当前位置:文档之家› 1直流调速方法

1直流调速方法

1直流调速方法
1直流调速方法

1直流调速方法(1)调节电枢供电电压 U ;(2)减弱励磁磁通 (3)改变电枢回路电阻 R

2常用的可控直流电源有以下三种(1)旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。(2)静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。(3)直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压

3由原动机(柴油机、交流异步或同步电动机)拖动直流发电机 G 实现变流,由 G 给需要调速的直流电动机 M 供电,调节G 的励磁电流 if 即可改变其输出电压 U ,从而调节电动机的转速 n 。 这样的调速系统简称G-M 系统,国际上通称Ward-Leonard 系统。 4晶闸管-电动机调速系统(简称V-M 系统,又称静止的Ward-Leonard 系统),图中VT 是晶闸管可控整流器,通过调节触发装置 GT 的控制电压 Uc 来移动触发脉冲的相位,即可改变整流电压Ud ,从而实现平滑调速。

5抑制电流脉动的措施(1)设置平波电抗器;(2)增加整流电路相数;采用多重化技术

6.PWM 系统的优点(1)主电路线路简单,需用的功率器件少;(2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小;(3)低速性能好,稳速精度高,调速范围宽,可达1:10000左右;(4)若与快速响应的电机配合,则系统频带宽,动态响应快,动态抗扰能力强;(5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高;(6)直流电源采用不控整流时,电网功率因数比相控整流器高。

7. 在动态过程中,可把晶闸管触发与整流装置看成是一个纯滞后环节,其滞后效应是由晶闸管的失控时间引起的。

8

9对于调速系统的转速控制要求有以下三个方面:(1)调速(2)稳速(3)加、减速

10调速指标(1)调速范围: 生产机械要求电动机提供的最高转速和最低转速之比叫做调速范

围,用字母 D 表示,即

(2) 静差率:当系统在某一转速下运行时,负载由理想空载增加到额定值时所对应的转速降

落 ,与理想空载转速 n0 之比,称作静差率 s ,即 式中

n0 - nN 。对于同样硬度的特性,理想空载转速越低时,静差率越大,转速的相对稳定度

也就越差。

11调速系统的静差率指标应以最低速时所能达到的数值为准。一个调速系统的调速范围,是指在最低速时还能满足所需静差率的转速可调范围

12

13闭环调速系统的静特性表示闭环系统电动机转速与负载电流(或转矩)间的稳态关系,它在形式上与开环机械特性相似,但本质上却有很大不同,故定名为“静特性”,以示区别。 14系统特性比较1)闭环系统静性可以比开环系统机械特性硬得多。(2)如果比较同一的开环和闭环系统,则闭环系统的静差率要小得多3)当要求的静差率一定时,闭环系统可以大大提高调速范围4)要取得上述三项优势,闭环系统必须设置放大器。

15闭环调速系统可以获得比开环调速系统硬得多的稳态特性,从而在保证一定静差率的要求下,能够提高调速范围,为此所需付出的代价是,须增设电压放大器以及检测与反馈装置。 16反馈控制规律1. 被调量有静差2. 抵抗扰动, 服从给定它能有效地抑制一切被负反馈环min max n n D =%1000N ??=n n s )1(N N s n s n D -??=

所包围的前向通道上的扰动作用反馈控制系统的规律是:一方面能够有效地抑制一切被包在负反馈环内前向通道上的扰动作用;另一方面,则紧紧地跟随着给定作用,对给定信号的任何变化都是唯命是从的3. 系统的精度依赖于给定和反馈检测精度

17如果采用某种方法,当电流大到一定程度时才接入电流负反馈以限制电流,而电流正常时仅有转速负反馈起作用控制转速。这种方法叫做电流截止负反馈,简称截流反馈。

18伯德图与系统性能的关系(1)中频段以-20dB/dec的斜率穿越0dB,而且这一斜率覆盖足够的频带宽度,则系统的稳定性好;(2)截止频率(或称剪切频率)越高,则系统的快速性越好;(3)低频段的斜率陡、增益高,说明系统的稳态精度高;(4)高频段衰减越快,即高频特性负分贝值越低,说明系统抗高频噪声干扰的能力越强。

19采用积分(I)调节器或比例积分(PI)调节器代替比例放大器,构成无静差调速系统。由此可见,比例积分控制综合了比例控制和积分控制两种规律的优点,又克服了各自的缺点,扬长避短,互相补充。比例部分能迅速响应控制作用,积分部分则最终消除稳态偏差

第二章

20把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。转速调节器ASR的输出限幅电压U*im决定了电流给定电压的最大值;电流调节器ACR的输出限幅电压Ucm限制了电力电子变换器的最大输出电压Udm,实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况双闭环调速系统的静特性在负载电流小于Idm时表现为转速无静差,这时,转速负反馈起主要调节作用。当负载电流达到Idm 后,转速调节器饱和,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。

21起动过程分析第I阶段电流上升的阶段(0 ~ t1)突加给定电压U*n 后,Id 上升,当Id 小于负载电流IdL 时,电机还不能转动。当Id ≥IdL 后,电机开始起动,由于机电惯性作用,转速不会很快增长,因而转速调节器ASR的输入偏差电压的数值仍较大,其输出电压保持限幅值U*im,强迫电流Id 迅速上升。直到,Id = Idm ,Ui = U*im 电流调节器很快就压制Id 了的增长,标志着这一阶段的结束。在这一阶段中,ASR很快进入并保持饱和状态,而ACR一般不饱和。第II 阶段恒流升速阶段(t1 ~ t2)在这个阶段中,ASR始终是饱和的,转速环相当于开环,系统成为在恒值电流U*im 给定下的电流调节系统,基本上保持电流Id 恒定,因而系统的加速度恒定,转速呈线性增长。与此同时,电机的反电动势E 也按线性增长,对电流调节系统来说,E 是一个线性渐增的扰动量,为了克服它的扰动,Ud0和Uc 也必须基本上按线性增长,才能保持Id 恒定。当ACR采用PI调节器时,要使其输出量按线性增长,其输入偏差电压必须维持一定的恒值,也就是说,Id 应略低于Idm。恒流升速阶段是起动过程中的主要阶段。为了保证电流环的主要调节作用,在起动过程中ACR是不应饱和的,电力电子装置UPE 的最大输出电压也须留有余地,这些都是设计时必须注意的。第Ⅲ阶段转速调节阶段(t2 以后)当转速上升到给定值时,转速调节器ASR的输入偏差减少到零,但其输出却由于积分作用还维持在限幅值U*im ,所以电机仍在加速,使转速超调。转速超调后,ASR输入偏差电压变负,使它开始退出饱和状态,U*i 和Id 很快下降。但是,只要Id 仍大于负载电流IdL ,转速就继续上升。直到Id = IdL时,转矩Te= TL ,则dn/dt = 0,转速n才到达峰值(t = t3时)。此后,电动机开始在负载的阻力下减速,与此相应,在一小段时间内(t3 ~ t4 ),Id < IdL ,直到稳定,如果调节器参数整定得不够好,也会有一些振荡过程。在这最后的转速调节阶段内,ASR和ACR都不饱和,ASR起主导的转速调节作用,而ACR则力图使Id 尽快地跟随其给定值U*i ,或者说,电流内环是一个电流随动子系统。综上所述,双闭环直流调速系统

的起动过程有以下三个特点:(1) 饱和非线性控制; (2) 转速超调;(3) 准时间最优控制

23负载扰动作用在电流环之后,因此只能靠转速调节器ASR 来产生抗负载扰动的作用. 24当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。一旦故障消失,系统立即自动恢复正常。这个作用对系统的可靠运行来说是十分重要的.

25一般来说,调速系统的动态指标以抗扰性能为主,而随动系统的动态指标则以跟随性能为主。,为了保证稳定性和较好的稳态精度,多选用I 型和II 型系统。典型 I 型系统在跟随性能上可以做到超调小,但抗扰性能稍差,典型Ⅱ型系统的超调量相对较大,抗扰性能却比较好。 这是设计时选择典型系统的重要依据。电流调节器结构的选择应选用典型I 型系统。转速调节器选择典型 Ⅱ 型系统

P76、26传递函数近似处理当系统有一组小惯性群时,在一定的条件下,可以将它们近似地看成是一个小惯性环节,其时间常数等于小惯性群中各时间常数之和。

27包括电流滤波、转速滤波和两个给定信号的滤波环节.低通滤波器

28在他励直流电动机的调速方法中,前面讨论的调电压方法是从基速(即额定转速 nN )向下调速。如果需要从基速向上调速,则要采用弱磁调速的方法,通过降低励磁电流,以减弱磁通来提高转速。按照电力拖动原理,在不同转速下长期运行时,为了充分利用电机,都应使电枢电流达到其额定值 IN 。于是,由于电磁转矩 ,在调压调速范围内,因为励磁磁通不变,容许的转矩也不变,称作“恒转矩调速方式。”而在弱磁调速范围内,转速越高,磁通越弱,容许的转矩不得不减少,转矩与转速的乘积则不变,即容许功率不变,是为“恒功率调速方式”。

29微机数字控制系统的稳定性好,可靠性高,可以提高控制性能,此外,还拥有信息存储、数据通信和故障诊断等模拟控制系统无法实现的功能。。

30脉冲数字(P/D )转换方法:(1)M 法—脉冲直接计数方法;(2)T 法—脉冲时间计数方法;(3)M/T 法—脉冲时间混合计数方法。M 法测速原理由计数器记录PLG 发出的脉冲信号;定时器每隔时间Tc 向CPU 发出中断请求INTt ; CPU 响应中断后,读出计数值 M1,

并将计数器清零重新计数;根据计数值 M 计算出对应的转速值 n 。 式中 Z

为PLG 每转输出的脉冲个数

M 法测速的分辨率 M 法测速误差率 在上式中,Z 和 Tc 均为常值,因此转速 n 正比于脉冲个数。高速时Z 大,量化误差较小,随着转速的降低误差增大,转速过低时将小于1,测速装置便不能正常工作。 所以,M 法测速只适用于高速段。

T 法测速计数器记录来自CPU 的高频脉冲 f0;PLG 每输出一个脉冲,中断电路向CPU 发出一次中断请求;CPU 响应 INTn 中断,从计数器中读出计数值 M2,并立即清零,重新

计数。

T 法测速的分辨率

c 160ZT M n =c c 1c 16060)1(60ZT ZT M ZT M Q =-+=%1001%10060 )1(60 601c

1c 1c 1max ?=?-=M ZT M ZT M ZT M δ20

60ZM f n =)1(6060)1(602202020-=--=M ZM f ZM f M Z f Q

T法测速误差率

低速时,编码器相邻脉冲间隔时间长,测得的高频时钟脉冲个数M2多,所以误差率小,测速精度高,故T 法测速适用于低速段M/T 法测速T0定时器控制采样时间;M1计数器记录

PLG 脉冲;M2计数器记录时钟脉冲。 分辨率

检测精度:低速时M/T 法趋向于T 法,在高速段M/T 法相当于T 法的 M1次平均,而在这 M1 次中最多产生一个高频时钟脉冲的误差。因此,M/T 法测速可在较宽的转速范围内,具有较高的测速精度。

31当采样频率足够高时,可以先按模拟系统的设计方法设计调节器,然后再离散化,就可以得到数字控制器的算法,这就是模拟调节器的数字化。

32希望保持电机中每极磁通量 为额定值不变。如果磁通太弱,没有充分利用电机的铁心,是一种浪费;如果过分增大磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机。只要控制好 Eg 和 f1 ,便可达到控制磁通的目的,对此,需要考虑基频(额定频率)以下和基频以上两种情况。可见最大转矩 Temax 是随着的

降低而减小的。

33当为恒值时,Temax 恒定不变,如下图所示,其稳态性能优于恒 控制的性能。这正是恒 控制中补偿定子压降所追求的目标。

34几种协调控制方式的比较(1)恒压频比)控制最容易实现,它的变频机械特性基本上是平行下移,硬度也较好,能够满足一般的调速要求,但低速带载能力有些差强人意,须对定子压降实行补偿. (2)恒E g /ω1 控制是通常对恒压频比控制实行电压补偿的标准,可以在稳态时达到Φrm = Constant ,从而改善了低速性能。但机械特性还是非线性的,产生转矩的能力仍受到限制。(3)恒E r /ω1 控制可以得到和直流他励电机一样的线性机械特性,按照转子全磁通恒定进行控制,而且,在动态中也尽可能保持 恒定是矢量控制系统的目标,当然实现起来是比较复杂的。

35按照波形面积相等的原则,每一个矩形波的面积与相应位置的正弦波面积相等,因而这个序列的矩形波与期望的正弦波等效。这种调制方法称作正弦波脉宽调制(Sinusoidal pulse width modulation ,简称SPWM ),这种序列的矩形波称作SPWM 波。

36磁链的轨迹是交替使用不同的电压空间矢量得到的,所以又称“电压空间矢量PWM (SVPWM ,Space Vector PWM )控制”。

37图中的逆变器采用180°导通型,功率开关器件共有8种工作状态(见附表) ,其中6 种有效开关状态;2 种无效状态

38现代通用变频器大都是采用二极管整流和由快速全控开关器件 IGBT 或功率模块IPM 组成的PWM 逆变器,构成交-直-交电压源型变压变频器.

39三相--两相变换(3/2变换 2s/2r 变换 %10011%10060 60 )1(602202020max ?-=?-=M ZM f ZM f M Z f δr/min 60 60201t 1ZM f M ZT M n ==)1(602210-=M ZM M f Q

直流电机的调速方法

第八章直流调速系统 8.1 概述 调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法点,如可简化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长位。当然,近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展很快,在许多场合正逐渐取代直流调速仍然是自动调速系统的主要形式。在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需泛采用直流调速系统。而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础 8.1.1直流电机的调速方法 根据第三章直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直流电动机的调速方法有三种: (1)调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 (2)改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 (3)改变电枢回路电阻。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,几乎没什么调速作用;还会在调速电阻上消耗大量电能。 改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动和调压调速配合使用,在额定转速以上作小围的升速。因此,自动控制的直流调速系统往往以调压调速为主,必要时把调压调速直流电动机电枢绕组中的电流与定子主磁通相互作用,产生电磁力和电磁转矩,电枢因而转动。直流电动机电磁转矩中的常方便地分别调节,这种机理使直流电动机具有良好的转矩控制特性,从而有优良的转速调节性能。调节主磁通一般还是通过调节速,还是调磁调速,都需要可调的直流电源。 8.1.3 调速系统性能指标 任何一台需要转速控制的设备,其生产工艺对控制性能都有一定的要求。例如,精密机床要求加工精度达到几十微米至几的围调速,最高和最低相差近300倍;容量几千kW的初轧机轧辊电动机在不到1秒的时间就得完成从正转到反转的过程;高速造速误差小于0.01%。所有这些要求,都可以转化成运动控制系统的稳态和动态指标,作为设计系统时的依据。 转速控制要求 各种生产机械对调速系统提出了不同的转速控制要求,归纳起来有以下三个方面: (1)调速。在一定的最高转速和最低转速围,分档(有级)地或者平滑(无级)地调节转速。 (2)稳速。以一定的精度在所需转速上稳定地运行,不因各种可能的外来干扰(如负载变化、电网电压波动等)而产生(3)加、减速控制。对频繁起、制动的设备要求尽快地加、减速,缩短起、制动时间,以提高生产率;对不宜经受剧烈速量平稳。 以上三个方面有时都须具备,有时只要求其中一项或两项,其中有些方面之间可能还是相互矛盾的。为了定量地分析问题个调速系统的性能。 稳态指标 运动控制系统稳定运行时的性能指标称为稳态指标,又称静态指标。例如,调速系统稳态运行时调速围和静差率,位置随控制系统的稳态力误差等等。下面我们具体分析调速系统的稳态指标。 (1)调速围D 生产机械要求电动机能达到的最高转速nmax和最低转速nmin之比称为调速围,用字母D表示,即

PWM直流调速系统设计解析

目录 前言 (1) 一、设计目的 (2) 二、设计要求 (2) 三、直流调速系统整体设计 (2) 四、系统参数选取 (7) 五、各部分设计 (8) 六、双闭环系统设计 (14) 七、系统仿真 (17) 八、设计总结 (18) 参考文献 (19)

前言 由于直流电机具有良好的起动、制动和调速性能,已广泛应用于工业、航天领域等各个方面。随着电力电子技术的发展,脉宽调制(PWM)调速技术已成为直流电机常用的调速方法,具有调速精度高、响应速度快、调速范围宽和功耗低等特点。而以H桥电路作为驱动器的功率驱动电路,可方便地实现直流电机的四象限运行,包括正转、正转制动、反转、反转制动,已广泛应用于现代直流电机伺服系统中。本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用SIMULINK对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,本文设计了一套实验用双闭环直流调速系统,详细介绍了系统主电路、反馈电路、触发电路及控制电路的具体实现。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。

一、设计目的 通过对一个实用控制系统的设计,综合运用科学理论知识,提高工程意识和实践技能,使学生获得控制技术工程的基本训练,培养学生理论联系实际、分析解决实际问题的初步应用能力。 二、设计要求 完成所选题目的分析与设计,进行系统总体方案的设计、论证和选择;系统单元主电路和控制电路的设计、元器件的选择和参数计算 三、直流调速系统整体设计 1、直流电机PWM调速控制原理 直流电动机转速公式为: n=(U-IR)/Kφ 其中U为电枢端电压,I为电枢电流,R为电枢电路总电阻,φ为每极磁通量,K为电动机结构参数。 直流电机转速控制可分为励磁控制法与电枢电压控制法。励磁控制法用得很少,大多数应用场合都使用电枢电压控制法。随着电力电子技术的进步,改变电枢电压可通过多种途径实现,其中脉冲宽度调制(PWM)便是常用的改变电枢电压的一种调速方法。其方法是通过改变电机电枢电压接通时间与通电周期的比值(即占空比)来调整直流电机的电枢电压U,从而控制电机速度。 PWM的核心部件是电压-脉宽变换器,其作用是根据控制指令信号对脉冲宽度进行调制,以便用宽度随指令变化的脉冲信号去控制大功率晶体管的导通时间,实现对电枢绕组两端电压的控制。在本次课程设计采用双闭环直流调速系统进行调速控制。 2、双闭环直流调速系统 A.双闭环调速系统的工作过程和原理:电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电

直流调速系统设计

直流调速系统设计 电气工程学院)摘要: 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。常用的电机调速系统有转速闭环控制系统和电流闭环控制系统,二者都可以在一定程度上克服开环系统造成的电动机静差率,但是不够理想。实际设计中常采用转速、电流双闭环控制系统,一般使电流环(ACR)作为控制系统的内环,转速环(ASR)作为控制系统的外环,以此来提高系统的动态和静态性能。本文是按照工程设计的方法来设计转速和电流调节器的。使电动机满足所要求的静态和动态性能指标。电流环应以跟随性能为主,即应选用典型Ⅰ型系统,而转速环以抗扰性能为主,即应选用典型Ⅱ型系统为主。关键词:直流双闭环调速系统电流调节器转速调节器1 设计任务及要求1、1设计任务设计V-M双闭环直流可逆调速系统1、1、1技术数据:?直流电动机:额定电枢电压=400V,额定功率1、 9kW,额定电枢电流=6、9A,额定转速=855r/min,电动机电动势系数Ce=0、1925Vmin/r,允许过载倍数λ=1、5;?晶闸管装置放大系数:Ks=40;整流装置平均滞后时间常数=0、00167s,? 电枢回路总电阻:R=

11、67Ω;?电枢回路电感110mH,电力拖动系统机电时间常数Tm=0、075s;?电枢电流反馈系数:β=0、121V/A (≈10V/1、5),电流滤波时间常数=0、002s;?转速反馈系数α=0、01 V、min/r(≈10V/);转速滤波时间常数=0、01s;1、2设计要求:(1) 根据试凑法设计电流调节器和转速调节器参数进行仿真,电流超调量≤5%;实现转速无静差,空载起动到额定转速时的转速超调量≤5%;(2) 试利用Matlab仿真软件中的Simulink或Simulink中的Power system模块进行仿真,在Matlab仿真软件中构建仿真模型;(3) 用Plot函数绘制理想空载启动到设定转速500r/min下电机启动过程,转速达到设定值后经过20s给定反向信号=-10V时正反转启动过程中转速、电枢电流波形。(4) 对仿真波形及结果进行分析。2 V-M双闭环调速系统的设计改变电枢两端的电压能使电动机改变转向。尽管电枢反接需要较大容量的晶闸管装置,但是它反向过程快,由于晶闸管的单向导电性,需要可逆运行时经常采用两组晶闸管可控整流装置反并联的可逆线路,电动机正转时,由正组晶闸管装置VF供电;反转时,由反组晶闸管装置VR供电。如图1所示两组晶闸管分别由两套触发装置控制,可以做到互不干扰,都能灵活地控制电动机的可逆运行,所以本设计采用两组晶闸管反并联的方式。并且采用三相

直流调速

一、什么是直流调速器? 直流调速器就是调节直流电动机速度的设备, 由于直流电动机具有低转速大力矩的特点,是交流电动机无法取代的, 因此调节直流电动机速度的设备—直流调速器,具有广阔的应用天地。 二、什么场合下要选择使用直流调速器? 下列场合需要使用直流调速器: 1.需要较宽的调速范围。 2. 需要较快的动态响应过程。 3. 加、减速时需要自动平滑的过渡过程。 4. 需要低速运转时力矩大。 5. 需要较好的挖土机特性,能将过载电流自动限止在设定电流上。 以上五点也是直流调速器的应用特点。 三、直流调速器应用: 直流调速器在数控机床、造纸印刷、纺织印染、光缆线缆设备、包装机械、电工机械、食品加工机械、橡胶机械、生物设备、印制电路板设备、实验设备、焊接切割、轻工机械、物流输送设备、机车车辆、医设备、通讯设备、雷达设备、卫星地面接受系统等行业广泛应用。 四、直流调速器工作原理简单介绍:

直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 五、直流电机的调速方案一般有下列3种方式: 1、改变电枢电压; 2、改变激磁绕组电压; 3、改变电枢回路电阻。 最常用的是调压调速系统,即1(改变电枢电压). 六、一种模块式直流电机调速器,集电源、控制、驱动电路于一体, 采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID 适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。 如何将交流电转换成直流电? 需要以下步骤: 1整流--即把交流调整成直流,换句话就是使交流的正玄波调整到的X轴上方。但是现在还只是脉冲的。主要元件是二极管。整流方式: 全波整流(桥式整流,

直流调速系统知识点

142.斩波器调速系统 143.生产机械对调速装置的要求 144.调速范围 145.静差率 146有转速负反馈闭环直流调速系统的组成147.转速反馈 148.转速微分负反馈 149.转速反馈系数 150.电流反馈系数 151.直流电动机静态模型 152.无静差系统 153.有静差系统 154.静特性 155.静特性方程 156.静特性曲线 157.转速降落 158.最大转速 159.额定转速 160.理想空载转速 161.开环放大倍数 162.闭环放大倍数 163.数字调节器 164.可控直流电源静态放大倍数和静态模型164.直流电动机调速原理 166.G-M调速系统 167.有转速反馈直流调速系统静特性 168.有转速反馈直流调速系统静态结构图 169.开环调速系统与闭环调速系统的不同 170.转速负反馈闭环系统静态参试计算 171.晶闸管装置供电转速负反馈单闭环系统的调试

172.电流截止负反馈 173.电流截止负反馈环节 174.电流截止负反馈系统的静态结构图175.带电流截止负反馈闭环系统的静特性176.电流截止环节参数的计算 177.电压负反馈 178.电压负反馈环节 179.电压负反馈闭环系统的静态结构图180.电压负反馈系统的静特性 181.电压负反馈系统静参数计算 182.电流补偿控制 183.电流补偿控制的作用 184.电流补偿控制与转速反馈控制的不同185.前向通道 186.前向通道放大倍数 187.检测反馈元件 188.滤波元件 189.反馈通道 190.反馈通道放大倍数 191.开环前馈补偿 192.给定信号 193.给定元件 194.转速给定信号 195.电流给定信号 196.数字斜波给定 197.扰动信号 198.负载扰动 199.电源电压扰动 200.不可预见扰动 201.跟随性能

电动机调速方法

一、直流电动机调速 直流电动机是指将直流电送到直流,把直流电动机的电能转换成机械能。这里首先要介绍如何将市电的交流电转换成需要的直流电。六十年代以前采用的是发电机--电动机系统(F-D),这种方法只有在由专用的发电机供电时才有可能。 另一种是可控硅--电动机系统(SCR-D)。 直流电动机的调速还比较方便,可以通过调节电枢供电电压,电枢中串联电阻,激磁回路串联电阻来实现。 可见直流电动机调速有三种方法,而且调节电枢供电电压的方法容易实现平滑、无级、宽范围、低损耗的要求。尽管直流电动机调速就其性能而言,可以相当满意,但因其结构夏杂,惯量大,维护麻烦,不适宜在恶劣环境中运行,不易实现大容量化、高压化、高速化,而且价格昂贵。 二、交流电动机调速 交流电动机刚好相反。电动机结构简单、惯量小、维护方便,可在恶劣环境中运行,容易实现大容量化,高压化、高速化,而且价格低廉。 从节能的角度看,交流电动机的调速装置可以分为高效调速装置和低效调速装置两大类。高效调速装置的特点是:调速时基本保持额定转差,不增加转差损耗,或可以将转差动率回馈至电网。低效调速装置的特点是:调速时改变转差,增加转差损耗。 (一)具体的交流调速装置有: 高效调速方法包括: 改变极对数调速——鼠笼式电机 变频调速——鼠笼式电机 串级调速——绕线式电机 换向器电机调速——同步电机 低效调速方法包括: 定子调压调速——鼠笼式电机 电磁滑差离合器调速——鼠笼式电机 转子串电阻调速——绕线式电机 (二)各种调速装置的特点: (1)改变极对数调速 优点: ①无附加转差损耗,效率高; ②控制电路简单,易维修,价格低; ③与定子调压或电磁转差离合器配合可得到效率较高的平滑调速。转自电气自动化技术网 缺点: 有级调速,不能实现无级平滑的调速。且由于受到电机结构和制造工艺的限制,通常只能实现2~3种极对数的有级调速,调速范围相当有限。 (2)变频调速 优点: ①无附加转差损耗,效率高,调速范围宽; ②对于低负载运行时间较长,或起、停较频繁的场合,可以达到节电和保护电机的目的。 缺点:技术较复杂,价格较高。 (3)换向器电机调速 优点:

转速﹑电流双闭环直流调速系统

双闭环控制的直流调速系统简介 1.1V—M系统简介 晶闸管—电动机调速系统(简称V—M系统),其简单原理图如图1。图中VT是晶闸管的可控整流器,它可以是单相、三相或更多相数,半波、全波、半控、全控等类型。 优点:通过调节触发装置GT的控制电压来移动触发脉冲的相位,即可改变整流电压从而实现平滑调速。 缺点: 1.由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。 2.元件对过电压、过电流以及过高的du/dt和di/dt都十分敏感,其中任一指标超过允许值都可能在很短时间内损坏元件。 因此必须有可靠的保护装置和符合要求的散热条件,而且在选择元件时还应有足够的余量。 图1 V—M系统 1.2转速控制的要求和调速指标 任何一台需要控制转速的设备,其生产工艺对调速性能都有一定的要求。归纳起来,对于调速系统的转速控制要求有以下三个方面: 1)调速——在一定的最高转速和最低转速范围内,分档地(有级)或平滑地(无级)调节转速; 2)稳速——以一定的精度在所需转速上稳定运行,在各种干扰下不允许有过大的转速波动,以确保产品质量; 3)加、减速——频繁起、制动的设备要求加、减速尽量快,以提高生产率;不宜经受剧烈速度变化的机械则要求起﹑制动尽量平稳。

1.3 直流调速系统的性能指标 根据各类典型生产机械对调速系统提出的要求,一般可以概括为静态和动态调速指标。静态调速指标要求电力传动自动控制系统能在最高转速和最低转速范围内调节转速,并且要求在不同转速下工作时,速度稳定;动态调速指标要求系统启动、制动快而平稳,并且具有良好的抗扰动能力。抗扰动性是指系统稳定在 某一转速上运行时,应尽量不受负载变化以及电源电压波动等因素的影响[1,6]。 一、静态性能指标 1).调速范围 生产机械要求电动机在额定负载运行时,提供的最高转速m ax n 与最低转速m in n 之比,称为调速范围,用符号D 表示 m in m ax n n D = (2—2) 2).静差率 静差率是用来表示负载转矩变化时,转速变化的程度,用系数s 来表示。具体是指电动机稳定工作时,在一条机械特性线上,电动机的负载由理想空载增加到额定值时,对应的转速降落 ed n ?与理想空载转速 n 之比,用百分数表示为 %100%1000 00?-=??= n n n n n s ed ed (2—3) 显然,机械特性硬度越大,机械特性硬度越大,ed n ?越小,静差率就越小,转速 的稳定度就越高。 然而静差率和机械特性硬度又是有区别的。两条相互平行的直线性机械特性的静差率是不同的。对于图2—1中的线1和线2,它们有相同的转速降落1ed n ?=2 ed n ?, 但由于 01 02n n <,因此12s s >。这表明平行机械特性低速时静差率较大,转速的相对 稳定性就越差。在1000r/min 时降落10r/min ,只占1%;在100r/min 时也降落10r/min ,就占10%;如果 n 只有10r/min ,再降落10r/min 时,电动机就停止转动,转速全都 降落完了。 由图2—1可见,对一个调速系统来说,如果能满足最低转速运行的静差率s ,那么,其它转速的静差率也必然都能满足。

直流调速系统的发展状况

直流调速系统的发展状况 宋畅 s2******* 摘要 直流调速系统目前已被广泛应用于自动控制要求较高的产品之中,直流调速系统相应速度快,超调量小,系统稳定性好,并具有很强的抗干扰性。简单介绍直流调速的基本原理详细回顾直流调速的发展过程。 关键词 直流调速系统 发展状况 在现代化的工业生产过程中,几乎无处不使用电力传动装置,生产工艺、产品质量的要求不断提高和产量的增长,使得越来越多的生产机械要求能实现自动调速。对可调速的传动系统,可分为直流调速和交流调速。直流电动机具有优良的调速特性,调速平滑、方便,易于在大范围内平滑调速,过载能力大,能承受频繁的冲击负载,可实现频繁地无级快速启动与制动和反转,能满足生产过程自动化系统中各种不同的特殊运行要求,至今在金属切削机床、造纸机等需要高性能可控电力拖动的领域仍有广泛的应用,到目前为止是调速系统的主要形式。 1. 直流调速系统简介 最初的直流调速系统是采用恒定的直流电压向流电动机电枢供电,通过改变电枢回路中的电阻实现调速。这种方法简单易行,设备制造方便,价格低廉。但缺点是效率低、机械特性软、不能在较宽围内平滑调速,所以目前极少采用。30年代末,出现了发电机一电动机(也称为旋转变流组),配合采用磁放大器、电机扩大机、闸流管等控制器件,可获得优良的调速性能。如有较宽的调速范围(十比一至数十比一)、较小的转速变化率和调速平滑等,特别是当电动机减速时,可以通过发电机非常容易地将电动机轴的飞轮惯量反馈给电网,这样,一方面可得到平滑的制动特性;另一方面又可减少能量的损耗,提高效率。但发电机一电动机调速系统的主要缺点是需要增加两台与调速电动机相当的旋转电机和一些辅助励磁设备,因而体积大、费用高、效率低、安装需有地基、运行有噪声、维修困难等【1】。 20世纪70年代,由于采用电力电子变换器的高效交流变频调速开发成功,结构简单、成本低廉,工作可靠、维护方便、效率高的交流笼型电机进入了可调速领域,从而直流调速被交流调速所替代[4]。 2.直流调速系统原理 直流电动机具有良好的起、制动性能,易于在大范围平滑调速,在金属切削机床、轧钢机、矿井卷扬机、海洋钻机、高层电梯等需要高性能电力拖动中得到了广泛应用[3]。 直流电机的转速表达式: U IR n K Φ-= (1) 式中,U 为直流电动机电枢两端的电压,I 通过电枢的电流,R 式电枢回路的电阻,Φ为励磁磁通,K e 是励磁常数。 2、直流调速的发展过程 下文述及的是当今正在使用和不断发展的直流电机的主流调速方法—晶闸管电动机调速系统。 2.1开环晶闸管电动机系统 原理如图1所示。速度指令电位器发出的指令,经过脉冲触发生成电路产生晶闸管整流器的调相信号,改变直流电机电枢端电压,达到调节电机速度的目的。优点是结构简单,缺点是不能同时满足调速范围和静差率的要求,机械特性软,调速范围窄。应用于静差率要求不高的无级调速场合。

VM直流调速系统课设

目录 (2) ................................................ .2 内容................................................. .2 要求................................................. .2 .. (3) (3) (3) (4) (4) (4) (5)

一、课程设计要求 1.设计参数 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=Ω,主电路总电阻R =Ω,Ks=,电磁时间常数TL=,机电时间常数Tm=,滤波时间常数Ton=Toi=, 过载倍数λ=,电流给定最大值 8V U im =*,速度给定最大值 10V U n =* 2.设计内容 1)根据题目的技术要求,分析论证并确定主电路的结构形式和闭环调速系统的组成,画出系统组成的原理框图。 2) 调速系统主电路元部件的确定及其参数计算。 3)驱动控制电路的选型设计。 4)动态设计计算:根据技术要求,对系统进行动态校正,确定ASR 调节器与ACR 调节器的结构形式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。 5) 绘制V —M 双闭环直流不可逆调速系统电器原理图,并研究参数变化时对直流电动机动态性能的影响。 3.设计要求: 1)该调速系统能进行平滑地速度调节,负载电机不可逆运行,具有较宽地转速调速范围(10D ≥),系统在工作范围内能稳定工作。 2)系统静特性良好,无静差(静差率2S ≤)。

直流调速系统复习题库

一、填空题 1.双闭环的调速系统的特点是:利用(ASR 的饱和非线性)实现了(“准时间最优”)控制,同时带来了(转速超调)。 2.在设计双闭环系统的调节器时,先设计(内环的ACR ),然后设计(外环的ASR )。 3.在双闭环调速系统中,电流调节器主要是对(电网电压波动)起调解作用;而转速调节器主要是对(负载扰动)起抗扰调节作用。 4.变电压调速是直流调速系统用的主要方法,调节电枢电压常用的三种可控制电源分别为(旋转变流机组)、(静止可控整流器)及(脉宽调制器和直流斩波变换器)。 5.直流电动机的调速方法有三种,即为(改变电枢电压调速)、(弱磁调速)和(电枢回路串电阻)调速。 6.直流调速系统的静态技术指标有(调速范围D )和(静差率S ),它们的表达式分别为(max min n D n =)和(min cl o n s n ?=),它们之间的关系式为((1)nom nom n s D s n =-?)。 7.脉中宽度调制简称(PWM),它是通过功率管开关作用,将(恒定直流电压)转换成频率一定,宽度可调的(方波脉冲电压),通过调节(脉冲电压的宽度),改变输出电压的平均值的一种变换技术。 8.调速控制系统是通过对(电动机)的控制,将(电能)转换成(机械能),并且控制工作机械按(给定)的运动规律运行的装置。 9.用(直流电动机)作为原动机的传动方式称为直流调速,用(交流电动机)作为原动机的传动方式称为交流调速。 10.电气控制系统的调速性能指标可概括为(静态)和(动态)调速指标。 11.在电动机微机控制系统中,电动机是(被控对象),微型计算机则起(控制器)的作用。 12.总的来说,在电动机微机控制系统中,计算机主要完成(实时控制)、(监控)和(数据处理)等工作。 13.模拟信号到数字信号转换包括(采样)和(量化)两个过程。 14.PID 控制中P 、I 、D 的含义分别是(比例)、(积分) 和( 微分)。 15.脉冲式传感器检测转速的方法有(M 法测速)、(T 法测速)和(M/T 法测速)。 16.从系列数据中求取真值的软件算法,通常称为(数字滤波算法)。 17.与模拟控制系统相比,微机数字控制系统的主要特点是(离散化)和(数字化)。 18.数字控制直流调速系统的组成方式大致可分为三种:1. 数模混合控制系统 2. 数字 电路控制系统3. 计算机控制系统 19.常规PID 控制算法中可分为(位置式PID 算法)和(增量式PID 算法) 。 20.微机数字控制双闭环直流调速系统硬件结构主要包括以下部分:(主电路)、(检测电 路)、(控制电路)、(给定电路)和(显示电路)。 二、判断题

安萨尔多直流调速装置调整方法

1111111111111111111111111 Ansaldo 直流传动调试步骤调试步骤一、检查接线 1.1 主电源线、电机电枢线是否牢固。用手轻拉,扭动接线端,接线端子不掉下来 或转动为好。 1.2 控制电源电压是否为 380V。用万用表分别测量三相中的两相线电压,是否为 380V(最高不超过 400V),是否缺相。 1.3 控制端子接线不能超过 24V。用万用表测量控制电源是否对地 24V,注意正负极别接反。 1.4 主电源与控制电源相位是否一致。用万用表交流电压档,测量主电源与控制电源的 U,V,W 相的相序是否一致。 1.5 所有接线是否对地短路。三相交流进线之间,直流母线之间,电机电枢、励磁线圈与电机外壳之间是否短路。二、记录电机参数 调试前,要记录以下参数:电机额定电枢电压、额定电枢电流、额定励磁电流、电机转速(基速及最高速)、测速机速度及反馈电压、光电编码器的每转脉冲数和电源电压。三、检查跳线 3.1 C 控制板上跳线检查(详见说明书 C3-20 页) C3主要查看 C 板上的跳线设置,是否与当前的应用环境相一致,共 50 个跳线详见说明书仔细核对。重点检查 JP8-9-10-11-12,JP15-16-17,JP25。 3.2 内置磁场控制板跳线检查(详见说明书 C3-7 页) C3按励磁电流量程调整电流互感器附近的四个支架上的封线。调整跳线 JP2 选择励磁电流反馈信号量程。调整跳线 JP1 选择励磁电流给定源。选择位置 B 为给定来自 C 板控制信号。四、接通控制电源 4.1 接通控制电源前, 应保持控制端子中 XM1-13,14,15,16,17,18,19,20,21 未接通+24V,主电源和励磁电源保持断开。 4.2 接通后, 操作器七段 LED 显示器显示为 P.1,C 控制板上绿色信号指示灯 DL3 亮,表示控制电源正常,操作器数码管显示 P.1,液晶屏显示 PROTECTION Ext_P。 五、操作器使用说明 5.1 按键说明▼键或▲键:上下选择菜单或增大减小参数值。 键:返回上一组菜单。 1 键:进入下一组菜单或修改参数。 5.2 密码进入 CONF.PARAMETERS(配置参数)/TUN. PARAMETERS(调试参数)/DRV. PARAMETERS(装置参数)三个菜单需先键入密码,才可以修改参数。具体方法如下: 先选定其中一组菜单,按键,操作器显示 Password 0, 按▼键或▲键将 0 改为 12,即可修改该组参数。六、恢复默认值 6.1 所有参数恢复默认值(详见说明书 B1-6 页参数 CDF)要使所有参数恢复默认值,首先短封JP19,然后将参数CDF设为ON,复位变流器。此时变流器进入 T-5状态,控制板上的七段LED显示变流器处于测试状态,当控制板上的LED熄灭而操作器上的LED闪亮时,再次复位变流器,则装置进入T-4 状态,这时将参数DA1设为出厂编号(名牌数据),第三次复位变流器,装置即可进行重新设置。 6.2 新装置可省略此步 七、预置参数 7.1 预置参数 DA1 设备编号,见标牌第 2 行 DA2 选择变流器工作方式,Unid-不可逆,Rev-可逆 DA3 变流器容量,对应电流值 DM2 Ifo 励磁电流给定 DM8 设置为 0 CA1 来自速度调节器

直流电动机调速系统设计

课程设计任务书 学生:专业班级: 指导教师:工作单位: 题目: 直流电动机调速系统设计 初始条件: 采用MC787组成触发系统,对三相全控桥式整流电路进行触发,通过改变直流电动机电压来调节转速。 要求完成的主要任务: (1)设计出三相全控桥式整流电路拓扑结构; (2)设计出触发系统和功率放大电路; (3)采用开环控制、转速单闭环控制、转速外环+电流环控制。 (4) 器件选择:晶闸管选择、晶闸管串联、并联参数选择、平波和均衡电抗 器选择、晶闸管保护设计 参考文献: [1] 周渊深.《电力电子技术与MATLAB仿真》.:中国电力,2005:41-49、 105-114 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安

指导教师签名:年月日 系主任(或责任教师)签名:年月日 目录 1概述 (1) 2转速、电流双闭环直流调速系统的组成及其静特性 (1) 2.1转速、电流双闭环直流调速系统的组成 (1) 2.2 稳态结构框图和静特性 (2) 3双闭环直流调速系统的数学模型与动态过程分析 (3) 3.1双闭环直流调速系统的动态数学模型 (3) 3.2双闭环直流调速系统的动态过程分析 (4) 4转速电流双闭环直流调速系统调节器的工程设计 (6) 4.1转速和电流两个调节器的作用 (6) 4.2调节器的工程设计方法 (6) 4.2.1设计的基本思路 (7) 4.3 触发电路及晶闸管整流保护电路设计 (7) 4.3.1触发电路 (7) 4.3.2整流保护电路 (8) 4.3.2.1 过电压保护和du/dt限制 (8) 4.3.2.2 过电流保护和di/dt限制 (9) 4.4 器件选择与计算 (9) 5心得体会 (14)

基于Matlab的直流调速系统

基于Matlab的直流调速系统

————————————————————————————————作者:————————————————————————————————日期: ?

1绪论 1.1单闭环直流调速系统概述 从生产机械要求控制的物理量来看,电力拖动自动控制系统有调速系统、位置随动系统、张力控制系统等多种类型,而各种系统往往都是通过控制转速来实现的,因此调速系统是最基本的拖动控制系统。相比于交流调速系统,直流调速系统在理论上和实践上都比较成熟。 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代发展起来的电力电子技术,使电能可以变换和控制,产生了现代各种高效、节能的新型电源和交直流调速装置,为工业生产,交通运输,楼宇、办公、家庭自动化提供了现代化的高新技术,提高了生产效率和人们的生活质量,使人类社会生产、生活发生了巨大的变化。随着新型电力电子器件的研究和开发以及先进控制技术的发展,电力电子和电力拖动控制装置的性能也不断优化和提高,这种变化的影响将越来越大。 1.2 MATLAB简介 在1980年前后,美国的Cleve博士在New Mexico大学讲授线性代数课程时,发现应用其它高级语言编程极为不便,便构思并开发了Matlab(MATrix LABoratory,即矩阵实验室),它是集命令翻译,科学计算于一身的一套交互式软件系统,经过在该大学进行了几年的试用之后,于1984年推出了该软件的正式版本,矩阵的运算变得异常容易。 MATLABSGI由美国MathWorks公司开发的大型软件。在MATLAB软件中,包括了两大部分:数学计算和工程仿真。其数学计算部分提供了强大的矩阵处理和绘图功能。在工程仿真方面,MATLAB提供的软件支持几乎遍布各个工程领域。通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较开环系统和闭环系统的差别,得出直流电机调速系统的最优模型。然后用此理论去设计一个实际的调速系统,并用MATLAB仿真进行正确性的验证。

交流与直流电机-调速方法-分类-原理-优缺点-应用

交流与直流电机调速方法分类原理优缺点应用 三相交流电机调速有哪些方法 1 变极调速.2变频调速.3变转差率调速... 三相交流电机有很多种。 1.普通三相鼠笼式。这种电机只能通过变频器改变电源频率和电压调速(F/U)。 2.三相绕线式电机,可以通过改变串接在转子线圈上的电阻改变电机的机械特性达到调速的目的。这种方式常用在吊车上。长时间工作大功率的绕线式电机调速不用电阻串接,因为电阻会消耗大量的电能。通常是串可控硅,通过控制可控硅的导通角控制电流。相当于改变回路中的电阻达到同上效果。转子的电能经可控硅组整流后,再逆变送回电网。这种方式称为串级调速。配上好的调速控制柜,据说可以和直流电机调速相比美。 3.多极电机。这种电机有一组或多组绕组。通过改变接在接线合中的绕组引线接法,改变电机极数调速。最常见的4/2极电机用(角/双Y)接。 4.三相整流子电机。这是一种很老式的调速电机,现在很用了。这种电机结构复杂,它的转子和直流电机转子差不多,也有换向器,和电刷。通过机械机构改变电刷相对位置,改变转子组绕组的电动势改变电流而调速。这种电机用的是三相流电,但是,严格上来说,其实它是直流机。原理是有点象串砺直流机。 5.滑差调速器。这种方式其实不是改变电机转速。而是改变和是电机轴相连的滑差离合器的离合度,改变离合器输出轴的转速来调速的。还有如,硅油离合器,

磁粉离合器,等等,一此离合机械装置和三相电机配套,用来调速的方式。严格上来说不算是三相电机的调还方式。但是很多教材常常把它们算作调速方式和一种。 直流电机的调速方法 一是调节电枢电压,二是调节励磁电流, 而常见的微型直流电机,其磁场都是固定的,不可调的永磁体, 所以只好调节电枢电压,要说有那几种调节电枢电压方法, 常用的一是可控硅调压法,再就是脉宽调制法(PWM)。 PWM的H型属于调压调速。PWM的H桥只能实现大功率调速。国内的超大功率调速还要依靠可控硅实现可控整流来实现直流电机的调压调速。 还有弱磁调速,通过适当减弱励磁磁场的办法也可以调速。 直流电机与交流电机比较 最大的优点就是直流电机可以实现“平滑而经济的调速”;直流电机的调速不需要其它设备的配合,可通过改变输入的电压/电流,或者励磁电压/电流来调速。交流永磁同步的调速是靠改变频率来实现的,需要变频器。 直流电机虽不需要其它的设备来帮助调速,但自身的结构复杂,制造成本高;在大功率可控晶闸管大批量使用之前,直流电动机用于大多的调速场合。在大功率可控晶闸管工业生产化后,交流电动机的调速变得更简单了,交流电动机的制造成本低廉,使用寿命长等优点就表现出来。

基于Matlab的直流调速系统

1绪论 1.1单闭环直流调速系统概述 从生产机械要求控制的物理量来看,电力拖动自动控制系统有调速系统、位置随动系统、张力控制系统等多种类型,而各种系统往往都是通过控制转速来实现的,因此调速系统是最基本的拖动控制系统。相比于交流调速系统,直流调速系统在理论上和实践上都比较成熟。 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代发展起来的电力电子技术,使电能可以变换和控制,产生了现代各种高效、节能的新型电源和交直流调速装置,为工业生产,交通运输,楼宇、办公、家庭自动化提供了现代化的高新技术,提高了生产效率和人们的生活质量,使人类社会生产、生活发生了巨大的变化。随着新型电力电子器件的研究和开发以及先进控制技术的发展,电力电子和电力拖动控制装置的性能也不断优化和提高,这种变化的影响将越来越大。 1.2 MATLAB简介 在1980年前后,美国的Cleve博士在New Mexico大学讲授线性代数课程时,发现应用其它高级语言编程极为不便,便构思并开发了Matlab(MATrix LABoratory,即矩阵实验室),它是集命令翻译,科学计算于一身的一套交互式软件系统,经过在该大学进行了几年的试用之后,于1984年推出了该软件的正式版本,矩阵的运算变得异常容易。 MATLABSGI由美国MathWorks公司开发的大型软件。在MATLAB软件中,包括了两大部分:数学计算和工程仿真。其数学计算部分提供了强大的矩阵处理和绘图功能。在工程仿真方面,MATLAB提供的软件支持几乎遍布各个工程领域。通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较开环系统和闭环系统的差别,得出直流电机调速系统的最优模型。然后用此理论去设计一个实际的调速系统,并用MATLAB仿真进行正确性的验证。

直流调速系统的设计全解

直流调速系统的设计 摘要:本设计从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,而且详细分析了系统的原理及其静态和动态性能。利用MATLAB对系统进行了各种参数给定下的仿真,之后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,通过仿真获得了参数整定的依据。 速度和电流双闭环直流调速系统具有良好的性能,最广泛使用的直流马达,转速,电流双闭环直流调速系统的静态和动态的速度商品的特定质量调节特性。速度和电流双闭环直流调速系统的控制律,性能特点以及交流和直流电源驱动的自动化控制系统的设计方法品种的重要基础。首先,应该有速度和电流双闭环直流调速系统的基本组成部分及其静态特性;然后,在动态模型的系统从一开始免疫的基础上,建立和它的性能和速度的两个方面与目前的两个监管机构的作用,三是工程设计方法的基本调节,古典控制理论,动态校正方法,推导出了设计方法,即计算简单的优点,方便,易于掌握;第四,应用工程解决方案,以两环速度控制两个监管系统的设计,等等。 关键词:直流调速动态模型MATLAB Abstract: This design from the working principle of DC motor with established the mathematical model of the double closed loop DC speed control system, and the system principle and the static and dynamic performance in detail. Using MATLAB to simulate system under various parameters of a given. After according to automatic control theory, the design parameters of double closed loop speed regulation system were analysis and calculation, is obtained through the simulation of the parameter tuning of the basis. Speed and current double closed loop DC speed control system has good performance and is the most widely used of the DC motor, speed, current double closed loop DC speed control system of static and dynamic speed commodity specific quality regulation characteristics. The control law for the speed and current double closed loop DC speed control system, performance and characteristic of AC and DC power driven automation control system design method of varieties. First of all, it should be a basic part of the speed and current double closed loop DC speed control

直流调速系统

一直流调速系统 方案一:串电阻调速系统。 方案二:静止可控整流器。简称V-M系统。 方案三:脉宽调速系统。 旋转变流系统由交流发电机拖动直流电动机实现变流,由发电机给需要调速的直流电动机供电,调节发电机的励磁电流即可改变其输出电压,从而调节电动机的转速。改变励磁电流的方向则输出电压的极性和电动机的转向都随着改变,所以G-M系统的可逆运行是很容易实现的。该系统需要旋转变流机组,至少包含两台与调速电动机容量相当的旋转电机,还要一台励磁发电机,设备多、体积大、费用高、效率低、维护不方便等缺点。且技术落后,因此搁置不用。 V-M系统是当今直流调速系统的主要形式。它可以是单相、三相或更多相数,半波、全波、半控、全控等类型,可实现平滑调速。V-M系统的缺点是晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。它的另一个缺点是运行条件要求高,维护运行麻烦。最后,当系统处于低速运行时,系统的功率因数很低,并产生较大的谐波电流危害附近的用电设备。 采用晶闸管的直流斩波器基本原理与整流电路不同的是,在这里晶闸管不受相位控制,而是工作在开关状态。当晶闸管被触发导通时,电源电压加到电动机上,当晶闸管关断时,直流电源与电动机断开,电动机经二极管续流,两端电压接近于零。脉冲宽度调制(Pulse Width Modulation),简称PWM。脉冲周期不变,只改变晶闸管的导通时间,即通过改变脉冲宽度来进行直流调速。 与V-M系统相比,PWM调速系统有下列优点: (1)由于PWM调速系统的开关频率较高,仅靠电枢电感的滤波作用就可以获得脉动很小的直流电流,电枢电流容易连续,系统的低速运行平稳,调速范围较宽,可达1:10000左右。由于电流波形比V-M系统好,在相同的平均电流下,电动机的损耗和发热都比较小。 (2)同样由于开关频率高,若与快速响应的电机相配合,系统可以获得很宽的频带,因此快速响应性能好,动态抗扰能力强。 (3)由于电力电子器件只工作在开关状态,主电路损耗较小,装置效率较高。 根据以上综合比较,以及本设计中受控电机的容量和直流电机调速的发展方向,本设计采用了H型单极型可逆PWM变换器进行调速。 脉宽调速系统的主电路采用脉宽调制式变换器,简称PWM变换器。 脉宽调速也可通过单片机控制继电器的闭合来实现,但是驱动能力有限。为顺利实现电动小汽车的前行与倒车,本设计采用了可逆PWM变换器。可逆PWM

相关主题
文本预览
相关文档 最新文档