当前位置:文档之家› 功率因数的大小与电路的负荷性质有关

功率因数的大小与电路的负荷性质有关

功率因数的大小与电路的负荷性质有关
功率因数的大小与电路的负荷性质有关

功率因数

科技名词定义

中文名称:

功率因数

英文名称:

power factor

定义:

有功功率与视在功率之比。所属学科:电力(一级学科);通论(二级学科)

功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感或电容性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。所以,供电部门对用电单位的功率因数有一定的标准要求。

要求

(1) 最基本分析

拿设备作举例。例如:设备功率为100个单位,也就是说,有100个单位的功率输送到设备中。然而,因大部分电器系统存在固有的无功损耗,只能使用70个单位的功率。很不幸,虽然仅仅使用70个单位,却要付100个单位的费用。(使用了70个单位的有功功率,你付的就是70个单位的消耗)在这个例子中,功率因数是0.7 (如果大部分设备的功率因数小于0.9时,将被罚款),这种无功损耗主要存在于电机设备中(如鼓风机、抽水机、压缩机等),又叫感性负载。功率因数是马达效能的计量标准。

(2) 基本分析

每种电机系统均消耗两大功率,分别是真正的有用功(叫千瓦)及电抗性的无用功。功率因数是有用功与总功率间的比率。功率因数越高,有用功与总功率间的比率便越高,系统运行则更有效率。

(3) 高级分析

在感性负载电路中,电流波形峰值在电压波形峰值之后发生。两种波形峰值的分隔可用功率因数表示。功率因数越低,两个波形峰值则分隔越大。

[编辑本段]

对于功率因数改善

电网中的电力负荷如电动机、变压器、日光灯及电弧炉等,大多属于电感性负荷,这些电感性的设备在运行过程中不仅需要向电力系统吸收有功功率,还同时吸收无功功率。因此在电网中安装并联电容器无功补偿设备后,将可以提供补偿感性负荷所消耗的无功功率,减少了电网电源侧向感性负荷提供及由线路输送的无功功率。由于减少了无功功率在电网中的流动,因此可以降低输配电线路中变压器及母线因输送无功功率造成的电能损耗,这就是无功补偿的效益。无功补偿的主要目的就是提升补偿系统的功率因数。因为供电局发出来的电是以KVA或者MVA来计算的,但是收费却是以KW,也就是实际所做的有用功来收费,两者之间有一个无效功率的差值,一般而言就是以KVAR为单位的无功功率。大部分的无效功都是电感性,也就是一般所谓的电动机、变压器、日光灯……,几乎所有的无效功都是电感性,电容性的非常少见。编辑本段]

好处

供电局为了提高他们的成本效益要求用户提高功率因数,那提高功率因数对我们用户端有什么好处呢?

①通过改善功率因数,减少了线路中总电流和供电系统中的电气元件,如变压器、电器设备、导线等的容量,因此不但减少了投资费用,而且降低了本身电能的损耗。

②藉由良好功因值的确保,从而减少供电系统中的电压损失,可以使负载电压更稳定,改善电能的质量。

③可以增加系统的裕度,挖掘出了发供电设备的潜力。如果系统的功率因数低,那么在既有设备容量不变的情况下,装设电容器后,可以提高功率因数,增加负载的容量。

举例而言,将1000KVA变压器之功率因数从0.8提高到0.98时:

补偿前:1000×0.8=800KW

补偿后:1000×0.98=980KW

同样一台1000KVA的变压器,功率因数改变后,它就可以多承担180KW的负载。

④减少了用户的电费支出;透过上述各元件损失的减少及功率因数提高的电费优惠。

此外,有些电力电子设备如整流器、变频器、开关电源等;可饱和设备如变压器、电动机、发电机等;电弧设备及电光源设备如电弧炉、日光灯等,这些设备均是主要的谐波源,运行时将产生大量的谐波。谐波对发动机、变压器、电动机、电容器等所有连接于电网的电器设备都有大小不等的危害,主要表现为产生谐波附加损耗,使得设备过载过热以及谐波过电压加速设备的绝缘老化等。

并联到线路上进行无功补偿的电容器对谐波会有放大作用,使得系统电压及电流的畸变更加严重。另外,谐波电流叠加在电容器的基波电流上,会使电容器的电流有效值增加,造成温度升高,减少电容器的使用寿命。

谐波电流使变压器的铜损耗增加,引起局部过热、振动、噪音增大、绕组附加发热等。

谐波污染也会增加电缆等输电线路的损耗。而且谐波污染对通讯质量有影响。当电流谐波分量较高时,可能会引起继电保护的过电压保护、过电流保护的误动作。

因此,如果系统量测出谐波含量过高时,除了电容器端需要串联适宜的调谐(detuned)电抗外,并需针对负载特性专案研讨加装谐波改善装置。编辑本段

改善电能质量的理由

为什么说提高用户的功率因数可以改善电压质量?

电力系统向用户供电的电压,是随着线路所输送的有功功率和无功功率变化而变化的。当线路输送一定数量的有功功率是,如输送的无功功率越多,线路的电压损失越大。即送至用户端的电压就越低。如果110KV以下的线路,其电压损失可近似为:△U=(PR+QX)/Ue 其中:△U-线路的电压损失,KV

Ue--线路的额定电压,KV

P--线路输送的有功功率,KW

Q--线路输送的无功功率,KVAR

R—线路电阻,欧姆

X--线路电抗,欧姆

由上式可见,当用户功率因数提高以后,它向电力系统吸取的无功功率就要减少,因此电压损失也要减少,从而改善了用户的电压质量。

在直流电路里,电压乘电流就是有功功率。但在交流电路里,电压乘电流是视在功率,而能起到作功的一部分功率(即有功功率)将小于视在功率。有功功率与视在功率之比叫做功率因数,以COSΦ表示,其实最简单的测量方式就是测量电压与电流之间的相位差,得出的结果就是功率因数。

2 kW有源功率因数校正电路设计

2 kW 有源功率因数校正电路设计 概述:有源功率因数校正可减少用电设备对电网的谐波污染,提高电器 设备输入端的功率因数。详细分析有源功率因数校正APFC(active power factor corrector)原理,采用平均电流控制模式控制原理,设计一种2 kW 有源功率因数校正电路。实验结果表明:以TDA16888 为核心的有源功率因数校 正器能在90~270 V 的宽电压输入范围内得到稳定的380 V 直流电压输出,功率因数达O.99,系统性能优越。 1 引言 目前家用电器的功率前级多采用二极管全桥整流方式,这会造成电网谐波 污染,功率因数下降,无功分量主要为高次谐波,其中三次谐波幅度约为基 波幅度的95%,五次谐波幅度约为基波幅度的70%.七次谐波幅度约为基波幅度的45%。高次谐波会对电网造成危害,使用电设备的输入端功率因数 下降,而且产生很强的电磁干扰(EMI),对电网和其他用电设备的安全运行造 成潜在危害。 有源功率因数校正电路(Active Power Factor Corrector,APFC)可将电源的输入电流变换为与输入市电同相位的正弦波,从而提高电器设备的功率因数, 减少对电网的谐波污染。理论上,降压式(Buck)、升压式(Boost)、升/降压式(Boost-Buck)以及反激式(Flyback)等变换器拓扑都可作为APFC 的主电路。其中,Boost APFC 是简单电流型控制,功率因数值高,总谐波失真小,效率高,但输出电压高于输入电压,适用于75~2 000 W 功率电源,应用广泛。因为升压式APFC 的电感电流连续,储能电感可作为滤波器抑制射频干扰(RFI)和EMI 噪声,并防止电网对主电路的高频瞬态冲击.电路有升压斩波电路,输出电压大于输入电压峰值,电源允许的输入电压范围扩大,通常可达

功率因数校正之基本原理

功率因数校正之基本原理 何谓工率因数? 功率因数(power factor;pf)定义为实功(real power;P)对视在功率(apparent power;S)之比,或代表电压与电流波形所形成之相角之余弦,如图1。功率因数值可由0至1之间变化,可为电感性(延迟的、指标向上)或电容性(领先的、指标向下)。为了降低电感性之延迟,可增加电容,直到pf为1。当电压与电流波形为同相时,工率因数等于1(cos(0o)=1)。所有努力使工率因数等于1是为了使电路为纯电阻化(实功等于视在功率)。 ▲图1: 功率因数之三角关系。 实功(瓦特)可提供实际工作,此为能量转换元素(例如电能到马达转动rpm)。虚功(reactive power)乃为使实功完成实际工作所产生之磁场(损耗)。而视在功率可想成电力公司提供之总功率,如图1所示。此总功率经由电力线提供产生所需之实功。 当电压与电流皆为正弦波时,如前述定义之功率因数(简称为功因)为电压与电流波形之对应相角,但大部份之电源供应器之输入电流乃非正弦波。当电压为正弦波而电流为非正弦波时,则功因包括两个因素:1)相角位移因素,2)波形失真因素。等式1表示相角位移与波形失真因素之于功因的关系。 ----------------------------------------------------(1)

Irms(1)为电流之主成份,Irms电流之均方根值。因此功率因数校正线路是为了使电流失真最小,且使电流与电压同相。 当功因不等于1时,电流波形没有跟随电压波形,不但有功率损耗,且其产生之谐波透过电力线干扰到连接同一电力线之其它装置。功因越接近1,几乎所有功率皆包含于主频率,其谐波越接近零。 ■了解规范 EN61000-3-2对交流输入电流至第40次谐波规范。而其class D对适用设备之发射有严格之限制(图2)。其class A要求则较宽松(图3)。 ▲图2:电压与电流波形同相且PF=1(Class D)。

用电需求气象条件等级

用电需求气象条件等级 Weather Condition Ratings for Electric Power Requirement (征求意见稿) 、/. —L- 前言 本标准的附录A 为资料性附录。本标准由中国气象局提出。本标准由中国气象局政策法规司归口。本标准由湖北省气象局气象科技服务中心负责起草。本标准主要起草人:洪国平、胡宗海、罗学荣本标准是首次发布。 引言 随着社会经济的发展和人民生活水平条件的改善,致冷、取暖等第三产业和居民生活用电占全社 会用电量的比例越来越大,大城市致冷、取暖用电比例更高,经常带来电网高峰或尖峰负荷,这部分电能是很难预测、很不稳定、又常常给电网运行安全带来隐患,我们称之为气象敏感负荷(电量),科学预测致冷、取暖导致的气象敏感负荷和用电是各电网公司电力调度部门非常关心的技术。而致冷、取暖完全是由气温、湿度、风等气象要素决定的,研究气温、湿度、风等气象要素与电力负荷、用电量的关系,并进一步研究各因子对气象敏感负荷(电量)的贡献,分别组合成气象敏感负荷指数和气象敏感用电量指数。统计分析气象指数不同范围对应的不同级别负荷或用电量,从而实现对气象敏感负荷和气象敏感用电量的评估和预测。到目前为止,全国很多地方都 开展了气象要素对用电需求影响的研究,但还没有形成一个统一的、全国适用的方法和标准,缺乏同一性和可比性,不利于气象部门开展电力气象服务工作,为贯彻“公共气象、安全气象、资源气象”的理念,实现气象服务“五满意”,有必要制定全国统一的用电需求气象条件等级行业标准,为气象部门更好地开展电力气象服务,为地方经济发展和建设小康社会服务。 随着技术进步及电力气象服务研究的深入开展,本标准尚需不时修订,由于气候差异性大,不同地方使用本标准时须根据当地气候特点加以修订,以使其具有更好的适用性和规范性。 用电需求气象条件等级的制定 1 范围本标准规定了用电需求气象条件包括:气象敏感负荷条件和气象敏感电量条件。本标准规定了气象敏感负荷条件等级和气象敏感电量条件等级制定方法及其计算方法。本标准规定了用电需求气象要素:气温、相对湿度及风速。 本标准适用于适用于气象敏感电力负荷、气象敏感用电量的评价,适用于气象敏感电力负荷、气象敏感用电量的预测。 2 术语和定义、缩略语下列术语及定义、缩略语适用于本标准。 2.1 术语及定义 2.2.1 气温 气温Temperature 空气的温度,用C表示。 2.2.2 日最高气温 日最高气温daily maximum air temperature 一日内空气温度的最高值。以摄氏度(C)为单位。 2.2.3 日平均气温 日平均气温daily mean air temperature 一日内空气温度的平均值。以摄氏度(C)为单位。

周口供电公司用电负荷组织方案

周口供电公司用电负荷组织方案

二O一一年六月二十七日 周口供电公司用电负荷组织方案 2011年度夏期间河南电网将进行大负荷冲击试验,届时河南电网最大负荷预计将突破4000千万千瓦,周口电网最大负荷将达到150万千瓦。为保障大负荷冲击实验期间电网安全稳定运行和大负荷冲击试验成功,特制订周口供电公司用电负荷组织方案。 一、2011年迎峰度夏期间本地区负荷预测情况和供电能力分析 (一)、全社会、网供最大负荷和预计出现日期 根据目前周口电网实际用电情况分析,预计2011年度夏期间周口电网全社会最大负荷150万千瓦,网供最大负荷147万千瓦;与2010年度夏最大负荷120.4万千瓦(考虑断面受限

压负荷影响,最大负荷可达到127万千瓦)相比增加29.6万千瓦,同比增长25%。根据往年度夏负荷曲线分析,周口电网负荷从6月初开始迅猛增长,8月上旬负荷达到最大值。2010年周口电网最大负荷出现时间为8月4日21时,据此预计今年最大负荷出现时间为8月7日左右。 (二)、迎峰度夏期间地方电厂装机情况,运行方式安排和发电能力,可调整区间。迎峰度夏期间本地区供电能力分析,分全社会和网供。 目前周口供电区内有地方生物电厂2座,分别是鹿邑生物电厂装机25MW和扶沟生物电厂装机12MW。地方电厂总装机容量达到37MW,其中可调出力为30MW。 度夏期间周口电网通过2回500千伏邵周线和3回220千伏线路(邵淮线、薛淮线、Ⅰ邵川线)与省网联络,供电能力达到1450兆瓦;隆达电厂2×135兆瓦机组作为网供不足的有效补充,在度夏期间仍然发挥着积极作用。两座生物电厂机组容量小、可调出力仅有30兆瓦,对度夏期间周口电网影响不大。 夏季大负荷时系统送周口断面最大145万千瓦,在隆达电厂和鹿邑、扶沟两座生物电厂全开机方式下,全网最大供电能力173万千瓦,备用23万千瓦,能够满足度夏供电需求。 二、大负荷试验期间用电负荷组织方案 (一)、成立领导小组,加强组织领导,落实工作责任。 建立健全大负荷冲击组织机构,明确各部门职责,要求各县

PFC开关电源功率因数校正原理

PFC开关电源功率因数校正原理 PFC开关电源功率因数校正原理 一、什么是功率因数补偿,什么是功率因数校正: 功率因数的定义为有功功率与视在功率的比值. 功率因素补偿:这项技术主要是针对因具有感性负载的交流用电器具的电压和电流不同相(图1)而引起的供电效率低下,提出的改进方法(由于感性负载的电流滞后所加电压,电压和电流的相位不同,使供电线路的负担加重,导致供电线路效率下降,这就要求在感性用电器具上并联一个性质相反的电抗元件.用以调整该用电器具的电压、电流相位特性.例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器).用电容器并联在感性负载的两端,利用电容上电流超前电压的特性,用以补偿电感上电流滞后电压的特性,使总的特性接近于阻性,从而改善效率低下的方法叫做功率因数补偿(交流电的功率因数可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示)。 图1 在具有感性负载中供电线路中电压和电流的波形

常规开关电源功率因数低是由于开关电源都是在整流后,用一个大容量的滤波电容使输出电压平滑,因此负载特性呈现容性.这就造成了交流220V在整流后,由于滤波电容的充、放电作用,在其两端的直流电压上出现略呈锯齿波的纹波.滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多. 图2 全波整流电压和AC输入电流波形 因为根据整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止.也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通.虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图2所示.这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降. 在正半个周期内(180o),整流二极管的导通角大大小于180o,甚至只有30o~70o.由于要保证负载功率的要求,在极窄的导通角期间,会产生极大的导通电流,使供电电路中的供电电流呈脉冲状态.它不仅降低了供电的效率,更为严重的是,它在供电线路容量不足或电路负载较大时,会产生严重的交流电压波形畸变(图3),并产生多次谐波,从而干扰了其它用电器具的正常工作(这就是电磁干扰-EMI和电磁兼容-EMC问题)。

无源功率因数校正电路的原理和应用

无源功率因数校正电路的原理和应用 摘要:本文介绍SIEMENS公司提出的开关电源集成控制器TDA16846无源功率因数校正(PFC)电路原理及其在电视机开关电源中的应用。功率因数的改善是基于一个特殊的由电感,电容及二极管组成的充电泵电路,该电路在功率管的高压端兼起吸收缓冲作用,因此它具有输入谐波电流分量小,PF值高以及EMI小、电路简单、成本低和可靠性高等优点。这为电视机厂家提供了一个高效价廉的解决电源谐波问题的新方案。 关键词:开关电源功率因数校正 一、引言 众所周知,目前电视机和大部分通用电器都广泛地从交流电网中提取电能经整流后变成直流电供全机使用,AC电源经桥式整流后常接一个滤波平整电容。由于该电容的存在,使整流臂的导通时间小于半个周期,因而做成输入电源电压是正弦形,而输入电流却是正负交替的脉冲形。后者导致大量电流谐波特别是三次谐波的产生,这既构成对电网效能的干扰和损害,又降低了本机功率因数,为此,我国跟欧美各国一样,已于去年12月1日起正式实施限制功耗大于75W的通用电器产品输入谐波电流的新规定。面对这种新情况,当前各电器厂家都必须考虑更新产品中的电源设备,尤其是对25英寸以上的彩色电视机,过去国内产品绝大部分都没有安装PFC电路,其PF值一般在0.55~0.65之间,输入电流谐波分量往往超出国家限定的标准,因此改进电源电路,增加PFC功能以便降低电视机的输入电流谐波分量是各厂家的当务之急。 本文介绍由SIEMENS公司推出的与开关电源集成控制器TDA16846配合使用的一个无源功率因数校正(PFC)电路,该电路能将电源PF值提高到0.9以上,与有源PFC电路相比,它明显地具有结构简单,成本低,可靠性高,和EMI小等优点,因此对电视机厂家来说,不失为一个有效的解决电源谐波问题的可行方案。 二、无源PFC电路工作原理介绍 图1示出一个不含PFC的标准型电源电路的输入电压Vm和输入电流Im波形,Im只在Vm为正最大和负最大的一小段时间内流通,在这些时间以外,Im为零。这是因为此时的正弦电压输入值小于泸波电容上的电压,导致整流二极管不导通的缘故。

3、用电负荷等级划分

电力工程总包 及物资 用 电 负 荷 等 级 分类及供电方案 福建美宁电力电子工程公司 二0一三年三月

用电负荷等级分类及供电方案 一、负荷分级 由于不可能对所有的用电单位和用电设备都采取相同的供电措施,所以供配电设计应首先对用电单位和用电设备进行负荷分级。负荷分级应根据用电单位(即电能用户)和用电设备的规模、功能、性质及其在政治、经济上的重要性进行确定。负荷分级的目的和意义在于根据不同的负荷级别确定用电单位和用电设备的供电要求和供电措施,以保证供电系统的安全性、可靠性、先进性和合理性。国际上普遍的做法是将负荷按应急电源自动切换的允许中断供电时间划分为0s、小于0.15s、0.5s、15s和大于15s五个级别,而我国则是沿用前苏联的做法,按用电单位或用电设备突然中断供电所导致后果的危险性和严重程度分为一、二、三级。1.1符合下列一种或几种条件者,应划分为一级负荷:(1)中断供电将造成人身伤亡者。例如医院手术室的照明及电力负荷、婴儿恒温箱、心脏起搏器等单位或设备。(2)中断供电将在政治、经济上造成重大损失者。例如国宾馆、国家级会堂以及用于承担重大国事活动的场所,中断供电将造成重大设备损坏、重大产品报废、连续生产过程被打乱需要长时间才能恢复的重点企业、一类高层建筑的消防设备等用电单位或设备。 (3)中断供电将影响有重大政治、经济意义的用电单位的

正常工作者。例如:重要交通枢纽、重要通信枢纽、不低于四星级标准的宾馆、大型体育场馆、大型商场、大型对外营业的餐饮单位以及经常用于国际活动的大量人员集中的公共场所等重要用电单位或设备。 (4)中断供电将造成公共秩序严重混乱的特别重要公共场所。例如大型剧院、大型商场、重要交通枢纽等。 对于重要的交通枢纽、重要的通信枢纽、国宾馆、国家级及承担重大国事活动的会堂、国家级大型体育中心、经常用于重要国际活动的大量人员集中的公共场所等的中断供电将影响实时处理计算机及计算机网络正常工作或者中断供电将会发生爆炸、火灾、严重中毒以及特别重要场所中不允许中断供电的一级负荷为特别重要负荷。 1.2 符合下列一种或几种条件者,应划分为二级负荷:(1)中断供电将造成较大政治影响者。例如省部级办公楼、民用机场中处特别重要和普通一级负荷外的用电负荷等。(2)中断供电将造成较大经济损失者。例如中断供电将造成主要设备损坏、大量产品报废的企业、中型百货商场、二类高层建筑的消防设备、四星级以上宾馆客房照明等用电单位或用电设备。 (3)中断供电将影响正常工作的重要用电单位或用电设备。例如小型银行(储蓄所)、通信枢纽、电视台的电视电影室等。

功率因数校正(PFC)技术的研究

网络教育学院《电源技术》课程设计 题目:功率因数校正(PFC)技术的研究 学习中心:辽宁东港奥鹏 层次:高中起点专科 专业:电气工程及其自动化 年级: 2010年春季 学号: 学生: 辅导教师:武东锟 完成日期: 2012年 2 月 24 日

内容摘要 本文对于单相与单相PFC技术及其控制方法的研究,针对于各种功率因数校正,介绍了相应的基本工作原理,和功率因数校正技术的额发展和其主要最主要特点。从主电路的拓扑形式和控制方式分析有源功率因数校正。进而更好的学习电源技术。 关键词:功率因数校正;PFC技术;控制方法;有源功率因数

引言、 功率因数是衡量电器设备性能的一项重要指标。功率因数低的电器设备,不仅不利于电网传输功率的充分利用,而且往往这些电器设备的输入电流谐波含量较高,实践证明,较高的谐波会沿输电线路产生传导干扰和辐射干扰,影响其它用电设备的安全经济运行。如对发电机和变压器产生附加功率损耗,对继电器、自动保护装置、电子计算机及通讯设备产生干扰而造成误动作或计算误差。因此。防止和减小电流谐波对电网的污染,抑制电磁干扰,已成为全球性普遍关注的问题。国际电工委与之相关的电磁兼容法规对电器设备的各次谐波都做出了限制性的要求,世界各国尤其是发达国家已开始实施这一标准。 随着减小谐波标准的广泛应用,更多的电源设计结合了功率因数校正(PFC)功能。设计人员面对着实现适当的PFC段,并同时满足其它高效能标准的要求及客户预期成本的艰巨任务。许多新型PFC拓扑和元件选择的涌现,有助设计人员优化其特定应用要求的设计。

1功率因数校正基本原理及方法 1.1功率因数校正基本原理 功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。开关电源供应器上的功率因数校正器的运作原理是去控制调整交流电电流输入的时间与波型,使其与直流电电压波型尽可能一致,让功率因数趋近于。这对于电力需求量大到某一个水准的电子设备而言是很重要的, 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。 PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。 1.1.1拓扑选择的一般方法 由于输入端存在电感,升压转换器是提供高功率因数的方法。此电感使输入电流整形与线路电压同相。但是,可以采用不同的方案来控制电感电流的瞬时值,以获得功率因数校正。 a.临界导电模式(CRM)PFC——由于控制的设计较为简单,而且可与较低速升压二极管配合使用,所以在较低功率应用中通常采用此方法。 b.不连续导电模式(DCM)PFC——此创新的方案延承了CRM 的优点,并消除了若干限制。 c.连续导电模式(CCM)PFC——由于这种方案恒频且峰值电流较小,是较高功率(>250 W)应用的首选方案。但是,传统的控制解决方案较为复杂,牵涉到多个环

天津市居住用地电力规划综合负荷密度指标及 KV公用配电站选站的设置要求 规市字〔 〕 号

天津市居住用地电力规划综合负荷密度指标及10KV公用配电站选站的设置要求 规市字〔2012〕302号 为规范住宅项目规划设计,依据《天津市10KV及以下配电网建设与改造技术原则》、《10KV及以下变电所设计规范(GB50053-94)》、《供配电系统设计规范(GB50052-95)》,并参照《天津市超高层居民住宅建筑公用电力配套技术规定》,对原有《天津市居住用地电力规划综合负荷密度指标及10KV 公用配电站选站的设置要求》(规程字〔2009〕946号)进行修订,作为《天津市城市住宅设计标准(电气设计部分)》出台前规划设计的依据。 一、各类居住项目,规划单位建筑面积电力综合负荷密度指标 (一)综合负荷密度指标 多层建筑(6层以下):50瓦/平方米; 设置电梯的多层建筑(6层以下):65瓦/平方米; 中高层建筑(7层以上12层以下):70瓦/平方米; 高层建筑(主体高度大于24米,小于100米):80瓦/平方米;

超高层建筑(主体高度大于100米):根据实际负荷需要计算。 (二)各类民用居住项目的规划范围内,当小型商业、公建和配套设施等负荷密度有可能超出规定值,且规划期间难以确定时,在选择配电站数量和计算变压器最终装建容量时,可在上述综合负荷密度指标的基础上增加20%计算裕度。待施工阶段确定后,在符合规划的基础上可以向下微调。 二、规划居住区配电站的选站原则 (一)配电站进楼设置 1.配电站进楼设置宜设置在建筑物首层。 2.建筑物有地下2层的,须设置在地下1层,同时应满足国家强制性标准和地方标准及行业标准。 3.配电站进楼应具有独立的维护和电器设备搬运通道。楼内设置的配电站应满足配电设备的消防、通风、防水、降低噪音、电磁屏蔽、搬运、维护通道等要求。 (二)独立设置的土建配电站 1.独立设置的土建配电站应满足对负荷的供电半径要求,其外立面和色彩宜与居住小区整体景观相协调。 2.独立设置的土建配电站,应临近可通行设备运输车辆的小区道路。 3.独立设置的土建配电站规格参照下表进行规划。

功率因数校正电路(pfc)电路工作原理及应用

功率因数校正(英文缩写是PFC)是 目前比较流行的一个专业术语。PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。 线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。前一个原因人们是比较熟悉的。而后者在电工学等书籍中却从未涉及。 功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。为提高负载功率因数,往往采取补偿措施。最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。 PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。 长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上 的电压时,整流二极管因反向偏置而截止。也就是说,在AC 线路电压的每个半周期内,只是在其峰值附近,二极管才会导通(导通角约为70°)。虽然AC 输入电压仍大体保持正弦波波形,但AC 输入电流却呈高幅值的尖峰脉冲,如图l 所示。这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。若AC 输入电流基波与输入电压之间的位移角是Φ1,根据傅里叶分析,功率因数PF 与电流总谐波失真(度)THD 之间存在下面关系: 而是由二极管、电阻、电容和电感等无源元件组成。无源PFC 电路有很多类型,其中比较简单的无源PFC 电路由三只二极管和两只电容组成,如图2所示。这种无源PFC 电路的工作原理是:当50Hz 的AC 线路电压按正弦规律由0向峰值V m 变化的1/4周期内(即在0

负荷等级是如何分类的

负荷等级是如何分类的? 如:一级,二级,三级 《《供配电系统设计规范》GB 50025-95》如下: 第二章负荷分级及供电要求 第2.0.1条电力负荷应根据对供电可靠性的要求及中断供电在政治、经济上所造成损失或影响的程度进行分级,并应符合下列规定: 一、符合下列情况之一时,应为一级负荷: 1.中断供电将造成人身伤亡时。 2.中断供电将在政治、经济上造成重大损失时。例如:重大设备损坏、重大产品报废、用重要原料生产的产品大量报废、国民经济中重点企业的连续生产过程被打乱需要长时间才能恢复等。 3.中断供电将影响有重大政治、经济意义的用电单位的正常工作。例如:重要交通枢纽、重要通信枢纽、重要宾馆、大型体育场馆、经常用于国际活动的大量人员集中的公共场所等用电单位中的重要电力负荷。在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应视为特别重要的负荷。 二、符合下列情况之一时,应为二级负荷: 1.中断供电将在政治、经济上造成较大损失时。例如:主要设备损坏、大量产品报废、连续生产过程被打乱需较长时间才能恢复、重点企业大量减产等。 2.中断供电将影响重要用电单位的正常工作。例如:交通枢纽、通信枢纽等用电单位中的重要电力负荷,以及中断供电将造成大型影剧院、大型商场等较多人员集中的重要的公共场所秩序混乱。 三、不属于一级和二级负荷者应为三级负荷。 第2.0.2条一级负荷的供电电源应符合下列规定: 一、一级负荷应由两个电源供电;当一个电源发生故障时,另一个电源不应同时受到损坏。 二、一级负荷中特别重要的负荷,除由两个电源供电外,尚应增设应急电源,并严禁将其它负荷接入应急供电系统。 第2.0.3条下列电源可作为应急电源: 一、独立于正常电源的发电机组。 二、供电网络中独立于正常电源的专用的馈电线路。 三、蓄电池。 四、干电池。 第2.0.4条根据允许中断供电的时间可分别选择下列应急电源: 一、允许中断供电时间为15s以上的供电,可选用快速自启动的发电机组。 二、自投装置的动作时间能满足允许中断供电时间的,可选用带有自动投入装置的独立于正常电源的专用馈电线路。 三、允许中断供电时间为毫秒级的供电,可选用蓄电池静止型不间断供电装置、蓄电池机械贮能电机型不间断供电装置或柴油机不间断供电装置。 第2.0.5条应急电源的工作时间,应按生产技术上要求的停车时间考虑。当与自动启动的发

变电站站用电负荷统计及配电计算

110KV变电站站用电负荷统计及配电计算 初步设计研究报告 变电一次 批准: 审定: 校核: 编制:

目录 摘要 (4) 前言 (5) 第一章 110KV变电站选址 (6) 第二章电气主接线设计以及主变电压器容量选择 (6) 第三章主变压器的选择 (7) 第四章变电站主接线的原则 (7) 第五章主接线设计方案 (8) 第六章负荷计算 (16) 第七章电气主设备的选择及校验 (16) 第八章隔离开关的选择及校验 (23) 第九章熔断器的选择 (28) 第十章电流互感器的选择及校验 (29) 第十一章电压互感器的选择 (36) 第十二章避雷器的选择及检验 (39) 第十三章母线及电缆的选择及校验 (49) 第十四章防雷保护规划 (47) 第十五章变电所的总体布置简图 (21)

摘要: 根据设计任务书的要求,本次设计110KV变电站站用电负荷统计及配电计算并绘制电气主接线图,防雷接地,以及其它附图。该变电站设有两台主变压器,站内主接线分为110kV、35kV和10kV三个电压等级。各电压等级配电装置设计、直流系统设计以及防雷保护的配置。本设计以《35~110kV变电所设计规范》、《供配电系统设计规范》、《35~110kV 高压配电装置设计规范》《工业与民用配电设计手册》等规范规程为设计依据,主要内容包括:变电站负荷计算、短路电流计算、变压器的选型、保护、电气主接线的设计、设备选型以及效验!

前言 变电站的简况: 变电站是电力系统中重要的一个环节,有变换分配电能的作用。电气主接线是变电站设计的第一环节,也是电力系统中最重要的构成部分;设备选型要严格按照国家相关规范选择,设备的选型好坏直接关系到变电站的长期发展,利用效率,以及实用性。

功率因数校正原理及相关IC.

功率因数校正原理及相关IC 近年来,随着电子技术的发展,对各种办公自动化设备,家用电器,计算机的需求逐年增加。这些设备的内部,都需要一个将市电转换为直流的电源部分。在这个转换过程中,会产生大量的谐波电流,使电力系统遭受污染。作为限制标准,IEC发布了IEC1000?3?2;欧美日各国也颁布实施了各自的标准。为此谐波电流的抑制及功率因数校正是电源设计者的一个重要的课题。2高次谐波及功率因数校正一般开关电源的输入整流电路为图1所示:市电经整流后 近年来,随着电子技术的发展,对各种办公自动化设备,家用电器,计算机的需求逐年增加。这些设备的内部,都需要一个将市电转换为直流的电源部分。在这个转换过程中,会产生大量的谐波电流,使电力系统遭受污染。作为限制标准,IEC发布了IEC1000?3?2;欧美日各国也颁布实施了各自的标准。为此谐波电流的抑制及功率因数校正是电源设计者的一个重要的课题。 2高次谐波及功率因数校正 一般开关电源的输入整流电路为图1所示: 市电经整流后对电容充电,其输入电流波形为不连续的脉冲,如图2所示。这 种电流除了基波分量外,还含有大量的谐波,其有效值I 式中:I1,I2,…In,分别表示输入电流的基波分量与各次谐波分量。 谐波电流使电力系统的电压波形发生畸变,我们将各次谐波有效值与基波有效值 的比称之为总谐波畸变THD(TotalHarmonicDistortion) THD=(2) 用来衡量电网的污染程度。脉冲状电流使正弦电压波形发生畸变,见图3的波峰处。它对自身及同一系统的其它电子设备产生恶劣的影响,如: ——引起电子设备的误操作,如空调停止工作等; ——引起电话网噪音; ——引起照明设备的障碍,如荧光灯闪灭; ——造成变电站的电容,扼流圈的过热、烧损。 功率因数定义为PF=有效功率/视在功率,是指被有效利用的功率的百分比。没有被利用的无效功率则在电网与电源设备之间往返流动,不仅增加线路损耗,而且成为污染源。 设电容输入型电路的输入电压e为:

用电负荷等级划分

用电负荷等级划分 电力负荷应根据对供电可靠性的要求及中断供电在政治、经济上所造成损失或影响的程度分为三级,并应符合下列规定: 一、符合下列情况之一时,应为一级负荷: 1.中断供电将造成人身伤亡时。 2.中断供电将在政治、经济上造成重大损失时。例如:重大设备损坏、重大产品报废、用重要原料生产的产品大量报废、国民经济中重点企业的连续生产过程被打乱需要长时间才能恢复等。 3.中断供电将影响有重大政治、经济意义的用电单位的正常工作。例如:重要交通枢纽、重要通信枢纽、重要宾馆、大型体育场馆、经常用于国际活动的大量人员集中的公共场所等用电单位中的重要电力负荷。在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应视为特别重要的负荷。 如大型医院,炼钢厂,石油提炼厂或矿井等。 对一级负荷,要求供电系统当线路发生故障停电时,仍保证其连续供电,即我们常说的双回路供电。 一级负荷应由两个电源供电,两个电源的要求是: 1、两个电源间无联系; 2、两个电源间有联系,但符合下列要求:(1)发生任何一种故障时,两个电源的任何部分应不致同时受到损坏;(2)发生任何一种故障且保护装置正常时,有一个电源不中断供电,并且在发生任何一种故障且主保护装置失灵以至两电源均中断供电后,应能在有人值班的处所完成各种必要操作,迅速恢复一个电源供电。 根据<供配电系统设计规范》GB50052-95第2.0.2条、3.0.1条等相关条文的规定:“一级负荷应由两个电源供电”;“一级负荷中特别重要的负荷,除由两个电源供电外,尚应增设应急电源”,也就是说特别重要负荷需要三个电源供电,一般的作法是在已有两路高压市电的情况下,再设自备电源。自备电源一般是采用柴油发电机组或整流逆变装置(简称EPS)电源等等。上述规范的3.0.3条指出“除一级负荷中特别重要负荷外,不应按一个电源系统检修或故障的同时另一电源又发生故障进行设计”。即对一级负荷而言,两个电源(一个电源故障时另一个电源不能同时损坏)供电就可以了,不必设第三电源。目前的实际作法,往往是根据供电部门的要求,在已有两路高压市电的情况下,再设置柴油发电机组,原因是认为两路高压市电并非两个“独立”(不能同时损坏的)电源,提高了一级负荷用户电源的可靠性。 二、符合下列情况之一时,应为二级负荷: 1.中断供电将在政治、经济上造成较大损失时。例如:主要设备损坏、大量产品报废、连续生产过程被打乱需较长时间才能恢复、重点企业大量减产等。 2.中断供电将影响重要用电单位的正常工作。例如:交通枢纽、通信枢纽等用电单位中的重要电力负荷,以及中断供电将造成大型影剧院、大型商场等较多人员集中的重要的公共场所秩序混乱。 规范第2.0.6条的条文解释中指出,“对二级负荷,由于其停电造成的损失较大,其包括的范围也比一级负荷广”。工程设计时,应根据供电系统的停电几率,停电带来的损失,电源条件,供电系统各方案所需投资等诸多因素综合考虑。二级负荷设备的供电有多种可选择的方案,工程设计者应尽量选择安全可靠、经济合理的方案。“有条件时采用双电源供电”。

功率因数校正技术的综述

三相功率因子校正(PFC)技术的综述(1) 杨成林,陈敏,徐德鸿 (浙江大学电力电子研究所,浙江杭州310027) 摘要:综述了三相功率因子校正电路发展现状,并对典型拓扑进行分析比较。 关键词:三相整流器;谐波;功率因子校正 1 引言 近20年来电力电子技术得到了飞速的发展,已广泛应用到电力、冶金、化工、煤炭、通讯、家电等领域。电力电子装置多数通过整流器与电力网接口,经典的整流器是由二极管或晶闸管组成的一个非线性电路,在电网中产生大量电流谐波和无功污染了电网,成为电力公害。电力电子装置已成为电网最主要的谐波源之一。我国国家技术监督局在1993年颁布了《电能质量公用电网谐波》标准(GB/T14549-93),国际电工委员会也于1988年对谐波标准IEC555 2进行了修正,另外还制定了IEC61000-3-2标准,其A类标准要求见表1。传统整流器因谐波远远超标而面临前所未有的挑战。 表1 IEC61000-3-2A类标准 注:表中n为谐波次数。

抑制电力电子装置产生谐波的方法主要有两种:一是被动方法,即采用无源滤波或有源滤波电路来旁路或滤除谐波;另一种是主动式的方法,即设计新一代高性能整流器,它具有输入电流为正弦波、谐波含量低、功率因子高等特点,即具有功率因子校正功能。近年来功率因子校正(PFC)电路得到了很大的发展,成为电力电子学研究的重要方向之一。 单相功率因子校正技术目前在电路拓扑和控制方面已日趋成熟,而三相整流器的功率大,对电网的污染更大,因此,三相功率因子校正技术近年来成为研究热点。 2 三相六开关PFC电路 六开关三相PFC是由6只功率开关器件组成的三相PWM整流电路,电路如图1所示。每个桥臂由上下2只开关管及与其并联的二极管组成,每相电流可通过桥臂上的这2只开关管进行控制。如A相电压为正时,S4导通使L a上电流增大,电感L a充电;S4关断时,电流i a通过与S1并联的二极管流向输出端,电流减小。同样A相电压为负时,可通过S1及与S4并联的二极管对电流i a进行控制。在实际中控制电路由电压外环、电流内环及PWM 发生器构成。常用的控制方法如图2所示。PWM控制可采用三角波比较法、滞环控制或空间向量调制法(SVM)[27]。由于三相的电流之和为零,所以只要对其中的两相电流进行控制就足够了。因而在实际应用中,对电压绝对值最大的这一相不进行控制,而只选另外两相进行控制。这样做的好处是减小了开关动作的次数,因而可以减小总的开关损耗。该电路的优点是输入电流的THD小,功率因子为1,输出直流电压低,效率高,能实现功率的双向传递,适用于大功率应用。不足之处是使用开关数目较多,控制复杂,成本高,而且每个桥臂上两只串联开关管存在直通短路的危险,对功率驱动控制的可靠性要求高。为了防止直通短路危险,可以在电路的直流侧串上一只快恢复二极管[28]。 图1 三相六开关PFC电路

110KV变电站站用电负荷统计及配电计算

110KV变电站站用电负荷统计及配电计算

110KV变电站站用电负荷统计及配电计算 初步设计研究报告 变电一次 批准: 审定: 校核: 编制:

目录 摘要 (4) 前言 (5) 第一章 110KV变电站选址 (6) 第二章电气主接线设计以及主变电压器容量选择 (6) 第三章主变压器的选择 (7) 第四章变电站主接线的原则 (7) 第五章主接线设计方案 (8) 第六章负荷计算 (16) 第七章电气主设备的选择及校验 (16) 第八章隔离开关的选择及校验 (23) 第九章熔断器的选择 (28) 第十章电流互感器的选择及校验 (29) 第十一章电压互感器的选择 (36) 第十二章避雷器的选择及检验 (39) 第十三章母线及电缆的选择及校验 (49) 第十四章防雷保护规划 (47) 第十五章变电所的总体布置简图 (21)

摘要: 根据设计任务书的要求,本次设计110KV变电站站用电负荷统计及配电计算并绘制电气主接线图,防雷接地,以及其它附图。该变电站设有两台主变压器,站内主接线分为110kV、35kV和10kV三个电压等级。各电压等级配电装置设计、直流系统设计以及防雷保护的配置。本设计以《35~110kV变电所设计规范》、《供配电系统设计规范》、《35~110kV 高压配电装置设计规范》《工业与民用配电设计手册》等规范规程为设计依据,主要内容包括:变电站负荷计算、短路电流计算、变压器的选型、保护、电气主接线的设计、设备选型以及效验!

前言 变电站的概况: 变电站是电力系统中重要的一个环节,有变换分配电能的作用。电气主接线是变电站设计的第一环节,也是电力系统中最重要的构成部分;设备选型要严格按照国家相关规范选择,设备的选型好坏直接关系到变电站的长期发展,利用效率,以及实用性。

功率因数校正(PFC)技术综述

功率因数校正(PFC)技术综述 摘要:消除电网谐波污染,提高功率因数是电力电子领域研究的一个重大且很有实际价值的课题。本文介绍了电网谐波污染问题和谐波抑制的方法;指出了功率因数校正的目的和意义;回顾了功率因数校正技术的发展概况、研究现状和未来的发展方向。 1 引言 高效无污染地利用电能是目前世界各国普遍关注的问题。根据统计,实际应用中有70%以上的电能要经过电力电子装置进行转换才能被利用,而在电力电子换流装置中,整流器约占90%,且大多数采用了不控或相控整流,功率因数低,向电网注入大量高次谐波,极大地浪费了电能。 电力系统谐波的来源主要是电网中的电力电子设备,随着此类设备装置的广泛应用,给公用电网造成严重污染,谐波和无功问题成为电器工程领域关注的焦点问题。为了减轻电力污染的危害程度,许多国家纷纷制定了相应的标准,如国际电工委员会的谐波标准IEEE555-2和IEC-1000-3-2等,这些都有力地促进了学术界和工程界对谐波抑制的研究。解决谐波污染的主要途径有两条:一是对电网实施谐波补偿,二是对电力电子设备自身进行改进。前者包括对电力系统的无源滤波和有源滤波(APF),后者包括对电力电子装置的无源和有源功率因数校正,相比而言,后者是积极的方法。 电力电子装置的有源功率因数校正(APFC或PFC)从上个世纪80年代中后期以来逐渐成为电力电子技术领域研究的热点。功率因数,是对电能进行安全有效利用的衡量标准之一。从最初的因为大量感性负载投入电网带来的无功损耗,到后来的因为各种非线性整流装置投入电网带来的谐波污染,再到现在的电力电子装置尤其是开关电源的广泛使用而带来的大量谐波对电网的危害,功率因数校正技术走过了从无功功率补偿到无源、有源滤波、再到有源功率因数校正和单位功率因数变换技术的发展历程。功率因数校正技术的发展,成为电力电子技术发展日益重要的组成部分,并成为电力电子技术进一步发展的重要支撑。目前,单相功率因数校正技术的研究比较多,在电路拓扑和控制方面都相当成熟,而三相功率因数校正的研究则相对较晚较少。近年来随着PFC技术的研究的不断深入,三相PFC日益引起人们的重视。单相PFC技术的成熟对三相PFC的研究有很大的借鉴意义。 随着全世界范围谐波标准的强制执行,生产和制造低谐波污染的三相电力电

“填谷式”功率因数校正电路原理

1.3.1 “填谷式”功率因数校正电路方法 这种所谓的填谷式功率因数校正方法需要用到额外的二极管和电容器,通过改变存储电容各充电和放电阶段的电路效率来提高功率因数。这种情况并不是真正的无源(没有LC滤波器),而是有源的,只是因为在一个周期的不同时期二极管的开关工作。 这种方法是由Spangler于1988年提出的。最近,KitSum采用Spangler电路的倍电压类型的计算机模拟结果表明功率因数有可能达到98%。 在低功率应用如荧光灯中该低成本解决方案是很有潜力的,原始的Spangler方案已在这方面应用了很多年。它是一个不容忽视的好的、廉价、实用有效的解决方案。 图4.1.7给出了原始的Spangler电路,图4.1.8给出了计算机模拟的该电路输入所期望的电流波形。图4.1.9给出了新型的倍电压类型的Spangler电路,图4.1.10给出了计算机模拟的在倍电压类型电路的输入所期望的电流波形。 4.1.7低功率应用时的“填谷式”功率因数校正电 路 (Spangler) 图4.1.8 Spangler电路的典型输入电流波形 4.1.9 改进后的“填谷式”功率因数校正电路 (Spangler和 KitSum) 4.1.10 改进后的Spangler电路的输入电流的波 形 1.3.2功能 在简单条件下,图4.1.7所示填谷式功率因数校正电路的功能如下: 考虑输入正弦波为刚过零点的情况。设加在负载R1上的输出电压约为供电输入电压峰值的1/3 ,C1通过D3给负载供电,同时C2通过D2给负载供电。因此C1和C2是以并联的方式给负载供电。二极管D1反偏不导通。 因为电源桥式整流器BR1的输出电压超过供电电压,所以桥路二极管被反向配置而输入电流将为零,如图4.1.8中波形的起始部分所示。 当输入电压大于输出电压时,BR1将导通以增大输出电压。此时二极管D2和D3将关断,电容器C1和C2将停止向负载供电。因此负载电路现在直接从电源通过桥式整流器提供,因供电电压小于C1和C2上的电压之和,这时D1将不导通。 直到供电电压达到C1和C2上的电压之和时,加到整流桥输出的负载才是线性的负载,输入电流将和输入电压一样为正弦波形。 当供电电压达到峰值时,它将超过C1和C2上的电压之和,D1通过C2、D1、R2和C1导通并再对串联电容器充电。供电电压峰值附近的短暂电流被电阻器R2限流。 当供电电压开始下降时,所有的二极管都将关断,负载电流又重新直接通过整流桥BR1供电。 当供电电压刚下降到原来峰值的50%时,二极管D3和D2将重新导通,通过并联的C1和C2

相关主题
文本预览
相关文档 最新文档