当前位置:文档之家› 电气工程及其自动化电压波动论文中英文资料外文翻译文献

电气工程及其自动化电压波动论文中英文资料外文翻译文献

中英文资料外文翻译文献

原文:

A SPECIAL PROTECTION SCHEME FOR VOLTAGE

STABILITY PREVENTION

Abstract

Voltage instability is closely related to the maximum load-ability of a transmission network. The energy flows on the transmission system depend on the network topology, generation and loads, and on the availability of sources that can generate reactive power. One of the methods used for this purpose is the Voltage Instability Predictor (VIP). This relay measures voltages at a substation bus and currents in the circuit connected to the bus. From these measurements, it estimates the Thévenin?s equivalent of the network feeding the substation and the impedance of the load being supplied from the substation. This paper describes an extension to the VIP technique in which measurements from adjoining system buses and anticipated change of load are taken into consideration as well.

Keywords: Maximum load ability; Voltage instability; VIP algorithm.

1.Introduction

Deregulation has forced electric utilities to make better use of the available transmission facilities of their power system. This has resulted in increased power transfers, reduced transmission margins and diminished voltage security margins.

To operate a power system with an adequate security margin, it is essential to estimate the maximum permissible loading of the system using information about the current operation point. The maximum loading of a system is not a fixed quantity but depends on various factors, such as network topology, availability of reactive power reserves and their location etc. Determining the maximum permissible loading, within the voltage stability limit, has become a very important issue in power system operation and planning studies. The conventional P-V or V- Q curves are usually used as a tool for assessing voltage stability and hence for finding the maximum loading at the verge of voltage collapse [1]. These curves are generated by running a large number of load flow cases using, conventional methods. While such procedures can be automated, they are time-consuming and do not readily provide information useful in gaining insight into the cause of stability problems [2].

To overcome the above disadvantages several techniques have been proposed in the literature, such as bifurication theory [3], energy method [4], eigen value method [5],

multiple load flow solutions method [6] etc.

Reference [7] proposed a simple method, which does not require off-line simulation and training. The Voltage Indicator Predictor (VIP) method in [7] is based on local measurements (voltage and current) and produces an estimate of the strength / weakness of the transmission system connected to the bus, and compares it with the local demand. The closer the local demand is to the estimated transmission capacity, the more imminent is the voltage instability. The main disadvantage of this method is in the estimation of the Thévenin?s equivalent, which is obtained from two measurements at different times. For a more exact estimation, one requires two different load measurements.

This paper proposes an algorithm to improve the robustness of the VIP algorithm by including additional measurements from surrounding load buses and also taking into consideration local load changes at neighboring buses.

2. Proposed Methodology

The VIP algorithm proposed in this paper uses voltage and current measurements on the load buses and assumes that the impedance of interconnecting lines (12Z ,13Z ) are known, as shown in (Figure 1). The current flowing from the generator bus to the load bus is used to estimate Thévenin?s equivalent for the system in that direction. Similarly the current flowing from other load bus (Figure 2) is used to estimate Thévenin?s equivalent from other direction. This results in following equations (Figure 3). Note that the current coming from the second load bus over the transmission line was kept out of estimation in original (VIP) algorithm.

)()()(111112211111----=-+th th th L Z E Z V Z Z V [1]

)()()(122112112122----=-+th th th L Z E Z V Z Z V [2]

1111111)()(E th th th I Z V Z E =--- [3]

2

122122)()(E th th th I Z V Z E =--- [4] Where 1E I and 2E I are currents coming from Th évenin buses no.1 and 2. Equation (1)-(4) can be combined into a matrix form:

??????????????---++---++-------------121211111212112121-12111121111211000000th th th th th th L th th L Z Z Z Z Z Z Z Z Z Z Z Z Z Z *=????????????2121th th E E V V ?????

???????2100E E I I [5] Using the first 2 rows in the system Equations (1)-(4), the voltage on buses number 1 and 2 can be found as shown in Equation (6) below. From Equation (6) we

can see that the voltage is a function of impedances. Note that the method assumes that all Thévenin?s parameters are constant at the time of estimation.

???

?????????????++--++=??????-----------1221111

1121212112112112111121*th th th th th L th L Z E Z E Z Z Z Z Z Z Z Z V V [6] Where, 111-=L Z y 11212-=Z y and 1

22-=L Z y

The system equivalent seen from bus no.1 is shown in Figure 3. Figure 4(a) shows the relationship between load admittances (1y and 2y ) and voltage at bus

no.1. Power delivered to bus no.1 is (1S ) and it is a function of

(1L Z ,2L Z ).1211*L y V S = [7]

Equation 7 is plotted in figure 4 (b) as a …landscape? and the maximum loading point depends on where the system trajectory …goes over the hill?.

Fig. 1. 3-Bus system connections Fig. 2. 1-Bus model

Fig. 3. System equivalent as seen by the proposed VIP relay on bus #1 (2-bus model)

(a)Voltage Profile (b) Power Profile

Fig. 4. Voltage and power profiles for bus #1

2.1. On-Line Tracking of Thévenin’s Parameters

Thévenin?s parameters are the main factors that decide the maximum loading of the load bus and hence we can detect the voltage collapse. In Figure3, th E can be expressed by the following equation:

I Z V E th load th += [8]

V and I are directly available from measurements at the local bus. Equation (8) can be expressed in the matrix form as shown below.

?????

???????--????????????=????????????000010000001)()(00..r i i r th th th th i r I I I I X R i E r E V V [9] B= A X [10] The unknown parameters can be estimated from the following equation:

B A AX A T T = [11] Note that all of the above quantities are functions of time and are calculated on a sliding window of discrete data samples of finite, preferably short length. There are additional requirements to make the estimation feasible:

? There must be a significant change in load impedance in the data window of at least two set of Measurements.

? For small changes in Thévenin?s parameters within a particular data window, the algorithm can estimate properly but if a sudden large change occurs then the process of estimation is postponed until the next data window comes in.

? The monitoring device based on the above principle can be used to impose a limit on the loading at each bus, and sheds load when the limit is exceeded. It can also be used to enhance existing voltage controllers. Coordinated control can

also be obtained if communication is available.

Once we have the time sequence of voltage and current we can estimate unknowns by using parameter estimation algorithms, such as Ka lm an Filtering approach described [6].

stability margin (VSM) due to impedances can be expressed as (Z VSM ); where subscript z denotes the impedance.Therefore we have: Load

thev Load Z Z Z Z VSM -= [12] The above equation assumes that both load impedances (1Z , 2Z ) are decreasing

at a steady rate, so the power delivered to bus 1 will increase according to Equation

(7). However once it reaches the point of collapse power starts to decrease again.

Now assume that both loads are functions of time. The maximum critical loading point is then given by Equation(13): 011==dt

ds S Critical [13] Expressing voltage stability margin due to load apparent power as ( S VSM ), we have: Critical Load Critical S S

S S VSM -= [14] Note that both Z VSM and S VSM are normalized quantities and their values decrease as the load increases.

At the voltage collapse point, both the margins reduce to zero and the corresponding load is considered as the maximum permissible loading.

Fig. 5. VIP algorithm

2.2. Voltage Stability Margins and the Maximum Permissible Loading

System reaches the maximum load point when the condition: thev load Z Z =is satisfied (Figure5).Therefore the voltage stability boundary can be defined by a circle

with a radius of the Thévenin?s impedance. For normal operation the thev Z is smaller than load Z (i.e. it is outside the circle) and the system operates on the upper part (or the stable region) of a conventional P-V curve [2]. However, when thev Z exceeds load Z the system operates on the lower part (or unstable region) of the P-V curve, indicating that voltage collapse has already occurred. At the maximum power point, the load impedance becomes same as the Thévenin?s (thev L Z Z ). Therefore, for a given load impedance (load Z ), the difference between thev Z and load Z can be considered as a safety margin. Hence the voltage as given in an IEEE survey, which described (111) schemes from (17) different countries [8].

Fig. 6. Load actions to prevent from voltage instability

2.3. Advantages of the proposed VIP algorithm

By incorporating the measurements from other load buses (Figure 3), the proposed VIP algorithm achieves a more accurate value of load Z . The on-line tracking of thev Z is used to track system changes.

The proposed improvements in the VIP algorithm will result in better control action for power system voltage stability enhancement. The control measures are normally shunt reactor disconnection, shunt capacitor connection, shunt V AR

compensation by means of SVC?s and synchrouns condensers, starting of gas turbines, low priority load disconnection, and shedding of low-priority load [8]. Figure 6 shows the most commonly used remedial actions .

3. Conclusions

An improved V oltage Instability Predictor (VIP) algorithm for improving the voltage stability is proposed in this paper. The previous VIP method [7] used measurements only from the bus where the relay is connected. The new method uses measurements from other load buses as well. The voltage instability margin not only depends on the present state of the system but also on future changes.

Therefore, the proposed algorithm uses an on-line tracking Thévenin?s equivalent for tracking the system trajectory. The algorithm is simple and easy to implement in a numerical relay. The information obtained by the relay can be used for load shedding activation at the bus or V AR compensation. In addition, the signal may be transmitted to the control centre,where coordinated system-wide control action can be undertaken. The algorithm is currently being investigated on an IEEE 30 bus system and results using the improved VIP algorithm will be reported in a future publication. References

[1] M.H.Haque, “On line monitoring of maximum permissible loading of a power system within voltage stability limits”, IEE proc. Gener. Transms. Distrib.,V ol. 150, No. 1, PP. 107-112, January, 2003

[2] V. Balamourougan, T.S. Sidhu and M.S. Sachdev, “Technique for online prediction of voltage collapse”, IEE Proc.Gener.Transm. Distrib., V ol.151, No. 4, PP. 453-460, July, 2004

[3] C.A. Anizares, “On bifurcations voltage collapse and load modeling “IEEE Trans. Power System, V ol. 10, No. 1, PP. 512-522, February, 1995

[4] T.J Overbye and S.J Demarco, “Improved Technique for Power System voltage stability assessment using energy methods“, IEEE Trans. Power Syst., Vol. 6, No. 4, PP. 1446-1452, November, 1991

[5] P.A Smed Loof. T. Andersson, G. Hill and D.J,”Fast calculation of voltage stability index”, IEEE Trans. Power Syst. V ol. 7, No. 1, PP. 54-64, February, 1992

[6] K. Ohtsuka ,” An equivalent of multi- machine power system and its identification for on-line application to decentralized stabilizers”, IEEE Trans. Power Syst., V ol. 4 No. 2, PP. 687-693, May, 1989

[7] Khoi Vu, Miroslav M Begovic, Damir Novosel, Murari Mohan Saha, “ Use of local Measurements to estimate voltage –stability margin “ IEEE Trans. Power syst. V ol. 14, No. 3, PP. 1029-1035, August, 1999

[8] G.V erbic and F. Gubina “Fast voltage-collapse line protection algorithm based on local phasors”, IEE Proc.Gener.Transm. Distrib., V ol. 150, No. 4, PP. 482-486, July, 2003

译文:

一种特殊的预防电压波动的保护方案

摘要

电压的波动与输电线路的最大负载能力密切相关。输电系统中电能的传输依赖于输电线路的拓扑结构,发电和负载,以及无功电源的出处。一种用于分析电压波动的方法是电压波动的预测(VIP)。由继电器测量变电所连接到线路上的电路的电流和电压。根据测量结果,借助戴维南定理估算出输送到变电所线路和从变电所提供的负载的阻抗。本文描述了一个测量相邻系统母线并考虑到的负荷预期变化的扩展的VIP技术。

关键词:最大负载能力;电压波动;VIP算法。

1.简介

宽松的政策迫使发电企业要更好地利用电力系统中的输电。这导致了输电量的增加,降低了输电利润和减小了电压安全裕度。

操作一个有足够安全裕度的电力系统,在系统的使用信息中估算当前操作点的最大允许负载是必要的。一个电力系统的最大负载不是一个固定的值而是取决于各种各样的因素,比如输电线路的拓扑、无功电源的出处和他们的位置等等。决定最大允许负载,在电压稳定极限内,在电力系统运行和规划研究中已成为一个非常重要的问题。常见的P-V或V-Q曲线通常当作一个评估电压稳定的依据,进而为在电力系统电压崩溃端寻找最大负载提供依据[1]。这些曲线常规的方法是在大量负载流运行使用的情况下产生的。虽然这样的过程已经可以自动化,但它们是耗时的,在发现稳定性问题的起因时不易提供一些有用的信息[2]。

为了克服上述缺点的多个方法已经在文献上提到,比如分叉理论[3],能量法[4]、本征值法[5],多个负载流解法[6]等。

参考[7]提出了一个简单的方法,它不需要离线的模拟和训练。电压指标预测方法(VIP)[7]是在本地测量值(电压和电流)的基础上,产生一个连接到母线上估算优点和缺点的输电系统,并将它与当地的需求对比。估算出最接近本地需求的输电量,更为紧迫的是电压波动。该方法的主要缺点是在戴维南定理的估算, 它在不同时刻获得两个测量值。对于一个更精确的估值,一般需要两个不同的负荷测量值。

工业设计专业英语英文翻译

工业设计原著选读 优秀的产品设计 第一个拨号电话1897年由卡罗耳Gantz 第一个拨号电话在1897年被自动电器公司引入,成立于1891年布朗强,一名勘萨斯州承担者。在1889年,相信铃声“中央交换”将转移来电给竞争对手,强发明了被拨号系统控制的自动交换机系统。这个系统在1892年第一次在拉波特完成史端乔系统中被安装。1897年,强的模型电话,然而模型扶轮拨条的位置没有类似于轮齿约170度,以及边缘拨阀瓣。电话,当然是被亚历山大格雷厄姆贝尔(1847—1922)在1876年发明的。第一个商业交换始建于1878(12个使用者),在1879年,多交换机系统由工程师勒罗伊B 菲尔曼发明,使电话取得商业成功,用户在1890年达到250000。 直到1894年,贝尔原批专利过期,贝尔电话公司在市场上有一个虚拟的垄断。他们已经成功侵权投诉反对至少600竞争者。该公司曾在1896年,刚刚在中央交易所推出了电源的“普通电池”制度。在那之前,一个人有手摇电话以提供足够的电力呼叫。一个连接可能仍然只能在给予该人的名义下提出要求达到一个电话接线员。这是强改变的原因。 强很快成为贝尔的强大竞争者。他在1901年引进了一个桌面拨号模型,这个模型在设计方面比贝尔的模型更加清晰。在1902年,他引进了一个带有磁盘拨号的墙面电话,这次与实际指孔,仍然只有170度左右在磁盘周围。到1905年,一个“长距离”手指孔已经被增加了。最后一个强的知名模型是在1907年。强的专利大概过期于1914年,之后他或他的公司再也没有听到过。直到1919年贝尔引进了拨号系统。当他们这样做,在拨号盘的周围手指孔被充分扩展了。 强发明的拨号系统直到1922年进入像纽约一样的大城市才成为主流。但是一旦作为规规范被确立,直到70年代它仍然是主要的电话技术。后按键式拨号在1963年被推出之后,强发明的最初的手指拨号系统作为“旋转的拨号系统”而知名。这是强怎样“让你的手指拨号”的。 埃姆斯椅LCW和DCW 1947 这些带有复合曲线座位,靠背和橡胶防震装置的成型胶合板椅是由查尔斯埃姆斯设计,在赫曼米勒家具公司生产的。 这个原始的概念是被查尔斯埃姆斯(1907—1978)和埃罗沙里宁(1910—1961)在1940年合作构想出来的。在1937年,埃姆斯成为克兰布鲁克学院实验设计部门的领头人,和沙里宁一起工作调查材料和家具。在这些努力下,埃姆斯发明了分成薄片和成型胶合板夹板,被称作埃姆斯夹板,在1941年收到了来自美国海军5000人的订单。查尔斯和他的妻子雷在他们威尼斯,钙的工作室及工厂和埃文斯产品公司的生产厂家一起生产了这批订单。 在1941年现代艺术博物馆,艾略特诺伊斯组织了一场比赛用以发现对现代生活富有想象力的设计师。奖项颁发给了埃姆斯和沙里宁他们的椅子和存储碎片,由包括埃德加考夫曼,大都会艺术博物馆的阿尔弗雷德,艾略特诺伊斯,马尔塞布鲁尔,弗兰克帕里什和建筑师爱德华达雷尔斯通的陪审团裁决。 这些椅子在1946年的现代艺术展览博物馆被展出,查尔斯埃姆斯设计的新的家具。当时,椅子只有三条腿,稳定性问题气馁了大规模生产。 早期的LCW(低木椅)和DWC(就餐木椅)设计有四条木腿在1946年第一次被埃文斯产品公司(埃姆斯的战时雇主)生产出来,被赫曼米勒家具公司分配。这些工具1946年被乔治纳尔逊为赫曼米勒购买,在1949年接手制造权。后来金属脚的愿景在1951年制作,包括LCW(低金属椅)和DWC(就餐金属椅)模型。配套的餐饮和咖啡桌也产生。这条线一直

毕业论文英文参考文献与译文

Inventory management Inventory Control On the so-called "inventory control", many people will interpret it as a "storage management", which is actually a big distortion. The traditional narrow view, mainly for warehouse inventory control of materials for inventory, data processing, storage, distribution, etc., through the implementation of anti-corrosion, temperature and humidity control means, to make the custody of the physical inventory to maintain optimum purposes. This is just a form of inventory control, or can be defined as the physical inventory control. How, then, from a broad perspective to understand inventory control? Inventory control should be related to the company's financial and operational objectives, in particular operating cash flow by optimizing the entire demand and supply chain management processes (DSCM), a reasonable set of ERP control strategy, and supported by appropriate information processing tools, tools to achieved in ensuring the timely delivery of the premise, as far as possible to reduce inventory levels, reducing inventory and obsolescence, the risk of devaluation. In this sense, the physical inventory control to achieve financial goals is just a means to control the entire inventory or just a necessary part; from the perspective of organizational functions, physical inventory control, warehouse management is mainly the responsibility of The broad inventory control is the demand and supply chain management, and the whole company's responsibility. Why until now many people's understanding of inventory control, limited physical inventory control? The following two reasons can not be ignored: First, our enterprises do not attach importance to inventory control. Especially those who benefit relatively good business, as long as there is money on the few people to consider the problem of inventory turnover. Inventory control is simply interpreted as warehouse management, unless the time to spend money, it may have been to see the inventory problem, and see the results are often very simple procurement to buy more, or did not do warehouse departments . Second, ERP misleading. Invoicing software is simple audacity to call it ERP, companies on their so-called ERP can reduce the number of inventory, inventory control, seems to rely on their small software can get. Even as SAP, BAAN ERP world, the field of

毕业论文外文翻译模版

吉林化工学院理学院 毕业论文外文翻译English Title(Times New Roman ,三号) 学生学号:08810219 学生姓名:袁庚文 专业班级:信息与计算科学0802 指导教师:赵瑛 职称副教授 起止日期:2012.2.27~2012.3.14 吉林化工学院 Jilin Institute of Chemical Technology

1 外文翻译的基本内容 应选择与本课题密切相关的外文文献(学术期刊网上的),译成中文,与原文装订在一起并独立成册。在毕业答辩前,同论文一起上交。译文字数不应少于3000个汉字。 2 书写规范 2.1 外文翻译的正文格式 正文版心设置为:上边距:3.5厘米,下边距:2.5厘米,左边距:3.5厘米,右边距:2厘米,页眉:2.5厘米,页脚:2厘米。 中文部分正文选用模板中的样式所定义的“正文”,每段落首行缩进2字;或者手动设置成每段落首行缩进2字,字体:宋体,字号:小四,行距:多倍行距1.3,间距:前段、后段均为0行。 这部分工作模板中已经自动设置为缺省值。 2.2标题格式 特别注意:各级标题的具体形式可参照外文原文确定。 1.第一级标题(如:第1章绪论)选用模板中的样式所定义的“标题1”,居左;或者手动设置成字体:黑体,居左,字号:三号,1.5倍行距,段后11磅,段前为11磅。 2.第二级标题(如:1.2 摘要与关键词)选用模板中的样式所定义的“标题2”,居左;或者手动设置成字体:黑体,居左,字号:四号,1.5倍行距,段后为0,段前0.5行。 3.第三级标题(如:1.2.1 摘要)选用模板中的样式所定义的“标题3”,居左;或者手动设置成字体:黑体,居左,字号:小四,1.5倍行距,段后为0,段前0.5行。 标题和后面文字之间空一格(半角)。 3 图表及公式等的格式说明 图表、公式、参考文献等的格式详见《吉林化工学院本科学生毕业设计说明书(论文)撰写规范及标准模版》中相关的说明。

工业设计外文翻译

Interaction design Moggridge Bill Interaction design,Page 1-15 USA Art Press, 2008 Interaction design (IxD) is the study of devices with which a user can interact, in particular computer users. The practice typically centers on "embedding information technology into the ambient social complexities of the physical world."[1] It can also apply to other types of non-electronic products and services, and even organizations. Interaction design defines the behavior (the "interaction") of an artifact or system in response to its users. Malcolm McCullough has written, "As a consequence of pervasive computing, interaction design is poised to become one of the main liberal arts of the twenty-first century." Certain basic principles of cognitive psychology provide grounding for interaction design. These include mental models, mapping, interface metaphors, and affordances. Many of these are laid out in Donald Norman's influential book The Psychology of Everyday Things. As technologies are often overly complex for their intended target audience, interaction design aims to minimize the learning curve and to increase accuracy and efficiency of a task without diminishing usefulness. The objective is to reduce frustration and increase user productivity and satisfaction. Interaction design attempts to improve the usability and experience of the product, by first researching and understanding certain users' needs and then designing to meet and exceed them. (Figuring out who needs to use it, and how those people would like to use it.) Only by involving users who will use a product or system on a regular basis will designers be able to properly tailor and maximize usability. Involving real users, designers gain the ability to better understand user goals and experiences. (see also: User-centered design) There are also positive side effects which include enhanced system capability awareness and user ownership. It is important that the user be aware of system capabilities from an early stage so that expectations regarding functionality are both realistic and properly understood. Also, users who have been active participants in a product's development are more likely to feel a sense of ownership, thus increasing overall satisfa. Instructional design is a goal-oriented, user-centric approach to creating training and education software or written materials. Interaction design and instructional design both rely on cognitive psychology theories to focus on how users will interact with software. They both take an in-depth approach to analyzing the user's needs and goals. A needs analysis is often performed in both disciplines. Both, approach the design from the user's perspective. Both, involve gathering feedback from users, and making revisions until the product or service has been found to be effective. (Summative / formative evaluations) In many ways, instructional

英语专业毕业论文翻译类论文

英语专业毕业论文翻译 类论文 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

毕业论文(设计)Title:The Application of the Iconicity to the Translation of Chinese Poetry 题目:象似性在中国诗歌翻译中的应用 学生姓名孔令霞 学号 BC09150201 指导教师祁晓菲助教 年级 2009级英语本科(翻译方向)二班 专业英语 系别外国语言文学系

黑龙江外国语学院本科生毕业论文(设计)任务书 摘要

索绪尔提出的语言符号任意性,近些年不断受到质疑,来自语言象似性的研究是最大的挑战。语言象似性理论是针对语言任意性理论提出来的,并在不断发展。象似性是当今认知语言学研究中的一个重要课题,是指语言符号的能指与所指之间的自然联系。本文以中国诗歌英译为例,探讨象似性在中国诗歌翻译中的应用,从以下几个部分阐述:(1)象似性的发展;(2)象似性的定义及分类;(3)中国诗歌翻译的标准;(4)象似性在中国诗歌翻译中的应用,主要从以下几个方面论述:声音象似、顺序象似、数量象似、对称象似方面。通过以上几个方面的探究,探讨了中国诗歌翻译中象似性原则的重大作用,在诗歌翻译过程中有助于得到“形神皆似”和“意美、音美、形美”的理想翻译效果。 关键词:象似性;诗歌;翻译

Abstract The arbitrariness theory of language signs proposed by Saussure is severely challenged by the study of language iconicity in recent years. The theory of iconicity is put forward in contrast to that of arbitrariness and has been developing gradually. Iconicity, which is an important subject in the research of cognitive linguistics, refers to a natural resemblance or analogy between the form of a sign and the object or concept. This thesis mainly discusses the application of the iconicity to the translation of Chinese poetry. The paper is better described from the following parts: (1) The development of the iconicity; (2) The definition and classification of the iconicity; (3) The standards of the translation to Chinese poetry; (4) The application of the iconicity to the translation of Chinese poetry, mainly discussed from the following aspects: sound iconicity, order iconicity, quantity iconicity, and symmetrical iconicity. Through in-depth discussion of the above aspects, this paper could come to the conclusion that the iconicity is very important in the translation of poetry. It is conductive to reach the ideal effect of “the similarity of form and spirit” and “the three beauties”. Key words: the iconicity; poetry; translation

大学毕业论文---软件专业外文文献中英文翻译

软件专业毕业论文外文文献中英文翻译 Object landscapes and lifetimes Tech nically, OOP is just about abstract data typing, in herita nee, and polymorphism, but other issues can be at least as importa nt. The rema in der of this sect ion will cover these issues. One of the most importa nt factors is the way objects are created and destroyed. Where is the data for an object and how is the lifetime of the object con trolled? There are differe nt philosophies at work here. C++ takes the approach that con trol of efficie ncy is the most importa nt issue, so it gives the programmer a choice. For maximum run-time speed, the storage and lifetime can be determined while the program is being written, by placing the objects on the stack (these are sometimes called automatic or scoped variables) or in the static storage area. This places a priority on the speed of storage allocatio n and release, and con trol of these can be very valuable in some situati ons. However, you sacrifice flexibility because you must know the exact qua ntity, lifetime, and type of objects while you're writing the program. If you are trying to solve a more general problem such as computer-aided desig n, warehouse man ageme nt, or air-traffic con trol, this is too restrictive. The sec ond approach is to create objects dyn amically in a pool of memory called the heap. In this approach, you don't know un til run-time how many objects you n eed, what their lifetime is, or what their exact type is. Those are determined at the spur of the moment while the program is runnin g. If you n eed a new object, you simply make it on the heap at the point that you n eed it. Because the storage is man aged dyn amically, at run-time, the amount of time required to allocate storage on the heap is sig ni fica ntly Ion ger tha n the time to create storage on the stack. (Creat ing storage on the stack is ofte n a si ngle assembly in structio n to move the stack poin ter dow n, and ano ther to move it back up.) The dyn amic approach makes the gen erally logical assumpti on that objects tend to be complicated, so the extra overhead of finding storage and releas ing that storage will not have an importa nt impact on the creati on of an object .In additi on, the greater flexibility is esse ntial to solve the gen eral program ming problem. Java uses the sec ond approach, exclusive". Every time you want to create an object, you use the new keyword to build a dyn amic in sta nee of that object. There's ano ther issue, however, and that's the lifetime of an object. With Ian guages that allow objects to be created on the stack, the compiler determines how long the object lasts and can automatically destroy it. However, if you create it on the heap the compiler has no kno wledge of its lifetime. In a Ianguage like C++, you must determine programmatically when to destroy the

文献综述和外文翻译撰写要求与格式规范

本科毕业论文(设计)文献综述和外文翻译 撰写要求与格式规范 一、毕业论文(设计)文献综述 (一)毕业论文(设计)文献综述的内容要求 1.封面:由学院统一设计,普通A4纸打印即可。 2.正文 综述正文部分需要阐述所选课题在相应学科领域中的发展进程和研究方向,特别是近年来的发展趋势和最新成果。通过与中外研究成果的比较和评论,说明自己的选题是符合当前的研究方向并有所进展,或采用了当前的最新技术并有所改进,目的是使读者进一步了解本课题的意义。文中的用语、图纸、表格、插图应规范、准确,量和单位的使用必须符合国家标准规定,引用他人资料要有标注。 文献综述字数在5000字以上。 正文前须附500字左右中文摘要,末尾须附参考文献。 参考文献的著录按在文献综述中出现的先后顺序编号。 期刊类文献书写方法:[序号]作者(不超过3人,多者用等表示).题(篇)名[J].刊名,出版年,卷次(期次):起止页次.

图书类文献书写方法:[序号]作者.书名[M].版本.出版地:出版者,出版年:起止页次. 论文集类文献书写方法:[序号]作者.篇名[C].论文集名.出版地:出版者,出版年:起止页次. 学位论文类书写方法:[序号]作者.篇名[D].出版地:单位名称,年份. 电子文献类书写方法:[序号]主要责任者. 题名:其他题名信息[文献类型标志/文献载体标志 ]出版地:出版者,出版年(更新或修改日期)[引用日期].获取和访问途径. 参考文献篇数应符合学院毕业论文(设计)工作的要求。 (二)毕业论文(设计)文献综述撰写与装订的格式规范 第一部分:封面 1.封面:由学院统一设计,“本科生毕业论文(设计)”根据作业实际明确为“论文”或“设计”,其它文本、表格遇此类情况同样处理。 第二部分:文献综述主题 1.中文摘要与关键词 摘要标题(五号,宋体,顶格,加粗)

工业设计产品设计中英文对照外文翻译文献

(文档含英文原文和中文翻译) 中英文翻译原文:

DESIGN and ENVIRONMENT Product design is the principal part and kernel of industrial design. Product design gives uses pleasure. A good design can bring hope and create new lifestyle to human. In spscificity,products are only outcomes of factory such as mechanical and electrical products,costume and so on.In generality,anything,whatever it is tangibile or intangible,that can be provided for a market,can be weighed with value by customers, and can satisfy a need or desire,can be entiled as products. Innovative design has come into human life. It makes product looking brand-new and brings new aesthetic feeling and attraction that are different from traditional products. Enterprose tend to renovate idea of product design because of change of consumer's lifestyle , emphasis on individuation and self-expression,market competition and requirement of individuation of product. Product design includes factors of society ,economy, techology and leterae humaniores. Tasks of product design includes styling, color, face processing and selection of material and optimization of human-machine interface. Design is a kind of thinking of lifestyle.Product and design conception can guide human lifestyle . In reverse , lifestyle also manipulates orientation and development of product from thinking layer.

英语专业翻译类论文参考文献

参考文献 一、翻译理论与实践相关书目 谢天振主编. 《当代国外翻译理论导读》. 天津:南开大学出版社,2008. Jeremy Munday. 《翻译学导论——理论与实践》Introducing Translation Studies---Theories and Applications. 李德凤等译. 北京:商务印书馆,2007. 包惠南、包昂. 《中国文化与汉英翻译》. 北京:外文出版社, 2004. 包惠南. 《文化语境与语言翻译》. 北京:中国对外翻译出版公司. 2001. 毕继万. 《世界文化史故事大系——英国卷》. 上海:上海外语教育出版社, 2003. 蔡基刚. 《英汉汉英段落翻译与实践》. 上海:复旦大学出版社, 2001. 蔡基刚. 《英汉写作对比研究》. 上海:复旦大学出版社, 2001. 蔡基刚. 《英语写作与抽象名词表达》. 上海:复旦大学出版社, 2003. 曹雪芹、高鄂. 《红楼梦》. 陈定安. 《英汉比较与翻译》. 北京:中国对外翻译出版公司, 1991. 陈福康. 《中国译学理论史稿》(修订本). 上海:上海外语教育出版社. 2000. 陈生保. 《英汉翻译津指》. 北京:中国对外翻译出版公司. 1998. 陈廷祐. 《英文汉译技巧》. 北京:外语教学与研究出版社. 2001. 陈望道. 《修辞学发凡》. 上海:上海教育出版社, 1979. 陈文伯. 《英汉翻译技法与练习》. 北京:世界知识出版社. 1998. 陈中绳、吴娟. 《英汉新词新义佳译》. 上海:上海翻译出版公司. 1990. 陈忠诚. 《词语翻译丛谈》. 北京:中国对外翻译出版公司, 1983. 程希岚. 《修辞学新编》. 吉林:吉林人民出版社, 1984. 程镇球. 《翻译论文集》. 北京:外语教学与研究出版社. 2002. 程镇球. 《翻译问题探索》. 北京:商务印书馆, 1980. 崔刚. 《广告英语》. 北京:北京理工大学出版社, 1993. 单其昌. 《汉英翻译技巧》. 北京:外语教学与研究出版社. 1990. 单其昌. 《汉英翻译讲评》. 北京:对外贸易教育出版社. 1989. 邓炎昌、刘润清. 《语言与文化——英汉语言文化对比》. 北京:外语教学与研究出版社, 1989. 丁树德. 《英汉汉英翻译教学综合指导》. 天津:天津大学出版社, 1996. 杜承南等,《中国当代翻译百论》. 重庆:重庆大学出版社, 1994. 《翻译通讯》编辑部. 《翻译研究论文集(1894-1948)》. 北京:外语教学与研究出版社. 1984. 《翻译通讯》编辑部. 《翻译研究论文集(1949-1983)》. 北京:外语教学与研究出版社. 1984. . 范勇主编. 《新编汉英翻译教程》. 天津:南开大学出版社. 2006. 方梦之、马秉义(编选). 《汉译英实践与技巧》. 北京:旅游教育出版社. 1996. 方梦之. 《英语汉译实践与技巧》. 天津:天津科技翻译出版公司. 1994. 方梦之主编. 《译学辞典》. 上海:上海外语教育出版社. 2004. 冯翠华. 《英语修辞大全》,北京:外语教学与研究出版社, 1995. 冯庆华. 《文体与翻译》. 上海:上海外语教育出版社, 2002. 冯庆华主编. 《文体翻译论》. 上海:上海外语教育出版社. 2002. 冯胜利. 《汉语的韵律、词法与句法》. 北京:北京大学出版社, 1997. 冯志杰. 《汉英科技翻译指要》. 北京:中国对外翻译出版公司. 1998. 耿占春. 《隐喻》. 北京:东方出版社, 1993.

电子信息工程专业毕业论文外文翻译中英文对照翻译

本科毕业设计(论文)中英文对照翻译 院(系部)电气工程与自动化 专业名称电子信息工程 年级班级 04级7班 学生姓名 指导老师

Infrared Remote Control System Abstract Red outside data correspondence the technique be currently within the scope of world drive extensive usage of a kind of wireless conjunction technique,drive numerous hardware and software platform support. Red outside the transceiver product have cost low, small scaled turn, the baud rate be quick, point to point SSL, be free from electromagnetism thousand Raos etc.characteristics, can realization information at dissimilarity of the product fast, convenience, safely exchange and transmission, at short distance wireless deliver aspect to own very obvious of advantage.Along with red outside the data deliver a technique more and more mature, the cost descend, red outside the transceiver necessarily will get at the short distance communication realm more extensive of application. The purpose that design this system is transmit cu stomer’s operation information with infrared rays for transmit media, then demodulate original signal with receive circuit. It use coding chip to modulate signal and use decoding chip to demodulate signal. The coding chip is PT2262 and decoding chip is PT2272. Both chips are made in Taiwan. Main work principle is that we provide to input the information for the PT2262 with coding keyboard. The input information was coded by PT2262 and loading to high frequent load wave whose frequent is 38 kHz, then modulate infrared transmit dioxide and radiate space outside when it attian enough power. The receive circuit receive the signal and demodulate original information. The original signal was decoded by PT2272, so as to drive some circuit to accomplish

本科毕业设计(论文)外文翻译基本规范

本科毕业设计(论文)外文翻译基本规范 一、要求 1、与毕业论文分开单独成文。 2、两篇文献。 二、基本格式 1、文献应以英、美等国家公开发表的文献为主(Journals from English speaking countries)。 2、毕业论文翻译是相对独立的,其中应该包括题目、作者(可以不翻译)、译文的出处(杂志的名称)(5号宋体、写在文稿左上角)、关键词、摘要、前言、正文、总结等几个部分。 3、文献翻译的字体、字号、序号等应与毕业论文格式要求完全一致。 4、文中所有的图表、致谢及参考文献均可以略去,但在文献翻译的末页标注:图表、致谢及参考文献已略去(见原文)。(空一行,字体同正文) 5、原文中出现的专用名词及人名、地名、参考文献可不翻译,并同原文一样在正文中标明出处。 二、毕业论文(设计)外文翻译 (一)毕业论文(设计)外文翻译的内容要求 外文翻译内容必须与所选课题相关,外文原文不少于6000个印刷符号。译文末尾要用外文注明外文原文出处。 原文出处:期刊类文献书写方法:[序号]作者(不超过3人,多者用等或et al表示).题(篇)名[J].刊名(版本),出版年,卷次(期次):起止页次. 原文出处:图书类文献书写方法:[序号]作者.书名[M].版本.出版地:出版者,出版年.起止页次. 原文出处:论文集类文献书写方法:[序号]作者.篇名[A].编著者.论文集名[C]. 出版地:出版者,出版年.起止页次。 要求有外文原文复印件。 (二)毕业论文(设计)外文翻译的撰写与装订的格式规范 第一部分:封面

1.封面格式:见“毕业论文(设计)外文翻译封面”。普通A4纸打印即可。 第二部分:外文翻译主题 1.标题 一级标题,三号字,宋体,顶格,加粗 二级标题,四号字,宋体,顶格,加粗 三级标题,小四号字,宋体,顶格,加粗 2.正文 小四号字,宋体。 第三部分:版面要求 论文开本大小:210mm×297mm(A4纸) 版芯要求:左边距:25mm,右边距:25mm,上边距:30mm,下边距:25mm,页眉边距:23mm,页脚边 距:18mm 字符间距:标准 行距:1.25倍 页眉页角:页眉的奇数页书写—浙江师范大学学士学位论文外文翻译。页眉的偶数页书写—外文翻译 题目。在每页底部居中加页码。(宋体、五号、居中) 装订顺序是:封皮、中文翻译、英文原文复印件。

相关主题
文本预览
相关文档 最新文档