当前位置:文档之家› 数字存储示波器的使用实验报告

数字存储示波器的使用实验报告

数字存储示波器的使用实验报告篇1

示波器的使用

预习思考题

1.示波器的功能是什么?

2.扫描同步如何理解?

3.什么是李萨如图?

1.电子示波器是用来直接显示,观察和测量电压波形机器参数的电子仪器。

2.用每一个触发脉冲产生于同触发电压所对应的触发信号的同相位点,故每次扫描起点会准确地落在同相位点于是每次扫描的起始点会准确地落在同相位点,于是每次扫描出的波形完全重复而稳定地显示被测波的波形。就是触发扫描实现同步的原理。

3.当示波器在Y轴与X轴同时输入正弦信号电压且他们的频率式简单的整数比时荧光屏上出现各式各样的图形这类图形称作“李萨如图”

实验数据记录

实验仪器:

YB4320F双追踪示波器,SG1642函数信号发生器实验步骤:

1.用示波器观察信号波形

(1)调节扫描旋钮,使示波器的扫描线至长短适当的稳定水平亮线

(2)将信号发生器接到ch1或ch2输入上,频率选用数百或数千赫兹方式开关及触发源开关的位置与信号输入通道一致的出稳定的

波形。

(3)改变输入信号电压的波形,如正弦波,三角波,方波调节扫描微调,以得到2个。

(4)可以在调节其他该扫描熟悉示波器2.用李萨如图测定频率

(1)当示波器在Y轴与X轴同时输入正弦信号电压,且他们的频率式简单的整数比的的荧光屏上出现各种形式的图形,这类图形称作“李萨如图”

(2)当fg:fx=1:1时输入fg=50hz.fx=50hz,绘出一种李萨如图

(3)当fg:fx=1:2时输入fg=300hz.fx=200hz,绘出一种李萨如图。

思考题

1.示波器为接通前,有那些注意事项?

2.波形不稳定时,应调节那个旋钮?

3.为了观察李萨如图,应该怎样设置按钮?

4.欲关闭示波器,首先应把那个旋钮扭到最小?

1、确定是否接地

2、是否正确连接探头

3、查看所有的终端额定值

4、在是使用一个通道的情况下触发源选的通用一致

5、应调节水平微调使之稳定,再调节CH通道

6、首先示波器应该在XY轴输入正弦电压,且加上fg与fx上的频率成整数比

7、将示波器探头脱开测量电路,将输入选择开关,达到接地位

置,关机,如果是模拟示波器的话,需要将聚集旋钮和亮度旋钮调低,然后在关闭电源。

数字存储示波器的使用实验报告篇2

在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下示波器的原理和使用方法。

1、示波器工作原理

示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。

1.1示波管

阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。

1.荧光屏

现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,

撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。

当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。

由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。

2.电子枪及聚焦

电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。

电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次

聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。

3.偏转系统

偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。

4.示波管的电源

为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。

1.2示波器的基本组成

从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时

间的函数f(t),它随时间的变化而变化。因此,只要在示波管的X 轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。

示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X 轴系统、Z轴系统和电源等五部分组成。

被测信号①接到“Y"输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的'正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。

以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y 轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。

示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。

2、示波器使用

本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。

2.1荧光屏

荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。

2.2示波管和电源系统

1.电源(Power)

示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

2.辉度(Intensity)

旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。

一般不应太亮,以保护荧光屏。

3.聚焦(Focus)

聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

4.标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

2.3垂直偏转因数和水平偏转因数

1.垂直偏转因数选择(VOLTS/DIV)和微调

在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。

踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是

0.2V/DIV。

在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V 信号的垂直移动距离之比常被用于判断被测信号的电压值。

2.时基选择(TIME/DIV)和微调

时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在

1μS/DIV档,光点在屏上移动一格代表时间值1μS。

“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μ

S/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于2μS ×(1/10)=0.2μS。

示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz 的方波信号。

示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。

2.4输入通道和输入耦合选择

1.输入通道选择

输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双

通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10"位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。

2.输入耦合方式

输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。

2.5触发

第一节指出,被测信号从Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、

清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。

1.触发源(Source)选择

要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。

电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。

外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。

正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。

2.触发耦合(Coupling)方式选择

触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。

AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合

方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。

直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。

低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。

3.触发电平(Level)和触发极性(Slope)

触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(HoldOff)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同步。

极性开关用来选择触发信号的极性。拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。

2.6扫描方式(SweepMode)

扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。自动:当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。

常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。

单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。

上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y工作方式等,这里就不介绍了。示波器入门操作是容易的,真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些。

数字存储示波器的使用实验报告篇3

一、示波器的介绍:

示波器是一种用途十分广泛的电子测量仪器,它能把肉眼看不见的电信号变换成看得见的图像。

示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束在屏面上描绘出被测信号的瞬时值的变化曲线。

示波器显示的是信号电压随时间的变化。因此,示波器可以用来测量信号的频率,周期,信号的上升沿/下降沿,信号的过冲,信号的噪声,信号间的时序关系等等。

在示波器显示屏上,横坐标(X)代表时间,纵坐标(Y)代表电压,(注:如果示波器有测量电流的功能,纵坐标还代表电流。)还有就是比较少被关注的-亮度(Z),在TEK的DPO示波器中,亮度还表示了出现概率(它用16阶灰度来表示出现概率)。

二、示波器的基本作用:

用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测。

三、示波器的分类:

(1)按照信号的不同分类

模拟示波器采用的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上。屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。数字示波器则是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。数字示波器可以分为数字存储示波器(DSO),数字荧光示波器(DPO)和采样示波器。

模拟示波器要提高带宽,需要示波管、垂直放大和水平扫描全面推进。数字示波器要改善带宽只需要提高前端的A/D转换器的性能,对示波管和扫描电路没有特殊要求。加上数字示波管能充分利用记忆、存储和处理,以及多种触发和超前触发能力。廿世纪八十年代数字示波器异军突起,成果累累,大有全面取代模拟示波器之势,模拟示波器的确从前台退到后台。

(2)按照结构和性能不同分类

①普通示波器:电路结构简单,频带较窄,扫描线性差,仅用于观察波形。

②多用示波器:频带较宽,扫描线性好,能对直流、低频、高频、超高频信号和脉冲信号进行定量测试。借助幅度校准器和时间校准器,测量的准确度可达±5%。

③多线示波器:采用多束示波管,能在荧光屏上同时显示两个以上同频信号的波形,没有时差,时序关系准确。

④多踪示波器:具有电子开关和门控电路的结构,可在单束示波管的荧光屏上同时显示两个以上同频信号的波形。但存在时差,时序关系不准确。

⑤取样示波器。采用取样技术将高频信号转换成模拟低频信号进行显示,有效频带可达GHz级。

⑥记忆示波器:采用存储示波管或数字存储技术,将单次电信号瞬变过程、非周期现象和超低频信号长时间保留在示波管的荧光屏上或存储在电路中,以供重复测试。

⑦数字示波器:内部带有微处理器,外部装有数字显示器,有的

产品在示波管荧光屏上既可显示波形,又可显示字符。被测信号经模一数变换器(A/D变换器)送入数据存储器,通过键盘操作,可对捕获的波形参数的数据,进行加、减、乘、除、求平均值、求平方根值、求均方根值等的运算,并显示出答案数字。

四、简约介绍示波器的基本构造:

显示电路

显示电路包括示波管及其控制电路两个部分。示波管是一种特殊的电子管,是示波器一个重要组成部分。示波管由电子枪、偏转系统和荧光屏3个部分组成。

(1)电子枪

电子枪用于产生并形成高速、聚束的电子流,去轰击荧光屏使之发光。

(2)偏转系统

示波管的偏转系统大都是静电偏转式,它由两对相互垂直的平行金属板组成,分别称为水平偏转板和垂直偏转板。分别控制电子束在水平方向和垂直方向的运动。

(3)荧光屏

荧光屏位于示波管的终端,它的作用是将偏转后的电子束显示出来,以便观察。

Y轴放大电路

由于示波管的偏转灵敏度甚低,例如常用的示波管13SJ38J型,其垂直偏转灵敏度为0.86mm/V(约12V电压产生1cm的偏转量),所以一般的被测信号电压都要先经过垂直放大电路的放大,再加到示波

管的垂直偏转板上,以得到垂直方向的适当大小的图形。

X轴放大电路

由于示波管水平方向的偏转灵敏度也很低,所以接入示波管水平偏转板的电压(锯齿波电压或其它电压)也要先经过水平放大电路的放大以后,再加到示波管的水平偏转板上,以得到水平方向适当大小的图形。

扫描同步电路

扫描电路产生一个锯齿波电压。该锯齿波电压的频率能在一定的范围内连续可调。锯齿波电压的作用是使示波管阴极发出的电子束在荧光屏上形成周期性的、与时间成正比的水平位移,即形成时间基线。这样,才能把加在垂直方向的被测信号按时间的变化波形展现在荧光屏上。

电源供给电路

电源供给电路:供给垂直与水平放大电路、扫描与同步电路以及示波管与控制电路所需的负高压、灯丝电压等。

五、示波器的使用方法:

示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,在使用方法的基本方面都是相同的。本章以SR-8型双踪示波器为例介绍。

(一)面板装置SR-8型双踪示波器的面板图如图所示。其面板装置按其位置和功能通常可划分为3大部分:显示、垂直(Y轴)、水平(X轴)。现分别介绍这3个部分控制装置的作用。

1.显示部分主要控制件为:

(1)电源开关。

(2)电源指示灯。

(3)辉度调整光点亮度。

(4)聚焦调整光点或波形清晰度。

(5)辅助聚焦配合“聚焦”旋钮调节清晰度。

(6)标尺亮度调节坐标片上刻度线亮度。

(7)寻迹当按键向下按时,使偏离荧光屏的光点回到显示区域,而寻到光点位置。

(8)标准信号输出1kHz、1V方波校准信号由此引出。加到Y轴输入端,用以校准Y轴输入灵敏度和X轴扫描速度。

2.Y轴插件部分

(1)显示方式选择开关用以转换两个Y轴前置放大器YA与YB 工作状态的控制件,具有五种不同作用的显示方式:

“交替”:当显示方式开关置于“交替”时,电子开关受扫描信号控制转换,每次扫描都轮流接通YA或YB 信号。当被测信号的频率越高,扫描信号频率也越高。电

子开关转换速率也越快,不会有闪烁现象。这种工作状态适用于观察两个工作频率较高的信号。

“断续”:当显示方式开关置于“断续”时,电子开关不受扫描信号控制,产生频率固定为200kHz方波信号,使电子开关快速交替接通YA和YB。由于开关动作频率高于被测信号频率,因此屏幕上显示的两个通道信号波形是断续的。当被测信号频率较高时,断续现象十分明显,甚至无法观测;当被测信号频率较低时,断续现象被掩盖。

因此,这种工作状态适合于观察两个工作频率较低的信号。“YA”、“YB ”:显示方式开关置于“YA ”或者“YB ”时,表示示波器处于单通道工作,此时示波器的工作方式相当于单踪示波器,即只能单独显示“YA”或“YB ”通道的信号波形。

“YA + YB”:显示方式开关置于“YA + YB ”时,电子开关不工作,YA与YB 两路信号均通过放大器和门电路,示波器将显示出两路信号叠加的波形。

(2)“DC-⊥-AC”Y轴输入选择开关,用以选择被测信号接至输入端的耦合方式。置于“DC”是直接耦合,能输入含有直流分量的交流信号;置于“AC”位置,实现交流耦合,只能输入交流分量;置于“⊥”位置时,Y轴输入端接地,这时显示的时基线一般用来作为测试直流电压零电平的参考基准线。

(3)“微调V/div”灵敏度选择开关及微调装置。灵敏度选择开关系套轴结构,黑色旋钮是Y轴灵敏度粗调装置,自10mv/div~20v/div分11档。红色旋钮为细调装置,顺时针方向增加到满度时为校准位置,可按粗调旋钮所指示的数值,读取被测信号的幅度。当此旋钮反时针转到满度时,其变化范围应大于2.5倍,连续调节“微调”电位器,可实现各档级之间的灵敏度覆盖,在作定量测量时,此旋钮应置于顺时针满度的“校准”位置。

(4)“平衡”当Y轴放大器输入电路出现不平衡时,显示的光点或波形就会随“V/div”开关的“微调”旋转而出现Y轴方向的位移,调节“平衡”电位器能将这种位移减至最小。

(5)“↑↓” Y轴位移电位器,用以调节波形的垂直位置。

(6)“极性、拉YA ”YA 通道的极性转换按拉式开关。拉出时YA 通道信号倒相显示,即显示方式(YA+ YB )时,显示图像为YB - YA 。

(7)“内触发、拉YB ”触发源选择开关。在按的位置上(常态) 扫描触发信号分别取自YA 及YB 通道的输入信号,适应于单踪或双踪显示,但不能够对双踪波形作时间比较。当把开关拉出时,扫描的触发信号只取自于YB 通道的输入信号,因而它适合于双踪显示时对比两个波形的时间和相位差。

(8)Y轴输入插座采用BNC型插座,被测信号由此直接或经探头输入。

3.X轴插件部分

(1)“t/div”扫描速度选择开关及微调旋钮。X轴的光点移动速度由其决定,从0.2μs~1s共分21档级。当该开关“微调”电位器顺时针方向旋转到底并接上开关后,即为“校准”位置,此时“t/div”的指示值,即为扫描速度的实际值。

(2)“扩展、拉×10”扫描速度扩展装置。是按拉式开关,在按的状态作正常使用,拉的位置扫描速度增加10倍。“t/div”的指示值,也应相应计取。采用“扩展拉×10”适于观察波形细节。

(3)“→←” X轴位置调节旋钮。系X轴光迹的水平位置调节电位器,是套轴结构。外圈旋钮为粗调装置,顺时针方向旋转基线右移,反时针方向旋转则基线左移。置于套轴上的小旋钮为细调装置,适用于经扩展后信号的调节。

(4)“外触发、X外接”插座采用BNC型插座。在使用外触发时,

示波器实验报告(共7篇)

示波器实验报告(共7篇) 一、实验目的 1.了解示波器的基本原理和工作原理。 2.掌握示波器在电路测试和故障诊断中的应用。 3.学习示波器的操作方法,掌握各项操作技巧。 二、实验原理 示波器是用来观察波形的一种仪器。它以示波管为核心,通过电子束扫描屏幕,形成比较直观的波形图,实现对信号的观测、测量和分析。示波器一般有模拟示波器和数字示波器两种,本实验采用数字示波器进行测试。 数字示波器以模拟数字转换技术为基础,是一种精确分析波形的仪器。它接收被测电路中的信号,经过采样后经过模拟数字转换(ADC)转换成数字信号,同时进行多次采样,得到不同时刻下的波形数据,并将其传输到计算机中进行处理和显示。数字示波器具有显示快、分辨率高、操作方便等优点,适用于对高频信号进行测量和分析。 三、实验内容 1.了解示波器的基本操作方法,包括示波器的输入接口、触发系统、扫描方式、显示控制等内容。 2.使用示波器测量不同频率、振幅的正弦信号,并进行分析。 四、实验步骤与数据分析 1.测量正弦波 (1)将正弦波信号输入示波器的通道1,选择“正弦波”测量模式。 (2)调整示波器的扫描方式、扫描速率和显示控制,以得到清晰的信号波形。 (3)通过示波器测量正弦波的振幅和频率,得出如下数据: 振幅:3V 频率:50Hz

(4)分析得出,正弦波是具有一定周期性的波形,它的幅度和频率可以通过示波器的测量得到。在实际电路测试和故障诊断中,正弦波可以用作交流信号的测试,并可以通过触发系统实现高精度数据的采样和分析。 2.测量直流信号 电压:5V 3.测量矩形波和脉冲信号 (3)通过示波器测量矩形波和脉冲信号的各项参数,如上升沿和下降沿时间、占空比等,得到实验数据。 五、实验结果 本次实验使用数字示波器测量了不同频率、振幅的正弦信号、直流信号、矩形波信号和脉冲信号。通过对示波器的操作和分析,得出了对信号波形的各项参数,进一步理解了示波器的原理和工作方式,并掌握了数字示波器的操作和应用技巧。 1.数字示波器是一种精确分析波形的仪器,具有显示快、分辨率高、操作方便等优点。 2.在示波器测量中,不同信号波形对应不同的测量模式,包括正弦波、直流、矩形波和脉冲信号等。 4.在实际电路测试和故障诊断中,示波器是一种重要的分析手段,可以实现高精度数据的采样和分析,并对电路故障的修复提供重要参考。 七、参考文献 张兴夏,刘沈,电子测量与测试技术,北京:机械工业出版社,2005年。 刘文波,数字信号处理与应用,南京:东南大学出版社,2008年。 陈光标,数字电子技术基础及应用,北京:人民邮电出版社,2006年。 肖光标,电子测量及仪器,南京:东南大学出版社,2007年。

电子测量实验-数字存储示波器的使用

数字存储示波器的使用 一、实验目的 1、熟悉数字存贮示波器的工作原理及各旋钮、按键作用; 2、掌握数字存贮示波器的使用及观测技术。 二、实验仪器 GDS820示波器,EE1641B函数信号发生器,移相电路板一块(可选) 三、实验原理 1、数字存贮示波器的基本结构 图1 数字存贮示波器的原理框图 数字存贮示波器的基本框图如图1所示,它将输入信号先经过A/D转换,将模拟波形变换成数字信号,存贮于数字存贮器中,在微处理器控制下根据用户需要将存储的数字信号加工处理或直接调出,通过D/A转换,将数字信号变换成模拟波形,驱动阴极射线管加以显示。同时微处理器还完成对阴极射线管的水平扫描及亮度等的驱动控制。它具有存贮时间长,能捕捉触发前的信号,可通过接口与计算机相连接等特点。 2、数字存贮示波器的工作原理 数字存贮示波器的工作过程如图2所示,当被测信号接入时,首先对模拟量进行取样,图(a)中的a0~a7点即对应于被测信号u的8个取样点,这种取样方式为“实时取样”,它对一个周期内信号的不同点进行取样。8个取样点得到的数字量分别存贮于8个存贮单元中,显示时,取出D0~D7数据,进行D/A转换,同时存贮单元也经过D/A转换,形成图(d)所示阶梯波,加到X水平系统,控制扫描电压,这样就将被测波形重现于荧光屏上,如图(e)所示。只要X方向与Y 方向的量化程度足够精细,图(e) 波形就能准确地代表图(a)的波形。

(a) (b) (c) (d) 图2 存贮器工作过程 四、实验内容及测试步骤 1、熟悉GDS820型数字存贮示波器的各个面板按钮及菜单结构 探索各个按钮的功能与操作方法,完成或思考以下各项任务: (1)探极补偿调整 (2)界面语言设置 (3)探极衰减系数设定,(设定值与实际所用的探头衰减系数应一致) (4)CH1、CH2通道耦合方式选择,垂直灵敏度微调或粗调选择 (5)找出电压光标线与时间光标线 (6)不同显示方式(YT与XY显示方式)在哪个按钮下操作?波形持续时间如何改变? (7)信源在哪里切换?测量类型(频率、周期、平均值、有效值等)如何选择? (8)视窗如何设定?如何观察波形的细节? (9)获取(ACQUIRE)方式如何改变? (10)选择触发方式为自动,触发水平为50%,上升沿触发,触发耦合方式为交流。 (11)波形如何保存?各项设置如何保存?

大学物理实验——示波器的使用实验报告

实验示波器的原理与使用 实验者姓名:XXX 同组者姓名:XXX 实验日期:一、实验目的 1、了解示波器的基本结构和工作原理。 2、利用示波器观察测量正弦波、方波、锯齿波的振幅、频率。 3、观察电子束垂直正弦振动合成的轨迹(李萨如图形)并测定正弦振动频率比。 二、实验仪器 通用AOS1022C型数字存储示波器,TFG1900A型函数信号发生器。 三、实验原理 示波器是利用示波管内电子束在电场或磁场中的偏转,显示电压信号随时间变化波形的一种电子观测仪器。在各行各业与各个研究领域都有着广泛的应用。其基本结构与工作原理如下 1、示波器的基本结构与显示波形的基本原理 示波器种类很多,基本都包括几个组成部分:示波管(CRT)、竖直信号放大器(Y放大)、水平信号放大器(X放大)、扫描信号发生器、触发同步系统和直流电源等。 示波管是示波器的核心部件,如图1所示。可细分为电子枪、偏转系统和荧光屏三部分,均密封在抽成高真空的玻璃外壳内。 F灯丝,K阴极,G控制栅极,A1、A2第一、第二阳极,Y、X竖直、水平偏转板 图1示波管结构简图 1)电子枪 电子枪包括灯丝,阴极,控制栅极,第一阳极,第二阳极五部分。阴极被灯丝加热后,可沿轴向发射电子。并在荧光屏上显现一个清晰的小圆点。 2)偏转系统 偏转系统由两对互相垂直的金属偏转板X和Y组成,分别控制电子束在水平方向和竖直方向的偏转。 从电子枪射出的电子束若不受横向电场的作用,将沿轴线前进并在荧光屏的中心呈现静止的光点。若受到横向电场的作用,电子束的运动方向就会偏离轴线,屏上光点的位置就会移动。X偏转板之间的横向电场用来控制光点在水平方向的位移,Y偏转板用来控制光点在竖直方向的位移。如果两对偏转板都加上电场,则光点在二者的共同控制下,将在荧光屏平面二维方向上发生位移。 3)荧光屏 荧光屏上涂有荧光粉,它的作用是将电子束轰击点的轨迹显示出来以供观测。

数字存储示波器的使用实验报告

数字存储示波器的使用实验报告篇1 示波器的使用 预习思考题 1.示波器的功能是什么? 2.扫描同步如何理解? 3.什么是李萨如图? 1.电子示波器是用来直接显示,观察和测量电压波形机器参数的电子仪器。 2.用每一个触发脉冲产生于同触发电压所对应的触发信号的同相位点,故每次扫描起点会准确地落在同相位点于是每次扫描的起始点会准确地落在同相位点,于是每次扫描出的波形完全重复而稳定地显示被测波的波形。就是触发扫描实现同步的原理。 3.当示波器在Y轴与X轴同时输入正弦信号电压且他们的频率式简单的整数比时荧光屏上出现各式各样的图形这类图形称作“李萨如图” 实验数据记录 实验仪器: YB4320F双追踪示波器,SG1642函数信号发生器实验步骤: 1.用示波器观察信号波形 (1)调节扫描旋钮,使示波器的扫描线至长短适当的稳定水平亮线 (2)将信号发生器接到ch1或ch2输入上,频率选用数百或数千赫兹方式开关及触发源开关的位置与信号输入通道一致的出稳定的

波形。 (3)改变输入信号电压的波形,如正弦波,三角波,方波调节扫描微调,以得到2个。 (4)可以在调节其他该扫描熟悉示波器2.用李萨如图测定频率 (1)当示波器在Y轴与X轴同时输入正弦信号电压,且他们的频率式简单的整数比的的荧光屏上出现各种形式的图形,这类图形称作“李萨如图” (2)当fg:fx=1:1时输入fg=50hz.fx=50hz,绘出一种李萨如图 (3)当fg:fx=1:2时输入fg=300hz.fx=200hz,绘出一种李萨如图。 思考题 1.示波器为接通前,有那些注意事项? 2.波形不稳定时,应调节那个旋钮? 3.为了观察李萨如图,应该怎样设置按钮? 4.欲关闭示波器,首先应把那个旋钮扭到最小? 1、确定是否接地 2、是否正确连接探头 3、查看所有的终端额定值 4、在是使用一个通道的情况下触发源选的通用一致 5、应调节水平微调使之稳定,再调节CH通道 6、首先示波器应该在XY轴输入正弦电压,且加上fg与fx上的频率成整数比 7、将示波器探头脱开测量电路,将输入选择开关,达到接地位

数字示波器的使用实验报告-数字示波器的使用实验

数字示波器的使用实验报告 篇一:大物实验示波器的使用实验报告 实验二十三示波器的使用 班级姓名学号同组人日期 实验目的 1、了解示波器的基本结构和工作原理,学会正确使用示波器。 2、掌握用示波器观察各种电信号波形、测量电压和频率的方法。 3、掌握观察利萨如图形的方法,并能用利萨如图形测量未知正弦信号的频率。实验仪器 固纬GOS-620型双踪示波器一台,GFG-809型信号发生器两台,连线若干。实验原理 示波器是利用示波管内电子束在电场或磁场中的偏转,显示电压信号随时间变化波形的一种电子观测仪器。在各

行各业与各个研究领域都有着广泛的应用。其基本结构与工作原理如下 1、示波器的基本结构与显示波形的基本原理 本次实验使用的是台湾固纬公司生产的通用双踪示波器。基本结构大致可分为示波管(CRT)、扫描同步系统、放大与衰减系统、电源系统四个部分。“示波管(CRT)”是示波器的核心部件如图1所示的。可细分为电子枪,偏转系统和荧光屏三部分。 1)电子枪 电子枪包括灯丝F,阴极K,控制栅极G,第一阳极A1,第二阳极A2等。阴极被灯丝加热后,可沿轴向发射电子。并在荧光屏上显现一个清晰的小圆点。 2)偏转系统 偏转系统由两对互相垂直的金属偏转板x和y组成,分别控制电子束在水平方向和竖直方向的偏转。 从电子枪射出的电子束若不受横向电场的作用,将沿轴线前进并在荧光屏

的中心呈现静止的光点。若受到横向电场的作用,电子束的运动方向就会偏离轴线, F灯丝,K阴极,G控制栅极,A1、A2第一、第二阳极,Y、X竖直、水平偏转板 图1示波管结构简图 屏上光点的位置就会移动。x偏转板之间的横向电场用来控制光点在水平方向的位移,y偏转板用来控制光点在竖直方向的位移。如果两对偏转板都加上电场,则光点在二者的共同控制下,将在荧光屏平面二维方向上发生位移。 3)荧光屏 荧光屏的作用是将电子束轰击点的轨迹显示出来以供观测。 4)显示波形的原理图 2 图 3 图4 在竖直偏转板上加一交变正弦电压,可看到一条竖直的亮线,如图3所示。在水平偏转板上加“锯齿波电压”扫描电压,使荧光屏上的亮点沿水平方向

数字示波器的应用实验报告

数字示波器的应用实验报告 实验五数字示波器的使用 实验五数字示波器的使用 一实验目的 (1)了解数字示波器的基本结构和工作原理,掌握使用数字示波器的基本方法。 (2)学会使用数字示波器观测电信号波形和电压幅值以及频率。 (3)学会使用光标测量、波形的储存。 二实验原理 数字示波器可以方便地实现对模拟信号的长期存储,并可利用机内微处理器系统对存储的信号作进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。 其工作原理可分为波形的取样与存储、波形的显示、波形的测量及处理等几部分。它的工作过程一般分为存储和显示两个阶段。在存储阶段,模拟输入信号先经适当地放大和衰减,送入A/D转换器进行数字化处理,转化为数字信号,最后,将A/D转换器输出的数字信号写入存储器中。在显示阶段,一方面将信号从存储器中读出,送入D/A转换器转换成模拟信号,经垂直放大器放大后加到示波器的垂直偏转板。与此同时,CPU的读出地址信号加至D/A转换器,得到一阶梯电压,经水平放大器放大加至示波管的水平偏转板,从而达到在示波管上以稠密的光点重现输入模拟 信号的目的。 三实验仪器 (1)数字示波器一台

(2)低频信号发生器两台 四实验内容 1.信号测量与储存 通过CH1输入,从低频信号发生器输出频率约为400Hz的正弦波。改变其频率和幅度测3次。 (1)用光标手动测出它的峰-峰、幅值电压值和它的频率值 (2)用自动测量测出它的峰-峰、幅值电压值和它的频率值 (3)储存该信号 (4)通过CH1输入,从低频信号发生器输出频率约为400Hz的方波信号。进行傅里叶变换储存该频谱图。 2. 观察并绘出李萨如图形 分别从X轴和Y轴输入正弦波,调节输出达到1:1,1:2,1:3和2:3的李萨如图形。分别储存对应的图形。 五实验报告要求 1. 整理测量数据,算出它们的误差,打印对应的波形图 2. 画出李萨如图形 篇二:示波器使用大学物理实验报告 示波器的调节与使用 史波 (楚雄师范学院物理与电子科学系云南 675000) 摘要:通过对示波器发展及应用的了解,我获得了许多以前所 不知道的知识。在 最初接触示波器时,仅仅对李萨如图形测频率感兴趣,认为示波 器可以得到许多波形。如今我了解到和模拟示波器相比,数字示

示波器实验报告数据(共8篇)

篇一:示波器使用大学物理实验报告示范及数据处理 《示波器的使用》实验报告物理实验报告示范文本:包含数据处理李萨如图【实验目的】 1.了解示波器显示波形的原理,了解示波器各主要组成部分及它们之间的联系和配合; 2.熟悉使用示波器的基本方法,学会用示波器测量波形的电压幅度和频率;3.观察李萨如图形。 【实验仪器】 1、双踪示波器 gos-6021型 1台 2、函数信号发生器 yb1602型 1台 3、连接线示波器专用 2根 示波器和信号发生器的使用说明请熟读常用仪器部分。 [实验原理] 示波器由示波管、扫描同步系统、y轴和x轴放大系统和电源四部分组成, 1、示波管 如图所示,左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。 示波管结构简图示波管内的偏转板 2、扫描与同步的作用 如果在x轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如图 图扫描的作用及其显示 如果在y轴偏转板上加正弦电压,而x轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如图 如果在y轴偏转板上加正弦电压,又在x轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,其合成原理如图所示,描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。由此可见: (1)要想看到y轴偏转板电压的图形,必须加上x轴偏转板电压把它展开,这个过程称为扫描。如果要显示的波形不畸变,扫描必须是线性的,即必须加锯齿波。 (2)要使显示的波形稳定,y轴偏转板电压频率与x轴偏转板电压频率的比值必须是整数,即: fyfx ?n n=1,2,3, 示波器中的锯齿扫描电压的频率虽然可调,但要准确的满足上式,光靠人工调节还是不够的,待测电压的频率越高,越难满足上述条件。为此,在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节到接近满足式频率整数倍时的条件下,再加入“同步”的作用,扫描电压的周期就能准确地等于待测电压周期的整数倍,从而获得稳定的波形。 (1)如果y轴加正弦电压,x轴也加正弦扫描电压,得出的图形将是李萨如图形,如表所示。李萨如图形可以用来测量未知频率。令fy、fx分别代表y轴和x轴电压的频率,nx 代表x方向的切线和图形相切的切点数,ny代表y方向的切线和图形相切的切点数,则有 fyfx ?

示波器实验报告总结(共8篇)

篇一:示波器的原理与使用实验报告 大连理工大学 大学物理实验报告 院(系)材料学院专业材料物理班级 0705 姓名童凌炜学号 200767025 实验台号实验时间 2008 年 11 月 18 日,第13周,星期二第 5-6 节 实验名称示波器的原理与使用 教师评语 实验目的与要求: (1)了解示波器的工作原理 (2)学习使用示波器观察各种信号波形(3)用示波器测量信号的电压、频率和相位差 主要仪器设备: yb4320g 双踪示波器, ee1641b型函数信号发生器 实验原理和内容: 1. 示波器基本结构 示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成,其中示波管是核心部分。 示波管的基本结构如下图所示,主要由电子枪、偏转系统和荧光屏三个部分组成,由外部玻璃外壳密封在真空环境中。 电子枪的作用是释放并加速电子束。其中第一阳极称为聚焦阳极,第二阳极称为加速阳极。通 过调节两者的共同作用,可以使电子束打到荧光屏上产生明亮清晰的圆点。偏转系统由x、y两对偏转板组成,通过在板上加电压来使电子束偏转,从而对应地改变屏上亮点的位置。 荧光屏上涂有荧光粉,电子打上去时能够发光形成光斑。不同荧光粉的发光颜色与余辉时间都不同。 放大和衰减系统用于对不同大小的输入信号进行适当的缩放,使其幅度适合于观测。 扫描系统的作用是产生锯齿波扫描电压(如左上图所示),使电子束在其作用下匀速地在荧光屏周期性地自左向右运动,这一过程称为扫描。扫描开始的时间由触发系统控制。 2. 示波器的显示波形的原理 如果只在竖直偏转板加上交变电压而x偏转板上五点也是,电子束在竖直方向上来回运动而形成一条亮线,如左图所示: 如果在y偏转板和x偏转板上同时分别加载正弦电压和锯齿波电压,电子受水平竖直两个方向的合理作用下,进行正弦震荡和水平扫描的合成运动,在两电压周期相等时,荧光屏上能够显示出完整周期的正弦电压波形,显像原理如右图所示: 3. 扫描同步 为了完整地显示外界输入信号的周期波形,需要调节扫描周期使其与外界信号周期相同或成合适的关系。当某些因素改变致使周期发生变化时,使用扫描同步功能,能够使扫描起点自动跟踪外界信号变化,从而稳定地显示波形。 步骤与操作方法: 1. 示波器测量信号的电压和频率 对于一个稳定显示的正弦电压波形,电压和频率可以由以下方法读出

数字示波器实验报告

数字示波器实验报告 数字示波器实验报告 一、实验目的 通过实验,掌握数字示波器的基本使用方法,了解数字示波器的原理和应用。 二、实验原理 数字示波器是一种用数字电路代替示波管的示波器,通过将信号采样、量化和数字化处理,然后再显示出来。其工作原理主要包括信号采样、模拟到数字转换(A/D转换)、信号处理和显示。 三、实验仪器和器件 1. 数字示波器 2. 示波器探头 3. 信号发生器 四、实验步骤 1. 将信号发生器连接到示波器的输入端(CH1通道)。 2. 启动数字示波器,设置相应的信号源参数,如频率、幅度等。 3. 调整示波器的垂直和水平尺度,使得信号能够完整显示在示波器的屏幕上。 4. 观察示波器的波形显示,根据需要对信号进行观测和分析。 5. 可以通过改变信号源的参数,如频率、幅度等,再次进行观察和分析。

五、实验内容和结果 1. 设置信号发生器的频率为1kHz,幅度为2V。 2. 调整示波器的垂直和水平尺度,使得信号能够完整显示在示波器的屏幕上。 3. 观察示波器的波形显示,记录波形的特征和参数。 4. 改变信号源的频率为10kHz,并观察示波器的波形显示。 六、实验调试和思考问题 在调试过程中,可能会出现信号不稳定、波形失真等问题,可以通过以下方法排除: 1. 检查信号源和示波器的连接是否正确。 2. 调整信号源的输出参数,如频率、幅度等。 3. 调整示波器的垂直和水平尺度,使得信号能够完整显示在示波器的屏幕上。 4. 检查示波器的参数设置是否正确。 七、实验总结 通过本次实验,我们学会了使用数字示波器进行信号的观测和分析,了解了数字示波器的基本原理和应用。同时,我们也对示波器的各种参数进行了调试和调整,掌握了一些常见的故障排除方法。实验结束后,我们应该及时关闭设备,整理实验数据和实验报告,并做好实验室的清理工作。

数字存储示波器实验报告

数字存储示波器实验报告 数字存储示波器实验报告 引言: 示波器是电子工程师和科学家在测量和分析电信号时不可或缺的工具。传统的 示波器使用模拟技术,但随着技术的发展,数字存储示波器逐渐取代了传统示 波器的地位。数字存储示波器通过将信号转换为数字形式进行处理和存储,具 有更高的精确度和更多的功能。本实验旨在探究数字存储示波器的原理和应用。 一、实验目的 本实验旨在: 1.了解数字存储示波器的原理和工作方式; 2.掌握数字存储示波器的基本操作方法; 3.熟悉数字存储示波器的应用场景。 二、实验原理 数字存储示波器是通过将输入信号转换为数字形式进行处理和存储的。它由输 入部分、采样部分、数字处理部分和显示部分组成。 1.输入部分 输入部分负责接收待测信号,并将其转换为电压形式。通常使用探头将待测信 号与示波器连接,探头会将信号转换为与示波器输入电路兼容的电压信号。 2.采样部分 采样部分负责对输入信号进行采样。数字存储示波器通过采样率来确定每秒采 样的次数。采样率越高,示波器对信号的还原能力越好。 3.数字处理部分

数字处理部分负责将模拟信号转换为数字信号,并进行处理和存储。它包括模 数转换器(ADC)和数字信号处理器(DSP)。ADC将模拟信号转换为数字信号,DSP对数字信号进行处理和存储。 4.显示部分 显示部分负责将处理后的数字信号转换为可视化的波形图。数字存储示波器通 常使用液晶显示屏或计算机显示屏来显示波形图。 三、实验步骤 1.连接示波器和待测信号:将示波器的探头连接到待测信号源上,确保连接正 确且稳定。 2.设置示波器参数:打开示波器,并根据需要设置采样率、时间基准、触发模 式等参数。这些参数将影响示波器对信号的采样和显示。 3.观察波形图:示波器将采样和处理后的信号转换为波形图显示在屏幕上。通 过观察波形图,可以分析信号的频率、振幅、相位等特征。 4.测量信号参数:示波器可以提供多种测量功能,如测量频率、周期、峰峰值、有效值等。根据需要选择相应的测量功能,并进行测量。 四、实验结果与分析 在实验中,我们使用数字存储示波器对不同频率的正弦信号进行了观测和测量。通过调整示波器的参数,我们成功地捕捉到了信号的波形图,并测量了其频率、周期和峰峰值等参数。 通过分析测量结果,我们发现数字存储示波器具有较高的精确度和稳定性。与 传统示波器相比,数字存储示波器在信号采样和处理方面更加灵活和可靠。它 能够对高频信号进行精确的测量,并提供多种测量功能,满足不同应用场景的

示波器的应用实验报告示波器实验数据处理.docx

示波器的应用实验报告|示波器实验数据处理 电子线路实验报告 实验名称:实验三示波器的应用——信号测量系别专业:实验者姓名: 实验日期: 2016 年 10 月28日实验报告完成日期: 2014 年 10 月29日指导老师意见: 成绩 一、实验目的 1、了解示波器的基本工作原理和主要技术指标; 2、掌握示波器的使用方法; 3、应用示波器测量各种信号的波形参数。二、实验原理 1、数字示波器显示波形原理 示波器显示器是一中电压控制器件,根据电压有无控制屏幕亮灭,并根据电压大小控制光点在屏幕上的位置。 2、数字存储示波器的原理 数字存储示波器主要由信号调理部分、采集存储部分、触发部分、软件处理部分和其他部分组成: (1)信号调理部分:主要由衰减器和放大器组成; (2)采集和存储部分:主要由模数转换器ADC、内存控制器和存储器组成;(3)触发部分:主要由触发电路构成;(4)软件处理部分:处理器组成;三、示波器使用方法总结 1、面板: 左上部为屏幕和屏幕菜单键,右上部为操作面板,下部为信号输出、输入端口。右上部的操作面板又可分为几小块:信号水平调节区(Horizontal)、信号垂直调节区(Vertical)、触发区(Trigger)、测量区(Measure)、工具区(Tools)。2、功能键及旋钮作用说明:(1)、Horizontal区: Horiz——进入水平控制菜单,可选择时基模式(标准、XY)。旋钮——可做水平位移和水平方向灵敏度的调节。(2)、Vertical区: 1、2——通道开关,键灯亮表明该通道工作中。按一下,进入通道设置菜单,可对通道的耦合方式、带宽限制、微调、倒置和探头等功能进行设置;再按一下,关闭该通道。 旋钮——可做垂直方向的位移和垂直方向灵敏度的调节。Help——显示帮助信息,各个的按键说明。(3)、Tools区: Wave Gen(信号发生器)——键灯亮,信号发生器工作,进入信号发生器菜单,可选波形、频率、幅度、偏移,并将信号从Gen Out插孔输出。左部旋钮(Entry)——可选择菜单项、调节参数。(4)、Measure区: Cursors——可调节光标手动进行测量,旋钮可移动光标线,可选择X1、X2、Y1、Y2、X1X2锁定、Y1Y2锁定等。 Meas——可进行自动测量,选择全部通道显示全部测量信息。 (5)、Trigger区: Trigger键及旋钮——可通过菜单选择触发类型、触发源、触发斜率等,确保显示波形稳定。 (6)、右上角Auto Scale——自动扫描波形。 2、示波器使用方法总结自动: (1)打开示波器电源开关。 (2)将示波器探头接到被测信号,确定触发源选择在所接通道位置,按下相应通道按键。(3)按Auto Scale自动调整波形。手动: (1)打开示波器电源开关。

数字示波器的使用实验总结 -回复

数字示波器的使用实验总结 -回复 数字示波器是一种广泛应用的电子测量仪器,它可以用于观察电路中的波形变化,为 电子工程师们提供了一种非常有用的工具。在大学的电子实验教学中,数字示波器的使用 也是非常普遍的。本文将针对数字示波器的使用实验进行总结,从实验设计、实验操作、 实验结果等方面进行分析,以期能够帮助读者更好地掌握数字示波器的使用。 一、实验设计 1. 示波器的基本操作:示波器的开启、控制面板的介绍、信号线与示波器的连接、 波形显示等。 2. 示波器的参数测量:包括电压的测量、频率的测量、相位差的测量等。 3. 示波器的信号分析:通过对不同信号的分析,学生可以更加深入地了解数字示波 器的使用方法和原理。 为了使实验效果更加明显,实验设计需要根据实验目的和操作难度进行适当的调整, 确保实验过程中学生能够全面了解数字示波器的使用方法,同时也要注意实验的安全性。 二、实验过程 1. 实验前的准备工作:安装好数字示波器和相关软件,并检查设备是否正常运转。 2. 示波器的基本操作:在操作前,学生应先熟悉数字示波器的控制面板和操作方法,然后将信号线与示波器连接,调整档位和幅度,观察波形的显示情况。 3. 示波器的参数测量:学生应先设置好数字示波器的相应参数,如电压档位、频率 范围等,然后对不同的信号进行测量,并记录下相应的值,比较不同参数对测量结果的影响。 4. 示波器的信号分析:学生可以通过对不同种类信号的分析来了解数字示波器的使 用方法。学生可以使用数字示波器观察不同频率的正弦波、方波、脉冲信号等,并比较它 们的波形特点。 实验过程中需要注意安全,学生应对数字示波器和相关设备进行正确使用,以确保实 验能够顺利进行。 三、实验结果分析 在实验过程中,学生可以观察到数字示波器的波形显示情况,测量信号的各种参数, 并分析不同信号的波形特点。通过实验,学生能够更加深入地了解数字示波器的使用方法 和原理,增强对电子测量仪器的掌握能力。

厦门大学 实验三 示波器的应用-信号的测量实验报告(2400字)

厦门大学实验三示波器的应用-信号的测量实验报告 (2400字) 实验三示波器的使用—信号的测量 一实验目的 1.了解示波器的基本工作原理和主要技术指标; 2.掌握示波器的使用方法; 3.应用示波器测量各种信号的波形参数。 二实验仪器; 1.双踪示波器 1台 2.函数信号发生器1台 3.“四位半”数字万用表1台 三实验原理; 1数字示波器显示波形原理 示波器是将输入的周期性信号以图像的形式展现在显示器上,以便对信号进化观察和测量的仪器;示波器显示器是一种电压控制器件,根据电压的有无来控制屏幕的亮灭,并根据电压大小控制光点在屏幕的位置。 2数字存储示波的原理; 数字存储示波器只要由信号调理部分,采集存储部分,触发部分,软件处理部分和其他部分。 3 双通道数字存储示波器结构框图 4示波器的主要技术特性 (1)模拟带宽;由前置放大器的带宽决定; (2)采样频率;由模拟转换电路决定; (3)存储深度;由存储器决定; (4)由触发电路决定。 5 功能键及旋钮的作用说明 6示波器的使用方法;

(1)打开电源开关30秒后,屏幕上应有光迹,否则检查有关开关 及按钮的位置; (2)将示波器的探头接到被测信号,确定触发源选择在所接通道位 置; (3)键入相应的通道的开关,启动该通道工作; (4)将垂直和水平灵敏度旋钮调到合适的位置,V-pp/8=选择Y 轴灵敏度;T/10=选择X轴灵敏度; (5)屏幕上应有被测信号的波形; (6)若需测信号各点的电平,耦合方式应选DC耦合,若只需观测 信号幅度,则选AC耦合; (7)调节Y和X位移旋钮将波形调到便于测量的位置。 四实验内容 1.校验示波器的灵敏度: 对于首次接触的示波器,必须对其灵敏度进行校验。方法为:在示波器正常显示状态下,将探头接示波器本身提供的校准方波信号源(demo2端子):采用自动或者手动方法观察校准信号,若测量得到的波形幅度、频率与校准信号(f=1KHZ,Vp-p=2.5V)相同,说明示波器准确,若不同,应记下其误差。 2.调整、测量含有直流电平的信号 若要求信号发生器输出方波信号(f=1KHZ、占空比50%,Vp-p=4V、VH=3V、VL=-1V),则调整、测量方法为: 1. 令信号发生器输出方波,调整信号频率为1KHZ; 2. 调整信号幅度为4V,偏移量为1V,或者通过设置高低电平的方法设置VH=3V,VL=-1V。 3. 连接示波器和信号发生器,令两仪器“”端相接,并将示波器探头接信号发生器信号输出端。 4. 示波器置直流耦合(DC),手动或者自动观测信号发生器的输出信号,分别改变波形输出类型。 3.正弦电压的测量 信号发生器输出正弦信号(f=1KHZ、占空比50%,Vp-p=4V、VH=3V、VL=-1V),

数字示波器的使用实验报告

数字示波器的使用实验报告 数字示波器的使用实验报告 引言: 数字示波器是一种用于测量和显示电信号波形的仪器。相比传统的模拟示波器,数字示波器具有更高的精度、更大的带宽和更多的功能。本实验旨在探究数字 示波器的使用方法和应用场景。 一、实验目的 本实验的目的是通过使用数字示波器来观察和分析不同电信号波形,并掌握数 字示波器的基本操作。 二、实验器材和方法 1. 实验器材: - 数字示波器 - 信号发生器 - 电路板 - 电缆和连接线 2. 实验方法: - 将信号发生器的输出端与电路板的输入端连接。 - 将电路板的输出端与数字示波器的输入端连接。 - 打开数字示波器,并设置合适的触发方式、时间基准和电压范围。 - 调节信号发生器的频率和幅度,观察数字示波器上显示的波形。 - 记录实验结果,并进行数据分析。

三、实验结果与分析 1. 观察方波信号: 通过调节信号发生器的频率和幅度,我们可以观察到数字示波器上显示的方波信号。方波信号的特点是在高电平和低电平之间迅速切换,波形呈现出矩形的形状。通过观察方波信号的上升沿和下降沿的时间,我们可以计算出信号的频率和占空比。 2. 观察正弦波信号: 将信号发生器的输出设置为正弦波信号,我们可以观察到数字示波器上显示的正弦波形。正弦波信号的特点是连续变化的曲线,可以通过数字示波器的峰峰值和频率参数来描述。通过调节信号发生器的频率和幅度,我们可以观察到正弦波信号的变化规律。 3. 观察脉冲信号: 将信号发生器的输出设置为脉冲信号,我们可以观察到数字示波器上显示的脉冲波形。脉冲信号的特点是短暂的高电平或低电平,可以通过数字示波器的触发功能来捕捉到脉冲信号的特定部分。通过调节信号发生器的频率和宽度,我们可以观察到脉冲信号的不同形态。 四、实验总结 通过本次实验,我们学习了数字示波器的基本使用方法和应用场景。数字示波器可以帮助我们观察和分析各种电信号波形,包括方波信号、正弦波信号和脉冲信号。通过调节信号发生器的参数,我们可以观察到不同波形的变化规律,并进行数据分析。数字示波器在电子工程领域有着广泛的应用,可以帮助工程师们进行电路设计、故障排查和信号分析等工作。掌握数字示波器的使用方法

数字示波器的使用及其实验数据

数字示波器的使用及其实验数据 数字示波器的使用 1.实验原理: 双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电 路、扫描发生器、同步电路、电源等。 Y CH1 Y CH2 图1. 双踪示波器原理方框图其中,电子开关使两个待测电压信号YCH1和YCH2周期性地轮流作用在Y偏 转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形。 由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定 图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。为了获得一定数量的完整周期波形,示波器上设有“time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波形。 当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示 出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此

示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。如果同步电路信号从仪器外部输入,则称为“外同步”。操作时,使用“电平(LEVEL)”旋钮,改变触发电平高度,当待测电压达到触发电平时,扫描发生器开始扫 描,直到一个扫描周期结束。但如果触发电位高度超出所显示波形最高点或最低点的范围,则扫描电压消失,扫描停止。 如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形,如图2所示。如果在示波器的YCH1、YCH2端口同时加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。 图2. 示波器显示正弦波形的原理 数字存储示波器的基本原理框图如图3所示: AcquistionDisplayA/DDeMUXuPDisplayInputAMPMemoryMemory 图3. 数字存储示波器的基本原理框图 数字示波器是按照采样原理,利用A/D变换,将连续的模拟信号转变成

示波器的使用实验报告

专业:应用物理 题目:示波器的使用 [实验目的] (1)了解示波器的结构和工作原理。 (2)熟练掌握示波器的基本操作。 (3)学会用示波器测量电压、频率和相位差的方法。 (4)学会周期信号的频谱分析。 (5)观察李萨如图形、拍现象,加深对振动合成的理解。 [实验仪器] TBS1102B-EDU 型数字存储示波器,TFG6920A 型函数/任意波形发生器。 [实验原理] 1.数字示波器 (1)触发控制(触发器) 1)边沿触发:在达到触发电平(阈值)时,输入信号的上升边沿或下降边沿触发示波器,也是示波器默认触发方式。 2)预/后触发:事件发生在显示屏中心触发位置前/后。 3)视频触发:一般由视频信号的场或线触发示波器. 4)脉冲宽度触发:一般由异常脉冲触发示波器。 5)触发频率:示波器计算可触发事件发生的速率以确定触发频率并在屏幕的右下角显示该频率。 (2)垂直控制(增益和位置):将波形进行缩放和上下移动。 (3)采集数据(模式和时基):通过在不连续点处采集输入信号的值来数字化波形。 1)采样模式:等间隔采集2500点,以水平刻度设置进行显示。 2)峰值检测模式:采集间隔1250,每个间隔取最大值和最小值点,以水平刻度设置进行显示。多用于检测窄至10ns的毛刺并减少假波现象的概率。取样速率够快时无 需采用峰值检测。 3)平均值模式:将大量波形进行平均,减少信号中的随机噪声。 4)扫描模式:连续监视变换缓慢的信号。 (4)时域假波现象:如果示波器对信号进行采样时不够快,采样率小于1/2信号带宽,违反奈奎斯特抽样定律,从而无法建立精确的波形记录时,就会有假波现象。 判断方法:1.旋转“水平标度”旋钮更改水平刻度,波形剧烈变化。 2.使用“峰值检测”检测速度更快的信号,波形剧烈变化。 3.触发频率大于信息显示速度

数字示波器的调节与使用(有数据)

3.2数字示波器的调节与使用 一、实验目的 (1)了解和掌握数字示波器的基本使用:显示波形;光标测量;菜单测量; 莉萨如图形测量频率。 (2)学习使用函数发生器。 二、实验仪器 DS-8812型数字显示器、FG-813型函数发生器等。 三、实验原理 1.数字示波器: 数字示波器实际上是计算机技术的一种应用,是将信号的采集、存储(写入)、读出、测量运算、显示等过程用数字化(二进制码)进行处理的示波器。这使得在模拟示波器上进行的一些操作和测量能够实现自动化或智能化,如亮度对比度的的调节,自动设置显示波形,对被测信号的表征参数如周期、频率、电压幅度、脉冲宽度、占空比等既可直接计算并且把结果显示于屏幕,又可以将屏幕显示的内容和测量结果甚至面板设置进行保存,如储存参考波形,输出到打印机、软盘或直接到电脑。本实验使用的数字示波器(操作面板见图4-7-4)在操作上仍然类同模拟示波器,显示和测量实际上是以模拟示波器的内容为基础加以改进和扩展的。观测波形依然是以“TIME/DIV”旋钮来调节显示多少个波形同样调节电平 LEVEL 旋使波形稳定。但是原来模拟示波器只能标示在操作面板“TIME/DIV”旋钮上的挡位示值现在可随着调节对应显示在屏幕的左上方,一旁还有与之对应的采样率显示。y轴每格电压选择(VOLTS/DIV)等也一样。 功能设计以模拟示波器为基础,因此操作与模拟示波器类同。 数字示波器基本原理如图4-7-1 所示。

数字示波器将信号以一定的时间间隔进行采集(采样)并进行数字化处理,所有示波器显示的波形都是在满足一定触发条件下产生的。触发电平(LEVEL)的调节决定了数字示波器何时开始采集数据和显示波形。调节数字示波器使屏幕上出现多少个波形和使波形完全稳定的原理,从操作和意义上与模拟示波器完全类似。一旦触发被正确设定,就可以将不稳定的波形变成有意义的波形。数字示波器的y 轴和x轴扫描信号可源自同一地址因而同步性能非常好显示的波形十分稳定,而且可以做到任意选择扫描开始和结束的位置。只要能保持每次扫描开始的位置和结束的位置都相同,波形就是稳定的。 本实验采用日本岩崎(IWATSU)DS -8812 型数字示波器。它与普通模拟示波器相比,具有如下几大特点: (1)用液晶显示屏取代了普通模拟示波器的电子射线示波管,因而实验仪器小巧精致。每次开机打开电源,仪器便会根据环境光线的明暗程度自动调节液晶显示屏的明暗对比度没有了模拟示波器的“亮度”和“聚焦”调节。如有需要,对比度也可进行手动调节。 (2)可通过外部控制系统(通常是计算机)进行远程控制操作。 (3)设有内存和软驱并内置打印机,既可显示波形也可将波形种设置以及测量数据储存,或者打印出来。 (4)设有自动设置功能。信号输入后,按下面板上的 AUTOSET(自动设置)键,示波器可以自动设置y 轴、轴和触发条件并且显示输人信号的波形。如果进行其他

【精品】数字存储示波器的使用

数字存储示波器的使 用

实验二数字存储示波器的使用 加灰色底纹部分是预习报告必写部分 示波器是一种常用的电子仪器,主要用于观察和测量各种电信号。配合各种传感器把非电量转换成电量,示波器也可以用来观察各种非电量的变化过程。示波器有多种类型和型号,但它们基本原理是相同的。本实验是用双信号发生器的输出信号在示波器中合成李萨如图形。 [实验目的] 1.了解示波器的主要结构和显示波形的基本原理。 2.学会使用函数信号发生器。 3.学会用示波器观察波形以及测量电压、周期和频率等。 4、理解李萨如图形合成原理及方法。 [实验仪器] DS1052E型数字存储示波器、DG1022双通道函数/任意波形发生器、连接线(2根) 【示波管的简单介绍】 示波管如图1所示 示波管包括有: (1)一个电子枪,它发射电子,把电子加速到一定速度,并聚焦成电子束;(2)一个由两对金属板组成的偏转系统;

(3)一个在管子末端的荧光屏,用来显示电子束的轰击点。 所有部件全都密封在一个抽成真空的玻璃外壳里,目的是为了避免电子与气体分子碰撞而引起电子束散射。接通电源后,灯丝发热,阴极发射电子。栅极加上相对于阴极的负电压,它有两个作用:①一方面调节栅极电压的大小控制阴极发射电子的强度,所以栅极也叫控制极;②另一方面栅极电压和第一阳极电压构成一定的空间电位分布,使得由阴极发射的电子束在栅极附近形成一个交叉点。第一阳极和第二阳极的作用一方面构成聚焦电场,使得经过第一交叉点又发散了的电子在聚焦场作用下又会聚起来;另一方面使电子加速,电子以高速打在荧光屏上,屏上的荧光物质在高速电子轰击下发出荧光,荧光屏上的发光亮度取决于到达荧光屏的电子数目和速度,改变栅压及加速电压的大小都可控制光点的亮度。水平偏转板和垂直偏转板是互相垂直的平行板,偏转板上加以不同的电压,用来控制荧光屏上亮点的位置。 【实验仪器功能介绍】 (1)熟悉示波器上各旋钮的功能和用法 设置垂直系统 VERTICAL(CH1、CH2、MATH、REF、OFF、POSITION(垂直位置)、SCALE(垂直范围)) CH1、CH2①可设置耦合的方式:直流、交流、接地 ②探头的衰减系数 ③数字滤波的频率上线

示波器的原理和使用 实验报告

示波器入门- 什么是示波器? 对于如今的模拟和数字电路来说,示波器是进行电压和定时测量的重要工具。当您最终从电子工程学校毕业,进入电子行业工作时,您可能会发现在测试、验证和调试设计方面,使用示波器这一测量工具的频率要比任何其他仪器都要高得多。即使是在特定大学里学习电子工程或物理专业的课程期间,示波器这一测量工具也是在各个电路实验中用来测试和验证实验作业及设计的最常用仪器。遗憾的是,许多学生永远都不能完全掌握如何使用示波器。他们的使用模式通常是某个随机旋钮和按钮,直到示波器显示屏上奇幻般出现一个与他们要寻找的效果接近的图片。但愿在完成这一系列简短的实验后,您会对示波器是什么以及如何更有效地使用它有了更好的了解。 那么,什么是示波器?示波器是一种电子测量仪器,可以在无干扰的情况下监控输入信号,随后以图形方式采用简单的电压与时间格式显示这些信号。您的教授在其学生时代使用的这类示波器可能就是完全基于模拟技术的示波器。这些采用早期技术的示波器通常称为模拟示波器,具有限定的带宽(在附录B 中论述),不执行任何种类的自动测量,而且要求输入信号是重复的(连续出现并重复输入信号)。 您将在这一系列实验中(可能会贯穿大学及研究生学习的其余时间)使用的这类示波器称为数字存储示波器,有时仅称为DSO。或者,您

可以使用混合信号示波器,该示波器将传统的DSO 测量模拟与逻辑分析测量相结合,有时称为MSO。请注意,所有的数字实时示波器基本上只有DSO和MSO之分。其它的叫法都是在这两种示波器的基础上增加某些功能而已。今天的DSO 和MSO 可以捕获并显示重复信号或单冲信号,它们通常包括一系列自动测量和分析功能,借助这些功能您可以比您的教授在学生时代更快速、更准确地体现设计和学生实验的特征。 快速了解如何使用示波器以及示波器有何功能的最佳方式是首先了解示波器上的一些最重要的控件,然后只需开始使用其中一个测量一些基本的信号,如正弦波。获得DSOXEDK 教育培训套件选项的许可后,Keysight Technologies InfiniiVision 2000 和3000 X 系列示波器(在图1 中显示)便会产生模拟和数字培训信号。我们将在这一系列简短实验中使用其中许多信号,帮助您了解如何使用示波器这一最重要的电子信号测量仪器。 执行示波器测量时的第一项任务通常是将示波器探头连接在测试设备与示波器的输入BNC 接口之间。示波器探头在测试点提供相对较高的输入阻抗端子功能(高电阻,低电容)。高阻抗连接对于将测量仪器与测试电路分隔开来非常重要,因为我们不希望示波器及其探头改变测试信号的特征。

相关主题
文本预览
相关文档 最新文档