅疲劳、随机疲劳 恒幅疲劳——所有峰值载荷均相等和所有谷值载荷均相等。 变幅载荷——所有峰值载荷不等,或所有谷值载荷不等,或两者均不等。 随机疲劳——幅值和频率都是随机变化的,而且是不确定的。 (5)按载荷工况和工作环境可以分为常规疲劳、高低温疲劳、热疲劳、热—机械疲劳、腐 蚀疲劳、接触疲劳、微动磨损疲劳和冲击疲劳 常规疲劳——在室温和空气介质中的疲劳。 高低温疲劳——低于室温的疲劳和高于室温的疲劳。 热疲劳——温度循环变化产生的热应力所导致的疲劳。 热-机械疲劳——温度循环与应变循环叠加。 腐蚀疲劳——腐蚀环境与循环应力的复合作用。 接触疲劳——滚动接触零件在循环应力作用下产生损伤。 微动磨损疲劳——接触面的微幅相对振动造成磨损疲劳。 冲击疲劳——重复冲击载荷所导致的疲劳。 3.金属疲劳破坏机理

材料的疲劳性能

材料的疲劳性能 一.本章的教学目的与要求 本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。 二.教学重点与难点 1. 疲劳破坏的一般规律(重点) 2.金属材料疲劳破坏机理(难点) 3. 疲劳抗力指标(重点) 4.影响材料及机件疲劳强度的因素(重点) 5热疲劳(难点) 三.主要外语词汇 疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value 疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue 四. 参考文献 1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009 2.束德林.金属力学性能.北京:机械工业出版社,1995 3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996 4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994 5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991 6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81 五.授课内容

第三章疲劳强度计算练习题dayin

第三章机械零件的疲劳强度设计 三、设计计算题 3-47 如图所示某旋转轴受径向载荷F=12kN作用,已知跨距L=1.6m,直径d=55mm,轴的角速度为ω,求中间截面上A点的应力随时间变化的表达式,并求A点的σmax、σmin、σa和σm。 3-48 一内燃机中的活塞连杆,当气缸发火时,此连杆受压应力σmax=-150MPa,当气缸进气开始时,连杆承受拉应力σmin=50MPa,试求:(1)该连杆的平均应力σm、应力幅σa 和应力比r;(2)绘出连杆的应力随时间而变化的简图。 3-49 一转动轴如图所示,轴上受有轴向力F a=1800N,径向力F r=5400N,支点间的距离L=320mm,轴是等截面的,直径d=45mm。试求该轴危险截面上的循环变应力的σmax、σmin、σm、σa和r。 题3-49图题3-50图 3-50 某一转轴的局部结构如图所示,轴的材料为Q235普通碳钢,精车制成。若已知直径D=120mm,d=110mm,圆角半径r=5mm,材料的力学性能为:σb=450MPa,σs=220MPa,试求截面变化处的疲劳强度综合影响系数KσD和KτD。 3-51 由脆性材料制成的受弯平板的平面尺寸如图所示,板厚30mm。A、B两处各有一个直径5mm的穿透小孔,弯矩M=20kN·m。试分别计算Ⅰ、Ⅱ两截面上的最大应力值。疲劳缺口系数查题3-53附图。 3-52 一转轴的各段尺寸及其受载情况如图所示。所有圆角半径均为r=3mm。试分别计算Ⅰ—Ⅰ至Ⅶ—Ⅶ各截面上的最大弯曲应力的名义值和实际值。疲劳缺口系数查题3-53附图。

题3-51图题3-52图 3-53 用高强度碳钢制成的构件 的平面尺寸如图所示,厚8mm,受拉力 F=50kN。该构件的Ⅰ、Ⅱ、Ⅲ截面上分别 有φ15mm的圆孔、R7.5mm的半圆缺口 和R7.5mm的圆角。试分别计算这三个截 面上的最大应力。 题3-53附图 附注:这三种结构的疲劳缺口系数值可从上图曲线中查得。 3-54 题3-53中如载荷F在25~85kN之间做周期性的变化,材料改为20CrMnTi,其力学性能为σs=835MPa,σ-1=345MPa,σ0=615MPa。危险截面上的疲劳缺口系数Kσ=1.45,尺寸系数εσ=0.75,表面状态系数βσ=0.9,按无限寿命考虑。试画出σm-σa极限应力图,并用图解法和解析法确定安全系数Sσ。 3-55 用题3-54的条件画出σm-σmax和σmin极限应力图,并用图解法和解析法确定安全系数。可参阅[5]。 3-56 按题3-54的条件,除载荷F变为在-32~64kN之间作周期性变化外,其余条件不变。试画出σmin-σmax极限应力简图,并用图解法和解析法确定安全系数。可参阅[5]。 3-57 一阶梯轴轴肩处的尺寸为D=60mm,d=50mm,r=4mm,如材料的力学性能为:σb=650MPa,σs=360MPa,σ-1=200MPa,σ0=320MPa。试绘制此零件的简化极限应力线图。 3-58 如上题中危险截面处的平均应力σm=30MPa,应力幅σa=45MPa,试分别按(1)r=c;(2)σm=c求出该截面上的计算安全系数Sσ。 3-59 一转轴的危险截面上作用有周期性波动的载荷:弯矩M=100~200N·m,转矩T=0~100N·m。轴的材料为45钢,力学性能:σs=400MPa,σ-1=270MPa,σ0=480MPa,τs=216MPa,τ-1=156MPa,τ0=300MPa。若截面直径d=25mm,疲劳缺口系数Kσ=1.78,Kτ=1.45,尺寸系数εσ=0.9,ετ=0.93,表面状态系数βσ=0.91,βτ=0.95。试确定安全系数S。计算时可

提高零件疲劳强度的方法

提高零件疲劳强度的方法 【摘要】机械零件的抗疲劳破坏是造成机械运行故障的主要原因,因此,提高机械零件的疲劳强度是机械结构设计中不容忽视的问题。针对影响零件疲劳强度的因素并结合实际,对在设计过程中如何提高零件的疲劳强度的方法及措施做简要的叙述和相关分析,且对工程中常见的问题,提出相应的控制方法和解决措施。【关键词】疲劳强度;应力集中 1概述 在19世纪初,随着蒸汽机车的发明和铁路建设的迅速发展,机车车辆的疲劳破坏现象时有发生,使工程技术人员认识到交变应力对金属强度的不良影响。很多结构物都承受交变应力的作用,例如飞机,火车,船舶等交通运输工具由于大气紊流,波浪及道路不平引起的颠簸都承受交变应力,即使是房屋,桥梁等看来似乎完全不动的结构物也同样承受变应力作用,因为桥梁上驶过车辆时,房屋中的机器设备运转和振动时,甚至刮风等均会引起交变应力。所以交变应力对于结构物来说是经常遇到的。 绝大多数的机械零件是在循环变应力作用下工作的,如弹簧,齿轮,轴等都是在循环载荷下工作的,承受交变应力或重复应力,如在工作过程中工作应力低于屈服强度时就会发生疲劳破坏,造成重大的经济损失。为避免这些现象的发生,提高零件的疲劳强度,在设计阶段应考虑它的使用环境和受力状态,材料性能,加工工艺等因素。我将基于材料的疲劳特性,对提高零件疲劳强度的方法及措施进行简要的叙述。 2零件的疲劳特性 材料的疲劳特性可用最大应力,应力循环次数,应力比(循环特性)来表述。 10时,属静应力强度,当循环次数在在一定的应力比下,当循环次数低于3 4 310 10时属于低周疲劳,然而一般零件承受变应力时,其应力循环次数通常大~ 10,属高周疲劳,此阶段,如果作用的变应力小于持久疲劳极限,无论应力于4 变化多少次,材料都不会破坏。由于零件受加工质量及强化因素等影响,使得零件的疲劳极限小于材料的疲劳极限,通常等于材料疲劳极限与其疲劳极限的综合影响系数的比值。故可通过改善零件受力状况,将作用在零件上的变应力降低到持久疲劳极限以下,对延长材料的使用寿命具有重要的意义。 3提高零件疲劳强度的方法 影响零件的疲劳强度的因素很多,比如材料的最大应力,工作环境,应力状态,加工质量与加工工艺等。为提高零件的疲劳强度,经查阅资料得出以下方法。(1)材料的选择 材料的选择原则是:在满足静强度要求的同时,还应具备良好的抗疲劳性能。过去静强度选材的一个基本原则是要求强度高,但在疲劳设计中,需从疲劳强度的观点选材: a在达到使用期限的应力值时,材料的疲劳极限必须满足要求。 b材料的切口敏感性和擦伤疲劳敏感性小,在交变载荷作用处要特别注意。 c裂纹扩展速率慢,许用临界裂纹大些,及要求零件的断裂韧性值大,使零件或结构在使用中出现裂纹后,不会很快导致灾难性的破坏。

细解Ansys疲劳寿命分析

细解Ansys疲劳寿命分析 2013-08-29 17:16 by:有限元来源:广州有道有限元 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论. …恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷

…成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

材料的疲劳性能汇总

一.本章的教学目的与要求 本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。 二.教学重点与难点 1. 疲劳破坏的一般规律(重点) 2.金属材料疲劳破坏机理(难点) 3. 疲劳抗力指标(重点) 4.影响材料及机件疲劳强度的因素(重点) 5热疲劳(难点) 三.主要外语词汇 疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value 疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue 四. 参考文献 1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009 2.束德林.金属力学性能.北京:机械工业出版社,1995 3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996 4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994 5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991 6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81 五.授课内容

疲劳强度设计方法研究

疲劳强度设计方法研究

摘要 疲劳强度是当前机械产品的主要失效形式,在机械强度设计中占有重要的位置。正确地应用疲劳理论于强度设计上,可以得到合理的设计,包括选材、结构尺寸及加工工艺等,或根据工况及给定的零部件估算其寿命。本文从疲劳断裂的过程出发,通过对疲劳强度三种思路的分析,介绍了相应疲劳强度设计及寿命估算的三种方法。 关键词:疲劳强度,寿命估算,疲劳设计,S-N曲线

1. 引言 所谓疲劳,是指材料或构件在长期的循环变应力作用下的失效现象,也称疲劳破坏。当循环变应力远小于强度极限时,经过一定的循环周次,也能使构件发生疲劳破坏。疲劳破坏是机械工程中常见的失效形式。近数十年来,疲劳破坏危及各个领域,飞机由于疲劳破坏而造成机毁人亡的灾难性事故;二次世界大战期间有上万艘焊接船舶、几十座焊接桥梁毁于疲劳破坏;对于车轴、车轨以及机架,曲轴,齿轮、螺栓联接等的疲劳破坏事故更是屡见不鲜。据统计,现代工业中零部件的失效80%是由于疲劳引起的。因此,疲劳问题引起了人们的极大关注。 对在循环变应力作用下的构件,以往的机械设计常常采用静强度设计,靠选取较大的安全系数来保证其使用的可靠性。而实际上是在变载荷作用下的构件由于强度储备大,在按静强度设计有时会将疲劳问题暂时掩盖起来。随着近代机械向高速、高温、大功率和轻重量的方向发展,对机械产品的零构件采用合理的疲劳设计,是提高设计水平、保证产品质量和提升经济效益的一个重要环节。 2. 疲劳断裂的形成 现行的疲劳设计思想与疲劳断裂的过程有关。从疲劳断裂的破坏过程来看一般分为三个阶段: (1)裂纹萌生阶段,或称裂纹成核或形成阶段 由于观察仪器的精密度和分辨率不同,所能观察到的裂纹长度也

疲劳强度设计

疲劳强度设计 对承受循环应力的零件和构件,根据疲劳强度理论和疲劳试验数据,决定其合理的结构和尺寸的机械设计方法。机械零件和构件对疲劳破坏的抗力,称为零件和构件的疲劳强度。疲劳强度由零件的局部应力状态和该处的材料性能确定,所以疲劳强度设计是以零件最弱区为依据的。通过改进零件的形状以降低峰值应力,或在最弱区的表面层采用强化工艺,就能显著地提高其疲劳强度。在材料的疲劳现象未被认识之前,机械设计只考虑静强度,而不考虑应力变化对零件寿命的影响。这样设计出来的机械产品经常在运行一段时期后,经过一定次数的应力变化循环而产生疲劳,致使突然发生脆性断裂,造成灾难性事故。应用疲劳强度设计能保证机械在给定的寿命内安全运行。疲劳强度设计方法有常规疲劳强度设计、损伤容限设计和疲劳强度可靠性设计。 简史19世纪40年代,随着铁路的发展,机车车轴的疲劳破坏成为非常严重的问题。1867年,德国A.沃勒在巴黎博览会上展出了他用旋转弯曲试验获得车轴疲劳试验结果,把疲劳与应力联系起来,提出了疲劳极限的概念,为常规疲劳设计奠定了基础。 20世纪40年代以前的常规疲劳强度设计只考虑无限寿命设计。第二次世界大战中及战后,通过对当时发生的许多疲劳破坏事故的调查分析,逐渐形成了现代的常规疲劳强度设计,它非但提高了无限寿命设计的计算精确度,而且可以按给定的有限寿命来设计零件,有限寿命设计的理论基础是线性损伤积累理论。早在1924年,德国 A.帕姆格伦在估算滚动轴承寿命时,曾假定轴承材料受到的疲劳损伤的积累与轴承转动次数(等于载荷的循环次数)成线性关系,即两者之间的关系可以用一次方程式来表示。1945年,美国M.A.迈因纳根据更多的资料和数据,明确提出了线性损伤积累理论,也称帕姆格伦-迈因纳定理。 随着断裂力学的发展,美国A.K.黑德于1953年提出了疲劳裂纹扩展的理论。1957年,美国P.C.帕里斯提出了疲劳裂纹扩展速率的半经验公式。1967年,美国R.G.福尔曼等又对此提出考虑平均应力影响的修正公式。这些工作使人们有可能计算带裂纹零件的剩余寿命,并加以具体应用,形成了损伤容限设计。 用概率统计方法处理疲劳试验数据,是20世纪20年代开始的。60年代后期,可靠性设计从电子产品发展到机械产品,于是在航天、航空工业的先导下,开始了可靠性理论在疲劳强度设计中的应用。 1961年联邦德国H.诺伊贝尔提出的关于缺口件中名义应力-应变与局部应力-应变之间的关系,称为诺伊贝尔公式。1968年加拿大R.M.韦策尔在诺伊贝尔公式的基础上,提出了估算零件裂纹形成寿命的方法,即局部应力-应变法,在疲劳强度设计中得到了应用和发展。 常规疲劳强度设计假设材料没有初始裂纹,经过一定的应力循环后,由于疲劳损伤的积累,才形成裂纹,裂纹在应力循环下继续扩展,直至发生全截面脆性断裂。裂纹形成前的应力循环数,称为无裂纹寿命;裂纹形成后直到疲劳断裂的应力循环数,称为裂纹扩展寿命。零件总寿命为两者之和。 根据零件所用材料的试样的疲劳试验结果,以最大应力为纵坐标、以达到疲劳破坏的循环数N为横坐标,画出一组试样在某一循环特征下的应力-

提高钢轨螺栓疲劳强度的有效方法

提高钢轨螺栓疲劳强度的有效方法 X X X 2011年5月20日 摘要:文章应用有限元方法分析了钢轨螺栓根部圆弧半径对其根部应力大小及分布的影响,并在此基础上进一步探讨了增大圆弧半径的方法与途径,为缓解螺纹根部的应力集中,改善应力分布,提高螺栓的疲劳强度提供了可靠的依据。 关键词:钢轨螺栓有限元法应力集中疲劳强度 螺栓是最常见的联接件之一,广泛应用于铁路、机械、汽车以及各种工程结构之中。很多研究成果表明,螺纹根部圆弧半径的尺寸影响螺纹根部应力的大小及分布[1,2],由于螺纹根部存在较大的应力集中,当承受较大载荷时可能出现局部应力超过材料流动极限的现象。虽然这种局部高应力区域较小,且对螺栓的静强度影响不大,但因疲劳裂纹大多发生在高应力区,因此可以说螺纹根部圆弧半径的大小直接关系到螺栓的疲劳强度和使用寿命。 本文在分析钢轨螺栓根部圆弧半径对其根部应力集中系数影响的基础上,进一步探讨了增大圆弧半径的方法和途径,为缓解螺纹根部的应力集中,改善应力分布,提高钢轨螺栓的疲劳强度提供了可靠的依据。 一、钢轨螺栓联接有限元模型 钢轨螺栓联接由钢轨、螺栓、螺母、缓冲垫等组成,如图1所示。本文采用的钢轨螺栓材料为20 MnTiB,弹性模量为210GPa,泊松比为0.28,抗拉强度为1040 MPa,屈服强度为940MPa 。螺栓长度为72mm,公称直径为24mm,螺距为3mm,螺纹中径为22.051mm,螺母直径为40mm,旋合长度为27mm。分析螺纹根部圆弧半径对螺栓最大轴向拉应力及应力集中系数的影响时,在不影响精度的前提下,为了减少计算量,可将螺栓、螺母单独作为研究对象,用接触载荷代替钢轨与螺母间的相互作用。根据螺栓联接结构及受力特点(轴对称),建立的有限元模型如图2所示。此外,由于螺栓和螺母相互接触,应进行非线性的接触分析,而不能将它们看作同一个物体进行有限元分析计算。 有限元模型的单元划分不但影响计算速度,而且影响计算精度。因此,单元

材料的疲劳性能完整版

材料的疲劳性能 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

材料的疲劳性能 一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随机变动应力两种。 1、表征应力循环特征的参量有: ①最大循环应力:σmax ; ②最小循环应力:σmin ; ③平均应力:σm =(σmax +σmin )/2; ④应力幅σa 或应力范围Δσ:Δσ=σmax -σmin ,σa =Δσ/2=(σmax -σmin )/2; ⑤应力比(或称循环应力特征系数):r=σmin /σmax 。 2、按平均应力和应力幅的相对大小,循环应力分为: ①对称循环:σm =(σmax +σmin )/2=0,r=-1,大多数旋转轴类零件承受此类应力; ②不对称循环:σm ≠0,-1σm >0,-10,r=0,齿轮的齿根及某些压力容器承受此类应力。σm =σa <0,r=∞,轴承承受脉动循环压应力;

④波动循环:σ m >σ a ,0

某商用车白车身结构疲劳寿命分析与优化设计

某商用车白车身结构疲劳寿命分析与优化设计 作者:湖南工业李明李源陈斌 摘要:本文基于应力分析结果,采用有效的疲劳寿命预估方法,利用专业耐久性疲劳寿命分析系统MSC.Fatigue 对该型商用车白车身进行S-N 全寿命分析,得其疲劳寿命分布与危险点的寿命值。采用结构优化、合理选材等方法,提高白车身结构的疲劳寿命。 关键词:白车身;有限元;静态分析;疲劳寿命分析;优化 前言 在车身结构疲劳领域的国内研究中,1994 年,江苏理工大学陈龙在建立了车辆驾驶室疲劳强度计算的力学和数学模型基础上,提出了车辆驾驶室疲劳强度研究方法[1]。2001 年,清华大学孙凌玉[2]等首次计算机模拟了汽车随机振动过程。2002 年,上海汇众汽车制造有限公司王成龙[3]等应用FATIGUE 软件的分析,结合疲劳台架试验,探讨了疲劳强度理论在汽车产品零部件疲劳寿命计算中的应用,提出了提高零部件疲劳强度的方法。2004 年,同济大学汽车学院靳晓雄[4]等人提到进行零部件疲劳寿命预估,精确的有限元模型和可靠的材料疲劳数据是必需的,另外获得准确的实际运行工况下的道路输入载荷也非常关键。但由于客观条件的限制,国内这方面的研究非常有限,理论分析的多,对局部零部件研究的多,把车身整体作为研究对象的很少。 本文以某型商用车疲劳寿命仿真分析及优化提高为内容,研究中,首先对白车身结构几何进行网格划分;之后使用MSC.Patran/Nastran 对白车身结构进行静态仿真;然后导入MSC.Fatigue 对白车身结构进行疲劳寿命仿真。在分析的基础上采用结构优化设计的方法优化结构、合理选择材料等,提高白车身结构的静态力学性能与动态疲劳寿命。 1 疲劳寿命计算方法 疲劳寿命计算需要载荷的变化历程、结构的几何参数,以及有关的材料性能参数或曲线[4]。 图1为基于有限元分析结果的疲劳寿命分析流程。

疲劳寿命理论及应用

3.疲劳寿命理论及应用 (1)疲劳损伤发生在受交变应力(或应变)作用的零件和构件,如起重机的桥架和其他结构件、压力容器、机器的轴和齿轮等,它导致零件或构件的过大变形或断裂。零件和构件在低于材料屈服极限的交变应力(或应变)的反复作用下,经过一定的循环次数以后,在应力集中部位萌生裂纹。裂纹在一定条件下扩展,最终突然断裂,这一失效过程称为疲劳破坏。材料在疲劳破坏前所经历的应力循环数称为疲劳寿命。 (2)常规疲劳强度计算是以名义应力为基础的,可分为无限寿命计算和有限寿命计算。零件的疲劳寿命与零件的应力、应变水平有关,它们之间的关系可以用应力一寿命曲线(e-n曲线)和应变一寿命曲线(δ-n曲线)表示。应力一寿命曲线和应变一寿命曲线统称为s-n曲线。根据试验可得其数学表达式。在疲劳试验中,实际零件尺寸和表面状态与试样有差异,常存在由圆角、链槽等引起的应力集中,所以,在使用时必须引入应力集中系数k、尺寸系数ε和表面系数β。 (3)循环应力的特性用最小应力e min与最大应力e max的比值r=e min/e max表示,r称为循环特征。对应于不同循环特征,有不同的s-n曲线、疲劳极限和条件疲劳极限。对不同方向的应力,可用正负值加以区别,如拉应力为正值,压应力为负值。当r=-1,即e min=e max 时,称为对称循环应力;当r=0,即e min=0时,称为脉动循环应力;当r=+1,即e min=e max 时,应力不随时间变化,称为静应力;当+1>r>-1时,统称为不对称循环应力。对应于不同循环特征,有不同的s-n曲线、疲劳极限和有限寿命的条件疲劳极限。 材料疲劳极限可从有关设计手册、材料手册中查出。缺乏疲劳极限数据时,可用经验的方法根据材料的屈服极限es,和断裂极限eb计算。 零件的疲劳极限erk和τrk是根据所使用材料的疲劳极限,考虑零件的应力循环特性、尺寸效应、表面状态应力集中等因素确定。 (4)疲劳损伤积累理论认为:当零件所受应力高于疲劳极限时,每一次载荷循环都对零件造成一定量的损伤,并且这种损伤是可以积累的;当损伤积累到临界值时,零件将发生疲劳破坏。较重要的疲劳损伤积累理论有线性疲劳损伤积累理论和非线性疲劳损伤积累理论。线性疲劳损伤积累理论认为,每一次循环载荷所产生的疲劳损伤是相互独立的,总损伤是每一次疲劳损伤的线性累加,它最具代表性的理论是帕姆格伦一迈因纳定理。 (5)迈因纳(palmgren-miner)定理 设在载荷谱中,有应力幅为e1, e2…ei…,等各级应力,其循环数分别为n1、n2…ni…从材料的s-n曲线,可以查到对应于各级应力的达到疲劳破坏的循环数n1、n2…ni…根据疲劳损伤积累为线性关系的理论,比值ni/ni为材料受到应力ei的损伤率。发生疲劳破坏,即损伤率达到100%的条件为: P/g nJZ(~ .|&G€ E9 [ 本资料来源于贵州学习网财 https://www.doczj.com/doc/e37574392.html, ] P/g nJZ(~ .|&G€ E9 会考试注册资产评估师 4.损伤零件寿命估算 计算带缺陷零件的剩余自然寿命一般采用断裂力学理论,通过建立裂纹扩展速率与断裂力学参量之间的关系来进行计算。断裂力学理论认为:零件的缺陷在循环载荷作用下会逐步扩大,当缺陷扩大到临界尺寸后将发生断裂破坏。这个过程被称为疲劳断裂过程。 疲劳断裂过程大致可分为四个阶段,即成核、微观裂纹扩展、宏观裂纹扩展及断裂。 损伤零件疲劳寿命的估算主要应用帕利斯(paris)定理。 帕利斯(paris)定理主要内容是:对裂纹扩展规律的研究,断裂力学从研究裂纹尖端附近的应力场和应变场出发,导出裂纹体在受载条件下裂纹尖端附近应力场和应变场的特征量来进行。这个特征量用应力强度因子k表示。k值的变化幅度也是控制裂纹扩展速度da/dn的主要参量。在考虑材料性能参量对裂纹扩展速度的影响后,帕利斯提出了以下裂纹扩展速度的半经验公式:

相关主题
文本预览
相关文档 最新文档