当前位置:文档之家› 功率因数校正电路(pfc)电路工作原理及应用

功率因数校正电路(pfc)电路工作原理及应用

功率因数校正电路(pfc)电路工作原理及应用
功率因数校正电路(pfc)电路工作原理及应用

功率因数校正(英文缩写是PFC)是

目前比较流行的一个专业术语。PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。

线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。前一个原因人们是比较熟悉的。而后者在电工学等书籍中却从未涉及。

功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。为提高负载功率因数,往往采取补偿措施。最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。

PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。

长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上

的电压时,整流二极管因反向偏置而截止。也就是说,在AC 线路电压的每个半周期内,只是在其峰值附近,二极管才会导通(导通角约为70°)。虽然AC 输入电压仍大体保持正弦波波形,但AC 输入电流却呈高幅值的尖峰脉冲,如图l 所示。这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。若AC 输入电流基波与输入电压之间的位移角是Φ1,根据傅里叶分析,功率因数PF 与电流总谐波失真(度)THD 之间存在下面关系:

而是由二极管、电阻、电容和电感等无源元件组成。无源PFC 电路有很多类型,其中比较简单的无源PFC 电路由三只二极管和两只电容组成,如图2所示。这种无源PFC 电路的工作原理是:当50Hz 的AC 线路电压按正弦规律由0向峰值V m 变化的1/4周期内(即在0

实测表明,对于未采取PFC 措施的电子镇流器,仅三次谐波就达60%(以基波为100%),THD 会超过电流基波,PF 不超过0.6。线路功率因数过低和电流谐波含量过高,不仅会对造成电能巨大浪费,而且会对电力系统产生严重污染,影响到整个电力系统的电气环境,包括电力系统本身和广大用户。因此,IEC1000-3-2《家用电器及类似类电气设备发出的谐波电流限制》和IEC929(GB/T15144)《管形荧光灯交流电子镇流器的性能要求》等标准,都对AC 线路电流谐波作出了具体的限制要求。

为提高线路功率因数,抑制电流波形失真,必须采用PFC 措施。PFC 分无源和有源两种类型,目前流行的是有源PFC 技术。 无源PFC 电路

无源PFC 电路不使用晶体管等有源器件,

一旦VD1和VD4导通,C1和C2再次被

充电,于是出现与正半周类似的情况,得到图3所示的AC 线路输入电压V AC 和电流I AC 波形。

从图3可以看出,采用无源PFC 电路取代单只电容滤波,整流二极管导通角明显增大(大于120°),AC 输入电流波形会变得平滑一些。在选择C1=C2=10μF/400V 的情况下,线

路功率因数可达0.92~0.94,三次电流谐波仅约

12%,五次谐波约18%,总谐波失真THD 约28~30%。但是,这种低成本的无源PFC 电路的DC 输出电压纹波较大,质量较差,数值偏低(仅约240V),电流谐波成份并不能完全达到低畸变要求。当其应用于电子镇流器时,因其DC 输出电压脉动系数偏大,灯电流波峰比达2

以上,超出1.7的限制要求。欲提高无源PFC 的效果,电路则变得复杂,人们理所当然地会选择有源PFC 方案。

有源PFC 升压变换器

有源PFC 电路相当复杂,但半导体技术的发展为该技术的应用奠定了基础。基于功率因数控制IC 的有源PFC 电路组成一个DC-DC 升压变换器,这种PFC 升压变换器被置于桥式整流器和一只高压输出电容之间,也称作有源PFC 预调节器。有源PFC 变换器后面跟随电子镇流器的半桥逆变器或开关电源的DC-DC 变换器。有源PFC 变换器之所以几乎全部采用升压型式,主要是在输出功率一定时有较小的输出电流,从而可减小输出电容器的容量和体

积,同时也可减小升压电感元件的绕组线径。 这种PFC 升压变换器的工作原理如下:当接通AC 线路后,由于电容C1容值仅为0.1~0.22 μ F ,只用作高频旁路,故桥式整流输出为100Hz 的正弦半波脉动电压(V PFC 变换器有不同的分类方法。按通过升压电感元件电流的控制方式来分,主要有连续导通模式(CCM)、不连续导通模式(DCM)及介于CCM 与DCM 之间的临界或过渡导通模式(TCM)三种类型。不论是哪一种类型的PFC 升压变换器,都要求其DC 输出电压高于最高AC 线路电压的峰值。在通用线路输入下,最高AC 线路电压往往达270V ,故PFC 变换器输出DC 电压至少是380V(270V √2V),通常都设置在400V 的电平上。

工作在CCM 的PFC 变换器,输出功率达500W 以上乃至3kW,在DCM 工作的PFC 变换器,输出功率大多在60~250W ,应用比较广泛,

故在此作重点介绍。

工作于DCM 的有源PFC 升压变换器控制IC 有几十种型号,如ST 公司生产的L6560、西门子公司生产的TDA4817/TDA4862、摩托罗拉公司生产的MC33261/MC34261、三星公司生产的KA7524/KA7526、硅通公司生产的

SG3561等。其中,L6560、KA7524/KA7526和MC33261等,在国内直接可以采购,应用

比较广泛。这些器件全部采用8引脚DIP 或SO 封装,芯片电路组成大同小异,其基本组成包括以电压误差放大器为中心的电压控制环路和以一象限乘法器、电流感测比较器及零电流检测器等构成的电流控制环路。图4示出了DCM 升压型PFC 控制IC 的内部结构及由其组成的预变换器电路。

R ),亦即AC 半正矢。通过电阻R3的电流对电容C3充电,

当C3上的电压升至IC 的启动门限(大多为11V 左右)以上时,接通IC 电源电压(V CC ),IC 开始工作,并驱动PFC 开关VT1动作。一旦PFC 升压变换器进入正常运行状态,升压电感器T1的次级绕组则感生高频脉冲信号,经二极管VD5整流和电容C3滤波,为IC 提供工作电压和电流。桥式整流后的AC 输入电压,经R1和R2组成的电阻分压器分压,作为乘法器的一个输入(V M1)。升压变换器的DC 输出电压,在

电阻分压器下部电阻R9上的分压信号,反馈到IC 误差放大器的反相输入端,并与误差放

大器同相输入端上的参考电压V REF 比较,

产生一个DC 误差电压V EAO ,也输入到乘法器。乘法器的输出V MO 是两个输入(V M1和V M2)的结果,作为IC 电流感测比较器的参考。当IC 驱动VT1导通时,升压二极管VD6截止,流过L 的电流从0沿斜坡线性增加,并全部通过VT1和地回复。一旦I L 在开关周期内达到峰值,

VT1上的驱动PWM 脉冲变为零电平,VT1截止,电感器L 中的储能使VD6导通,通过L 的电流I L ,沿向下的斜坡下降。一旦I L 降为零,L 的次级绕

组产生一个突变电势被IC 的零电流检测器接收,IC 产生一个新的输出脉冲驱动VT1再次导通,开始下一个开关周期。IC 的电流检测逻辑电路同时受零电流检测器和电流传感比较器的控制,可确保在同一时刻IC 只输出一种状态的驱动信号。VT1源极串联电阻R7用作感测流过VT1的电流。只要R7上的感测电压超过电流传感比较器的触发门限电平,PFC 开关VT1则截止。当AC 线路电压从零按正弦规律变化时,乘法器输出V MO 为比较器建立的门限强迫通过L 的峰值电流跟踪AC 电压的轨迹。在各个开关周期内电感峰值电流形成的包迹波,正比于AC 输入电压的瞬时变化,呈正弦波波形。在两个开关周期之间,有一个电流为零的点,但没有死区时间,从而使AC 电流通过桥式整流二极管连续流动(二极管的导通角几乎等于180°),整流平均电流即为AC 输人电流(为电感峰值电流的1/2),呈正弦波波形,且与AC 线路电压趋于同相位,因而线路功率因数几乎为1(通常为0.98~0.995),电流谐波含量符合IEC1000-3-2标准的规定要求。与此同时,由于PFC 电压控制环路的作用,PFC 变换器输出经提升的稳压DC 电压,纹波很大,频率为100Hz ,同样为正弦波。其控制原理与开关电

宜,无源PFC 电路目前很少被人们采用。 有源PFC 预变换器越来越多地被用于荧光灯和高压钠灯及金卤灯电子镇流器、高端AC-DC 适配器/充电器和彩电、台式PC 、监视器及各种服务器开关电源前端,以符合IEC1000-3-2等标准要求。此外,有源PFC 技术还被用于电机调速器等产品中。 图8示出了采用有源PFC 升压变换器的2×40W 双管荧光灯电子镇流器电路。AC 线路输入端L1、C1与C2及C3和C4组成EMI 滤波器,PFC 控制器KAT7524、磁性元件T1、功率开关VT1、升压二极管VD2及输出电容器C10等,组成有源PFC 升压变换器,磁环脉冲变压器T2.功率开关VT3和VT2及R14、C11和双向触发二极管D1AC(DB3)组成的振荡启动电路构成半桥逆变器电路,12、C12和L3、C13组成LC 串联谐振(灯启动)电路。由于采用了有源PFC 升压变换器电路,电子镇流器在AC 线路电压为220V 额定条件下,变换器效率达96%,输入线路功率因数PF ≥0.993,AC 输入电流总谐波失真THD ≤10.99%,其中二次谐波为0.51%,三次谐波为9.6%,五次谐波为4.7%,七次谐波为1.46%。电子镇流器AC 输入电压总谐波含量为4.23%。 有源PFC 升压变换器在开关电源应用中,为减少电路元件数量和印制电路板(PCB)空间,提高功率密度,大多是将PFC 控制电路与PWM 控制器组合在一起,集成到同一芯片上,从而提高了开关电源的性能价格比,同时也简化了设计。

CCM 功率因数控制器IC 的代表性产品有UC1854、ML4821,LT1248、LT1249、L4981和NCP1650等,这些IC 大多采用16引脚封装,其共同特征之一是内置振荡器。像开关电源用PWM/PFC 组合IC(如ML4803和CM6800等)中的PFC 电路,全部属于CCM 平均电流这一类型。

源一样,其DC 输出电压在90~270V 的AC 输入电压范围内保持不变。

在DCM 下工作的PFC 升压变换器相关电压和电流波形如图5所示,图6为AC 线路输入电压和电流波形。

事实上,工作于DCM 的PFC 升压变换器开关频率不是固定的。在AC 输入电压从0增大的峰值时,开关频率逐渐降低。在峰值AC 电压附近,开关周期最大,而频率最低。

在连续模式(CCM)下工作的PFC 升压变换器采用固定频率高频PWM 电流平均技术。这类变换器的开关占空比是变化的,但开关周期相同。通过升压电感器和PFC 开关MOSFET 的电流在AC 线路电压的半周期之内(即0

除DCM 和CCM 的PFC 变换器之外,还有一种变换器工作在过渡模式(TM),代表性控制器有L6561等。L6561内置THD 最佳化电路,在误差放大器输出端外部可连接RC 补偿网络,提供更低的AC 输入电流失真及保护功能。由L6561组成的PFC 升压变换器,输出功率达300W 。 应用简介

无源PFC 电路主要用于40W 以下电子镇流器中。由于有源PFC 控制IC 价格比较便

2 kW有源功率因数校正电路设计

2 kW 有源功率因数校正电路设计 概述:有源功率因数校正可减少用电设备对电网的谐波污染,提高电器 设备输入端的功率因数。详细分析有源功率因数校正APFC(active power factor corrector)原理,采用平均电流控制模式控制原理,设计一种2 kW 有源功率因数校正电路。实验结果表明:以TDA16888 为核心的有源功率因数校 正器能在90~270 V 的宽电压输入范围内得到稳定的380 V 直流电压输出,功率因数达O.99,系统性能优越。 1 引言 目前家用电器的功率前级多采用二极管全桥整流方式,这会造成电网谐波 污染,功率因数下降,无功分量主要为高次谐波,其中三次谐波幅度约为基 波幅度的95%,五次谐波幅度约为基波幅度的70%.七次谐波幅度约为基波幅度的45%。高次谐波会对电网造成危害,使用电设备的输入端功率因数 下降,而且产生很强的电磁干扰(EMI),对电网和其他用电设备的安全运行造 成潜在危害。 有源功率因数校正电路(Active Power Factor Corrector,APFC)可将电源的输入电流变换为与输入市电同相位的正弦波,从而提高电器设备的功率因数, 减少对电网的谐波污染。理论上,降压式(Buck)、升压式(Boost)、升/降压式(Boost-Buck)以及反激式(Flyback)等变换器拓扑都可作为APFC 的主电路。其中,Boost APFC 是简单电流型控制,功率因数值高,总谐波失真小,效率高,但输出电压高于输入电压,适用于75~2 000 W 功率电源,应用广泛。因为升压式APFC 的电感电流连续,储能电感可作为滤波器抑制射频干扰(RFI)和EMI 噪声,并防止电网对主电路的高频瞬态冲击.电路有升压斩波电路,输出电压大于输入电压峰值,电源允许的输入电压范围扩大,通常可达

功率因数校正之基本原理

功率因数校正之基本原理 何谓工率因数? 功率因数(power factor;pf)定义为实功(real power;P)对视在功率(apparent power;S)之比,或代表电压与电流波形所形成之相角之余弦,如图1。功率因数值可由0至1之间变化,可为电感性(延迟的、指标向上)或电容性(领先的、指标向下)。为了降低电感性之延迟,可增加电容,直到pf为1。当电压与电流波形为同相时,工率因数等于1(cos(0o)=1)。所有努力使工率因数等于1是为了使电路为纯电阻化(实功等于视在功率)。 ▲图1: 功率因数之三角关系。 实功(瓦特)可提供实际工作,此为能量转换元素(例如电能到马达转动rpm)。虚功(reactive power)乃为使实功完成实际工作所产生之磁场(损耗)。而视在功率可想成电力公司提供之总功率,如图1所示。此总功率经由电力线提供产生所需之实功。 当电压与电流皆为正弦波时,如前述定义之功率因数(简称为功因)为电压与电流波形之对应相角,但大部份之电源供应器之输入电流乃非正弦波。当电压为正弦波而电流为非正弦波时,则功因包括两个因素:1)相角位移因素,2)波形失真因素。等式1表示相角位移与波形失真因素之于功因的关系。 ----------------------------------------------------(1)

Irms(1)为电流之主成份,Irms电流之均方根值。因此功率因数校正线路是为了使电流失真最小,且使电流与电压同相。 当功因不等于1时,电流波形没有跟随电压波形,不但有功率损耗,且其产生之谐波透过电力线干扰到连接同一电力线之其它装置。功因越接近1,几乎所有功率皆包含于主频率,其谐波越接近零。 ■了解规范 EN61000-3-2对交流输入电流至第40次谐波规范。而其class D对适用设备之发射有严格之限制(图2)。其class A要求则较宽松(图3)。 ▲图2:电压与电流波形同相且PF=1(Class D)。

数字控制有源功率因数校正器的设计(重要)

定稿日期:2008-02-18 作者简介:黄海宏(1973-),男,江西省清江人,副教授, 研究方向为电力电子和传动方面。 1引言 直流操作电源系统是发电厂、变电站中不可缺少的二次设备之一,由整流电源、蓄电池组和馈电部分组成。通常情况下,整流电源的作用是AC/DC变换,在对蓄电池组充电的同时,通过馈电部分向直流负荷供电;在交流停电时,蓄电池组通过馈电部分向直流负荷供电,以保证直流负荷不停电。目前,直流操作电源普遍采用高频开关电源模块并联运行方式,与传统的晶闸管相控电源相比,其技术指标优异,如稳压、稳流精度高,纹波系数低,易与阀控密封铅酸蓄电池组一起组成直流电源成套装置。由于开关电源输入端有整流、电容平波电路,使其输入电流 呈尖脉冲状,功率因数通常只有0.6~0.7, 会对电网造成谐波污染,造成电力公害,干扰其他用电设备,使测量仪表产生较大误差。为降低电源装置对电网的污染,电力用开关电源需加功率因数校正电路。 2有源功率因数校正基本原理 目前,功率因数校正有无源功率因数校正(RPFC)和有源功率因数校正(APFC)两种。RPFC方法是在输入端加入电感量很大的低频电感,并降低滤波电容的容量,以减小滤波电容充电电流的尖峰,校正后的功率因数能达到0.9以上,一般用于三相输入的大功率开关电源模块[1]。 APFC的基本思路是在输入端加入高频功率开 关管及相应的控制器,如图1所示。控制器通过采集交流输入电压、输入电流和输出电压信号,利用输出电压控制环的输出uo(t)与输入整流后的电压uAC(t) 相乘,得到一个电流参考信号iref(t) ,用于控制功率管VT的导通和关断,使得电感L电流iL波形跟踪 iref(t)波形,从而使输入交流平均值波形跟随输入电压波形,成为与输入电压同相位的近似正弦波,而且可使功率因数接近于1,同时使输出电压uo(t)得到控制[2]。目前,国内APFC方法主要用于单相输入的开关电源模块,其中采用UC3854作为APFC的控 制用集成电路较为普遍。 3数字控制APFC电路 随着计算机和信息技术的飞速发展,数字信号处理技术得到了迅速发展。数字控制使得电力电子变换控制更为灵活,在CPU计算速度允许的情况下,可以实现模拟控制难以做到的复杂控制算法,即使在控制对象改变的情况下,也无需修改控制器硬件,而只需修改某些参数,因此增强了系统的兼容性。由于数字控制所采用的CPU计算速度决定了数字控制系统的适用场合,故现在的数字控制多被用于 数字控制有源功率因数校正器的设计 黄海宏1,王海欣1,高 格2,付 鹏2 (1.合肥工业大学,安徽合肥230009;2.中国科学院等离子体物理研究所,安徽合肥230031) 摘要:直流电源系统是变电站的重要组成设备,它可为负载提供不间断电源,因此要求应用于直流电源的高频开关 电源模块必须具备功率因数校正功能。利用Freescale新型号MC56F8025的高性能特性,完成了基于DSP的具有软开关特性的数字控制有源功率因数校正(ActivePowerFactorCorrection, 简称APFC)电路的设计,描述了系统设计过程。最后通过2.2kW的实验样机验证了数字控制的优良特性。 关键词:功率因数;数字控制/有源功率因数校正;开关电源;软开关中图分类号:TM714.1 文献标识码:A 文章编号:1000-100X(2008)05-0017-03 DesignofDigitalControlActivePowerFactorCorrectionRectifier HUANGHai-hong1,WANGHai-xin1,GAOGe2,FUPeng2 (1.HefeiUniversityofTechnology,Hefei230009,China; 2.InstituteofPlasmaPhysics,ChineseAcademyofScience,Hefei230031,China) Abstract:TheDCpowersupplyisanimportantdeviceinsubstations,itcansupplyuninterruptedpowerforload,thehighfrequencyswitchmodepowermodulemusthavefunctionofpowerfactorcorrection.BasedonnewDSPchipMC56F8025,adigitalactivepowerfactorcorrectionrectifierwithsoftswitchcharacteristicwasdesigned,theprocessofsystemdesignwasdescribed.Atlasta2.2kWprototypewasbuilttoverifythefavorableperformanceresultedfromdigitalcontrol.Keywords:powerfactor;digitalcontrol/activepowerfactorcorrection;switchmodepowersupply;softswitching 图1有源功率因数校正电路框图 17

PFC开关电源功率因数校正原理

PFC开关电源功率因数校正原理 PFC开关电源功率因数校正原理 一、什么是功率因数补偿,什么是功率因数校正: 功率因数的定义为有功功率与视在功率的比值. 功率因素补偿:这项技术主要是针对因具有感性负载的交流用电器具的电压和电流不同相(图1)而引起的供电效率低下,提出的改进方法(由于感性负载的电流滞后所加电压,电压和电流的相位不同,使供电线路的负担加重,导致供电线路效率下降,这就要求在感性用电器具上并联一个性质相反的电抗元件.用以调整该用电器具的电压、电流相位特性.例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器).用电容器并联在感性负载的两端,利用电容上电流超前电压的特性,用以补偿电感上电流滞后电压的特性,使总的特性接近于阻性,从而改善效率低下的方法叫做功率因数补偿(交流电的功率因数可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示)。 图1 在具有感性负载中供电线路中电压和电流的波形

常规开关电源功率因数低是由于开关电源都是在整流后,用一个大容量的滤波电容使输出电压平滑,因此负载特性呈现容性.这就造成了交流220V在整流后,由于滤波电容的充、放电作用,在其两端的直流电压上出现略呈锯齿波的纹波.滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多. 图2 全波整流电压和AC输入电流波形 因为根据整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止.也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通.虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图2所示.这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降. 在正半个周期内(180o),整流二极管的导通角大大小于180o,甚至只有30o~70o.由于要保证负载功率的要求,在极窄的导通角期间,会产生极大的导通电流,使供电电路中的供电电流呈脉冲状态.它不仅降低了供电的效率,更为严重的是,它在供电线路容量不足或电路负载较大时,会产生严重的交流电压波形畸变(图3),并产生多次谐波,从而干扰了其它用电器具的正常工作(这就是电磁干扰-EMI和电磁兼容-EMC问题)。

无源功率因数校正电路的原理和应用

无源功率因数校正电路的原理和应用 摘要:本文介绍SIEMENS公司提出的开关电源集成控制器TDA16846无源功率因数校正(PFC)电路原理及其在电视机开关电源中的应用。功率因数的改善是基于一个特殊的由电感,电容及二极管组成的充电泵电路,该电路在功率管的高压端兼起吸收缓冲作用,因此它具有输入谐波电流分量小,PF值高以及EMI小、电路简单、成本低和可靠性高等优点。这为电视机厂家提供了一个高效价廉的解决电源谐波问题的新方案。 关键词:开关电源功率因数校正 一、引言 众所周知,目前电视机和大部分通用电器都广泛地从交流电网中提取电能经整流后变成直流电供全机使用,AC电源经桥式整流后常接一个滤波平整电容。由于该电容的存在,使整流臂的导通时间小于半个周期,因而做成输入电源电压是正弦形,而输入电流却是正负交替的脉冲形。后者导致大量电流谐波特别是三次谐波的产生,这既构成对电网效能的干扰和损害,又降低了本机功率因数,为此,我国跟欧美各国一样,已于去年12月1日起正式实施限制功耗大于75W的通用电器产品输入谐波电流的新规定。面对这种新情况,当前各电器厂家都必须考虑更新产品中的电源设备,尤其是对25英寸以上的彩色电视机,过去国内产品绝大部分都没有安装PFC电路,其PF值一般在0.55~0.65之间,输入电流谐波分量往往超出国家限定的标准,因此改进电源电路,增加PFC功能以便降低电视机的输入电流谐波分量是各厂家的当务之急。 本文介绍由SIEMENS公司推出的与开关电源集成控制器TDA16846配合使用的一个无源功率因数校正(PFC)电路,该电路能将电源PF值提高到0.9以上,与有源PFC电路相比,它明显地具有结构简单,成本低,可靠性高,和EMI小等优点,因此对电视机厂家来说,不失为一个有效的解决电源谐波问题的可行方案。 二、无源PFC电路工作原理介绍 图1示出一个不含PFC的标准型电源电路的输入电压Vm和输入电流Im波形,Im只在Vm为正最大和负最大的一小段时间内流通,在这些时间以外,Im为零。这是因为此时的正弦电压输入值小于泸波电容上的电压,导致整流二极管不导通的缘故。

功率因数校正(PFC)技术的研究

网络教育学院《电源技术》课程设计 题目:功率因数校正(PFC)技术的研究 学习中心:辽宁东港奥鹏 层次:高中起点专科 专业:电气工程及其自动化 年级: 2010年春季 学号: 学生: 辅导教师:武东锟 完成日期: 2012年 2 月 24 日

内容摘要 本文对于单相与单相PFC技术及其控制方法的研究,针对于各种功率因数校正,介绍了相应的基本工作原理,和功率因数校正技术的额发展和其主要最主要特点。从主电路的拓扑形式和控制方式分析有源功率因数校正。进而更好的学习电源技术。 关键词:功率因数校正;PFC技术;控制方法;有源功率因数

引言、 功率因数是衡量电器设备性能的一项重要指标。功率因数低的电器设备,不仅不利于电网传输功率的充分利用,而且往往这些电器设备的输入电流谐波含量较高,实践证明,较高的谐波会沿输电线路产生传导干扰和辐射干扰,影响其它用电设备的安全经济运行。如对发电机和变压器产生附加功率损耗,对继电器、自动保护装置、电子计算机及通讯设备产生干扰而造成误动作或计算误差。因此。防止和减小电流谐波对电网的污染,抑制电磁干扰,已成为全球性普遍关注的问题。国际电工委与之相关的电磁兼容法规对电器设备的各次谐波都做出了限制性的要求,世界各国尤其是发达国家已开始实施这一标准。 随着减小谐波标准的广泛应用,更多的电源设计结合了功率因数校正(PFC)功能。设计人员面对着实现适当的PFC段,并同时满足其它高效能标准的要求及客户预期成本的艰巨任务。许多新型PFC拓扑和元件选择的涌现,有助设计人员优化其特定应用要求的设计。

1功率因数校正基本原理及方法 1.1功率因数校正基本原理 功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。开关电源供应器上的功率因数校正器的运作原理是去控制调整交流电电流输入的时间与波型,使其与直流电电压波型尽可能一致,让功率因数趋近于。这对于电力需求量大到某一个水准的电子设备而言是很重要的, 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。 PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。 1.1.1拓扑选择的一般方法 由于输入端存在电感,升压转换器是提供高功率因数的方法。此电感使输入电流整形与线路电压同相。但是,可以采用不同的方案来控制电感电流的瞬时值,以获得功率因数校正。 a.临界导电模式(CRM)PFC——由于控制的设计较为简单,而且可与较低速升压二极管配合使用,所以在较低功率应用中通常采用此方法。 b.不连续导电模式(DCM)PFC——此创新的方案延承了CRM 的优点,并消除了若干限制。 c.连续导电模式(CCM)PFC——由于这种方案恒频且峰值电流较小,是较高功率(>250 W)应用的首选方案。但是,传统的控制解决方案较为复杂,牵涉到多个环

功率因数校正(PFC)原理与控制器IC

IC MOSFET EEPROM 886-2-2225-8899 https://www.doczj.com/doc/5815184039.html, 29 23 17 13 4 3 3 2 2 2 → → → [ 2010-01-05] [ ] DC/DC DC/AC AC AC 1 AC 3 60% 100% THD !120%. PF THD AC COSφ1=1 0.64. AC “ ”. AC AC PFC P FC ~ PFC PFC PPFC PFC IC PFC APFC APFC IC, PPFC AC IEC1000-3-2 1 PFC PFC PFC PFC PFC CRM DCM CC M Digg (PFC) ATX ATX SCR DC/DC Converter Military, cots, 270V, 28V, avionics MIL-STD-1275/704, DO160, PFC, 115V https://www.doczj.com/doc/5815184039.html, 2011 https://www.doczj.com/doc/5815184039.html,/hklightingfaira (PFC) IC FPGA/CPLD XILINX,ALTERA,LATTICE,ACTEL,8051 USB https://www.doczj.com/doc/5815184039.html, CTA Metal Compensator Qulified SS Compensator in Various Size with Attractive Price in China https://www.doczj.com/doc/5815184039.html,

1.CRM-PFCCRM BCM TM CRM-PFC 250W 150W CRM-PFC 2 Cin Co, L ZCI VDl VTl PFC R1 R2 1%.R3 R4 DC R4 PFC 0. 6% 2.5V Rs Rs RC 2 IC CS IC VTl VDl L VTl, Rs IC L VT1 VD1 IL I L IC VTl “ ”. IL AC Cin AC 1 0.98~0.99 3 CRM-PFC AC CRM-PFC IC 2000 CR M-PFC 2.5 AC 1 80~250V 85~265V RC CRM~PFC PWM CRM-PFC DC 400V . CRM-PFC I C 1. 2.DCM-PFCDCM-PFC 4 3 CRM- PFC DCM-PFC CRM-PFC AC D CM-PFC DCM-PFC CRM-PFC DCM-PFC EMI CRM-PFC AC EMI DCM PFC PFC IC NCPl601 AC DCM; AC CRM CRM DCM https://www.doczj.com/doc/5815184039.html,M-PFCCCM-PFC 5 6 CCM-PFC IliD 500W PFC/PWM IC UCC38500 CM6900 MIA800 CCM-PFC IC 2 CCM-PF

功率因数校正(PFC)的几个小知识

1、什么是功率因数校正(PFC)? 功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。开关电源供应器上的功率因数校正器的运作原理是去控制调整交流电电流输入的时间与波型,使其与直流电电压波型尽可能一致,让功率因数趋近于。这对于电力需求量大到某一个水准的电子设备而言是很重要的, 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。一般状况下, 电子设备没有功率因数校正(Power Factor Correction, PFC)时其PF值约只有0.5。 PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。 PFC打个形象的比方:一个啤酒杯的容积是一定的,就好比是视在功率,可是你倒啤酒的时候很猛,就多了不少的泡沫,这就是无功功率,杯底的啤酒其实很少,这些就是有功功率。这时候酒杯的利用率就很低,相当于电源的功率因数就很小。PFC的加入就是要减少输入侧的无功功率,提高电网的利用率,对于普通的工业用电来讲是把电流的相位与电压的相位调整到一块了,对于开关电源来讲是把严重畸变了的交流侧输入电流变成正弦,另外还有降低低次谐波的功能,因为输入的电流是正弦了。 2、为什么我们需要PFC? 功率因素校正的好处包含: 1. 节省电费 2. 增加电力系统容量 3. 稳定电流 低功率因数即代表低的电力效能,越低的功率因数值代表越高比例的电力在配送网络中耗损,若较低的功率因数没有被校正提升,电力公司除了有效功率外,还要提供与工作非相关的虚功,这导致需要更大的发电机、转换机、输送工具、缆线及额外的配送系统等事实上可被省略的设施,以弥补损耗的不足。有PFC 功能的电子设备配可以帮助改善自身能源使用率,减少电费,PFC也是一种环保科技,可以有效减低造成电力污染之谐波,是对社会全体有益的功能。 PFC电源供应器是如何帮助节省能源? 藉由降低您的电力设备必须传输的电压-电流,以提供一台电源供应器至少所需的供电量。因为产生较少无用的谐波(只会替交流电运输系统增加不必要的负担),让电力的消耗减少。 什么是谐波? 谐波是一种噪音形式,基本上是由复合的60个循环正弦波组合而成的频率所造成。他们通常发生在电源供应器及其它包括计算机在内等多种频率相关机器。谐波会扭曲基本的正弦波波型, 也会在同一系统的水线及接地线造成偏高的电流。[注: 美国的电源线,有3个pins,就是(Live,火线)-(Neutral,水线)-(Ground,地线)] 有哪些国家规定PFC为电子设备的标准配备? 2001年一月,欧盟正式对电子设备谐波有详细规范,规定凡输出在75W~600W范围间之电子设备产品,都必须通过谐波测试[Harmonics test(EN 61000-3-2)],测量待测物对电力系统所产生的谐波干扰;中国大陆自2002年5月起,规范凡政府机关采购之电子设备,皆将功率因数校正(PFC)视为电子设备的标准配备功能;日本已着手研拟关于节约电力的各项方案,这是一种未来的趋势,相信在不久的将来,其它国家将陆续跟进。 什么是主动式/被动式功率因数校正(Active/Passive PFC)? 被动式PFC,使用由电感、电容等组合而成的电路来降低谐波电流,其输入电流为低频的50Hz到60Hz,因

功率因数校正电路(pfc)电路工作原理及应用

功率因数校正(英文缩写是PFC)是 目前比较流行的一个专业术语。PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。 线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。前一个原因人们是比较熟悉的。而后者在电工学等书籍中却从未涉及。 功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。为提高负载功率因数,往往采取补偿措施。最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。 PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。 长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上 的电压时,整流二极管因反向偏置而截止。也就是说,在AC 线路电压的每个半周期内,只是在其峰值附近,二极管才会导通(导通角约为70°)。虽然AC 输入电压仍大体保持正弦波波形,但AC 输入电流却呈高幅值的尖峰脉冲,如图l 所示。这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。若AC 输入电流基波与输入电压之间的位移角是Φ1,根据傅里叶分析,功率因数PF 与电流总谐波失真(度)THD 之间存在下面关系: 而是由二极管、电阻、电容和电感等无源元件组成。无源PFC 电路有很多类型,其中比较简单的无源PFC 电路由三只二极管和两只电容组成,如图2所示。这种无源PFC 电路的工作原理是:当50Hz 的AC 线路电压按正弦规律由0向峰值V m 变化的1/4周期内(即在0

功率因数校正实现方法

O 引言 传统的用于电子设备前端的二极管整流器,作为一个谐波电流源,干扰电网线电压,产生向四周辐射和沿导线传播的电磁干扰,导致电源的利用效率下降。近几年来,为了符合国际电工委员会61000-3-2的谐波准则,功率因数校正电路正越来越引起人们的注意。功率因数校正技术从早期的无源电路发展到现在的有源电路;从传统的线性控制方法发展到非线性控制方法,新的拓扑和技术不断涌现。本文归纳和总结了现在有源功率因数校正的主要技术和发展趋势。 1 功率因数(PF)的定义 功率因数(PF)是指交流输入有功功率(P)与输入视在功率(S)的比值。即 式中:I1为输入基波电流有效值; 为输入电流失真系数; Irms为输入电流有效值; cosφ为基波电压与基波电流之间的相移因数。 可见PF由γ和cosφ决定。cosφ低,则表示用电电器设备的无功功率大,设备利用率低,导线、变压器绕组损耗大。γ值低,则表示输入电流谐波分量大,对电网造成污染,严重时,对三相四线制供电还会造成中线电位偏移,致使用电电器设备损坏。由于常规整流装置使用晶闸管或二极管,整流器件的导通角远小于180°,从而产生大量谐波电流成分,而谐波电流不做功,只有基波电流做功,功率因数很低。全桥整流器电压和电流波形图如图1所示。

2 功率因数校正实现方法 由式(1)可知,要提高功率因数有两个途径,即使输入电压、输入电流同相位;使输入电流正弦化。 利用功率因数校正技术可以使交流输入电流波形完全跟踪交流输入电压波形,使输入电流波形呈纯正弦波,并且和输入电压同相位,此时整流器的负载可等效为纯电阻。 功率因数校正电路分为有源和无源两类。无源校正电路通常由大容量的电感、电容组成。虽然无源功率因数校正电路得到的功率因数不如有源功率因数校正电路高,但仍然可以使功率因数提高到o.7~0.8,因而在中小功率电源中被广泛采用。有源功率因数校正电路自上世纪90年代以来得到了迅速推广。它是在桥式整流器与输出电容滤波器之间加入一个功

功率因数校正控制方案

功率因数校正方案 方案一:采用数字控制 方案:采用MCU (微控制单元)或DSP(数字信号处理)通过编程控制完成系统的功率因数校正。,MCU 时刻检测输入电压、输入电流以及输出电压的值,在程序中经过一定的算法后输出PWM 控制信号,经过隔离和驱动控制开关管,从而提高输入端的功率因数。采用数字控制的优点是通过软件调整控制参数,使系统调试方便,减少了元器件的数量。缺点是软件编程困难,采样算法复杂,计算量大,难以达到很高的采样频率,此外还要注意控制器和主电路的隔离和驱动。 方案二:采用模拟控制 方案:采用专用PFC(功率因数校正)控制芯片来完成系统功率因数的校正。整流后的线电压与误差放大器处理的输出电压相乘,建立电流的参考信号,该参考信号就具有输入电压的波形,同时也具有输出电压的平均幅值。因此在电流反馈信号的作用下,误差放大器控制的PWM 信号基本变化规律是成正弦规律变化的,于是得到一个正弦变化的平均电流,其相位与输入电压相同,达到功率因数校正的目的。该方案的优点是,使用专用IC 芯片,简单直接,无需软件编程。缺点是电路调试麻烦,易受噪声干扰。模拟PFC 控制是当前的工业选择,且技术成熟,成本低,使用方便。通过比较,系统选用方案二,采用TI 公司专用PFC 控制芯片UCC28019 来完成功率因数的校正。 方案一:LC校正电路根据电感电流不能突变的原理,整流后采用LCC滤波电路,可在一定程度上提高功率因素PF,一般可达0.8~0.9。优点是电路简单、可靠性高、成本低、EMI(电磁干扰)小;缺点是体积大、重量重,电感损耗较大,PF很难接近1。 方案二:填谷式PF校正电路使用电容C1~C2及二极管D5~D7构成填谷式滤波电路,扩展了整流二极管电流波形导通角θ,二极管D6后可串联浪涌电流限制电阻R,可将PF提高到0.8~0.9之间。该电路优点:体积略小于LC校正电路,可靠性高,EMI小,PF也容易达到0.85以上;缺点是输出功率小,只能用在输出功率小于25W的AC-DC变换器中,损耗相对较大,输入电压允许变化范围小,一般不超过15%。电路原理图如图2.1所示。 2.1 填谷式电路 方案三:有源功率因素校正(APFC)电路在整流器与负载之间插入具有特定功能的DC-DC变换器,使输入电流波形尽可能接近正弦波,构成有源功率因素校正电路(APFC)。该技术优点是:电路体积小,校正后的PF接近1;输入电压变化范围大,目前支持全电压范围(90V~265V)的APFC电路技术非常成熟、应用也很普及,因此在输出功率为20W~300W的AC-DC 变换器中使用APFC电路来改善电流波形THD(总谐波失真)参数较为合适。缺点是:该电

功率因数校正电路设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 功率因数校正电路设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、基于CCM-BOOST方式实现功率因数校正。 2、输出直流电压:400V。 3、输出功率250W。 4、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

武汉理工大学《电力电子》课程设计说明书 目录 摘要 ························································································································································· 1 1. 功率因数 ······································································································································· 2 1.1 功率因数定义 ··························································································································· 2 1.2 电流谐波总畸变率 TH (2) 2 功率因数校正技术 ························································································································ 3 2.1 功率因数校正技术分类 ············································································································ 3 2.2 有源功率因数校正原理 (3) 2.2.1 单相功率因数校正........................................................................................................... 3 2.2.2 单级PFC 变换器 .. (4) 2.3 BOOST 型有源功率因数校正的一般方法 (5) 2.3.1 电流峰值控制法(Peak Current Model Control ) ........................................................... 5 2.3.2 滞环电流控制法(Hysteresis Current Control ).............................................................. 7 2.3.3 平均电流控制法(Average Current Mode Contro1) .. (9) 3 基于CCM-BOOST 方式的功率因数校正电路设计 ······································································ 10 3.1 功率因数校正芯片UC3854 (10) 3.1.1 UC3854简要介绍 ........................................................................................................... 10 3.1.2 UC3854引脚功能 ........................................................................................................... 11 3.1.3 UC3854内部结构 .. (13) 3.2 功率因数校正电路设计 (15) 3.2.1 系统的主要性能指标 ..................................................................................................... 15 3.2.2 方案选择 ........................................................................................................................ 15 3.2.3 元器件参数设计 (16) 3.3 控制电路设计 (22) 3.3.1 UC3854主要参数设置 ··································································································· 22 3.3.2 外围主要参数设置········································································································· 23 3.3.3 设计完成的校正总体电路 (24) 结论及心得体会..................................................................................................................................... 25 参考文献 ................................................................................................................................................ 26 附录 . (27)

功率因数校正原理及相关IC.

功率因数校正原理及相关IC 近年来,随着电子技术的发展,对各种办公自动化设备,家用电器,计算机的需求逐年增加。这些设备的内部,都需要一个将市电转换为直流的电源部分。在这个转换过程中,会产生大量的谐波电流,使电力系统遭受污染。作为限制标准,IEC发布了IEC1000?3?2;欧美日各国也颁布实施了各自的标准。为此谐波电流的抑制及功率因数校正是电源设计者的一个重要的课题。2高次谐波及功率因数校正一般开关电源的输入整流电路为图1所示:市电经整流后 近年来,随着电子技术的发展,对各种办公自动化设备,家用电器,计算机的需求逐年增加。这些设备的内部,都需要一个将市电转换为直流的电源部分。在这个转换过程中,会产生大量的谐波电流,使电力系统遭受污染。作为限制标准,IEC发布了IEC1000?3?2;欧美日各国也颁布实施了各自的标准。为此谐波电流的抑制及功率因数校正是电源设计者的一个重要的课题。 2高次谐波及功率因数校正 一般开关电源的输入整流电路为图1所示: 市电经整流后对电容充电,其输入电流波形为不连续的脉冲,如图2所示。这 种电流除了基波分量外,还含有大量的谐波,其有效值I 式中:I1,I2,…In,分别表示输入电流的基波分量与各次谐波分量。 谐波电流使电力系统的电压波形发生畸变,我们将各次谐波有效值与基波有效值 的比称之为总谐波畸变THD(TotalHarmonicDistortion) THD=(2) 用来衡量电网的污染程度。脉冲状电流使正弦电压波形发生畸变,见图3的波峰处。它对自身及同一系统的其它电子设备产生恶劣的影响,如: ——引起电子设备的误操作,如空调停止工作等; ——引起电话网噪音; ——引起照明设备的障碍,如荧光灯闪灭; ——造成变电站的电容,扼流圈的过热、烧损。 功率因数定义为PF=有效功率/视在功率,是指被有效利用的功率的百分比。没有被利用的无效功率则在电网与电源设备之间往返流动,不仅增加线路损耗,而且成为污染源。 设电容输入型电路的输入电压e为:

功率因数校正浅析

功率因数校正浅析 功率因数是衡量电器设备性能的一项重要指标。功率因数低的电器设备,不仅不利于电网传输功率的充分利用,而且往往这些电器设备的输入电流谐波含量较高,实践证明,较高的谐波会沿输电线路产生传导干扰和辐射干扰,影响其它用电设备的安全经济运行。如对发电机和变压器产生附加功率损耗,对继电器、自动保护装置、电子计算机及通讯设备产生干扰而造成误动作或计算误差。因此。防止和减小电流谐波对电网的污染,抑制电磁干扰,已成为全球性普遍关注的问题。国际电工委与之相关的电磁兼容法规对电器设备的各次谐波都做出了限制性的 要求,世界各国尤其是发达国家已开始实施这一标准。 随着减小谐波标准的广泛应用,更多的电源设计结合了功率因数校正(PFC)功能。设计人员面对着实现适当的PFC段,并同时满足其它高效能标准的要求及客户预期成本的艰巨任务。许多新型PFC拓扑和元件选择的涌现,有助设计人员优化其特定应用要求的设计 在电源的设计中,APFC一般是优先考虑的校正方法。作为设计人员,大致从以 下几个方面对APFC进行考虑: 拓扑选择的一般方法 由于输入端存在电感,升压转换器是提供高功率因数的方法。此电感使输入电流整形与线路电压同相。但是,可以采用不同的方案来控制电感电流的瞬时值,以获得功率因数校正。 a.临界导电模式(CRM)PFC——由于控制的设计较为简单,而且可与较低速升压二极管配合使用,所以在较低功率应用中通常采用此方法。 b.不连续导电模式(DCM)PFC——此创新的方案延承了CRM 的优点,并消除了若干限制。 c.连续导电模式(CCM)PFC——由于这种方案恒频且峰值电流较小,是较高功率(>250 W)应用的首选方案。但是,传统的控制解决方案较为复杂,牵涉到多个环路,以及以不精确著称的模拟乘法器,并需在控制集成电路周围放许多元件。 二、选择标准 1、功率水平 a.如果功率水平低于150 W,最好采用CRM或DCM方案。至于CRM 或DCM,取 决于你是想优化满载效率,采用CRM;而如欲减少EMI问题,选择DCM。 b.如功率水平高于250W,CCM是首选方案。此方案虽然可保持峰值电流和有效值电流,但必须解决二极管反向恢复问题。

相关主题
文本预览
相关文档 最新文档