当前位置:文档之家› (完整版)高等数学中有理分式定积分解法总结

(完整版)高等数学中有理分式定积分解法总结

(完整版)高等数学中有理分式定积分解法总结
(完整版)高等数学中有理分式定积分解法总结

由十个例题掌握有理分式定积解法

【摘要】 当被积函数为两多项式的商

()

()

P x Q x 的有理函数时,解法各种各样、不易掌握,在此由易到难将其解法进行整理、总结

【关键词】 有理分式 真分式 假分式 多项式除法 拆项法 凑微分法 定积分

两个多项式的商

()

()

P x Q x 称为有理函数,又称为有理分式,我们总假定分子多项式()P x 与分母多项式()Q x 之间无公因式,当分子多项式()P x 的次数小与分母多项式()Q x ,称有理式为真分式,否则称为假分式.

1.对于假分式的积分:利用多项式除法,总可将其化为一个多项式与一个真分式之和的形式.

例1.2 422

23

1

x x dx x +++? ()222

22131

x x x dx x ++-=+?

解 原式

2

2

2212311

x x dx dx dx x x =+-++???

3

24arctan 3

x x x C =

+-+ ()42

2222

2

22

222223321.11

311

31

13111

31

arctan x x dx

x x x x dx x x x dx dx

x x dx dx

x x dx dx dx

x x x x C +++-=+=-+?

?=-- ?+??

=-++=--+?????????例 解 原式

总结:解被积函数为假分式的有理函数时,用多项式出发将其化简为多项式和真分式之和的形式,然后进行积分.对于一些常见函数积分进行记忆,有助于提高解题速度,例如:

2221111x dx dx x x ?

?=-

?++??

?? 对于真分式

()

()

P x Q x ,若分母可分解为两个多项式乘积()Q x =()()12Q x Q x ,且()1Q x ,()2Q x 无公因式,则可拆分成两个真分式之和:

()()P x Q x ()()()()

1

212P x P x Q x Q x =+,上述过程称为

把真分式化为两个部分分式之和.若()1Q x 或()2Q x 再分解为两个没有公因式的多项式乘积,则最后有理函数分解式中出现多项式、()

()

1k

P x x a -、

()

()

22

l

P x x

px q ++等三类函数,则多项

式的积分容易求的

2.先举例,有类型一、类型二、类型三,以此为基础求解较复杂的真分式积分

2.1 类型一 ()m

k

ax b dx cx +? 例2.1.1

()

3

2

1x dx x -?

322

331

=x x x dx x -+-?解 原式

211

=33xdx dx dx dx x x

-+-????

211

=332x x In x C x

-+++

总结:当被积函数多项式与单项式相乘的形式,将其进行化简,使被积函数为简单幂函数,

然后利用常见积分公式进行运算

2.2 类型二 ()

k

m

cx dx ax b +?

例2.2.1

()2

3

2x dx x +?

解 令x+2=t ,则2x t =-,∴有dx dt =

()

()

2

3

23

2322

2=44

=1

11=44t

42

=Int+4

2n 222t dx

t

t t dt t

dt dt dt t t t t

x C x x --+-+++-+++?

???? 原式 -+C

=I

总结:当被积函数形如时()

k

m

cx dx ax b +?,将其用换元法转换为()m

k

ax b dx cx

+?,再按照后者解法求解

2.3 类型三

()

()

2

x l

P dx ax

bx c ++?

()

()()

()3

2

2

3

2

2

23

22

322

312222x =dt

11x-1dt 1+tan =dt

set tan 3tan 3tan 1

=dt set =sin cos 3sin cos 3sin cos dt x dx

x

x x t t t t

t t t t

t t t t t t --+??-+??

++++++??

?

?? 例2.3.1 原式 设 =tant,x=tant+1,dx=set 上式 set ()()

()222223

=-1cos costd cos +

sin 2dt dt cos 2dt 41

cos 2

1122=222arctan 1224422

t t t t t x In x x x C

x x x x -+-∴-∴-+++-++-+-+??

??Q =-In +cos t+2t+2sintcost

tant=x-1, 上式

()()(

)()()2222

222221

dx

23

1

2222 = dx 23111 = d 23-2d 223121 = In 23+C 2+bx+c +c +1l

x x x x x x x x x x x x x x ax bx x -+++-+++++++++++?

???例2.3.2 总结:当被积函数分母含有ax 时,可以用凑微分法进行积分;对于形如时,

可将其变形为T 或者()()2222221-T x ,sin cos +tan set .

x 是然后利用三角函数恒等变形x+x=1和1x=x 将T 降次,便于计算

3. 以前面的几种简单类型为基础,现在来讨论较为复杂的有理真分式的积分

()()()()()()

2

22222

22+3

dx 3102+3

dx

310

1

=d 310310=In 3102+3

dx 3102+32+3=310+52525211

5252=x x x x x x x x x x x x x x x x x A B

x x x x x x A B x B A x x x x +-+-+-+-+-+-+--+-++-=++-+-∴?

???

例3.1 解法1 +C 解法2 =+

=

原式21

1dx

52310x x x x ??+ ?+-??+-? =In +C

总结:假分式分母可以因式分解,将被积函数化为部分分式之和的形式,然后用基本积分公

式进行运算.

例3.2 ()()2

2

dx 211x x x x ++++?

()()()(

)22

2

2

222=dx

2111121122=21211

1111121d 12121213

241121122x x x x x x x x x x x x x x x x x x x x ??

- ?+++??

+-+++++-++++++??++ ??

??

?++++ ??

???????原式 d -dx =d dx =In -In +C

总结:遇到被积函数是复杂的有理函数,用拆分法将其分解为自己熟悉的函数,灵活变换. 例3.3 ()()23

dx 11x x x ---?

()()

()()()

2

222223

=d 112

1d 21112211

2d d 2111111d 21d d 2211111

11

x x

x x x x x x x x x x x x x x x x x x x x x x In

C x x --+-??=- ?-++????

-- ?=- ?-++ ?

??=-+---++--=+++-?

?????? 总结:此题能够得出一个重要结论,分母因式分解要求为各个因式之间无公约数,以此为标准进行因式分解,拆项

除此之外,常见的还有,可化为有理函数的积分.例如利用三角函数的万能公式,将被积函数中含有三角函数的分式函数,例:

()1+sin sin 1cos x

dx x x +?.例如被积函数中含

时用换元法将根号去掉,例:x

,. 虽然形式

各种各样,但只要熟练掌握以上各种类型的积分,那么在被积函数为有理分式函数时应对起来应当是信手拈来,甚是轻松

不定积分知识点总结

不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F' (x) =f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积 3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论| ∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m ( b-a ) ≤∫abf(x)≤dx≤M ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c ( a 定积分的应用 求平面图形的面积(曲线围成的面积) 直角坐标系下(含参数与不含参数) 极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式 S=R2θ/2)

非常好的定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义[备考方向要明了] 考什么怎么考 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2.了解微积分基本定理的含义. 1.考查形式多为选择题或填空题. 2.考查简单定积分的求解. 3.考查曲边梯形面积的求解. 4.与几何概型相结合考查. 1.定积分 (1)定积分的相关概念:在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b之间的曲边梯形面积的代数和(右上图中阴影所

示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质:①∫b a kf(x)d x=k∫b a f(x)d x. ②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x. ③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x. [探究] 1.若积分变量为t,则∫b a f(x)d x与∫b a f(t)d t是否相等? 提示:相等. 2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗? 提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算. 3.定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么? 提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积. 2.微积分基本定理:如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F(b)-F(a)记成F(x)| b a,即∫b a f(x)d x=F(x) |b a=F(b)-F(a). 课前预测: 1.∫421 x d x等于( ) A.2ln 2 B.-2ln 2 C.-ln 2 D.ln 2

大学微积分l知识点总结 二

【第五部分】不定积分 1.书本知识(包含一些补充知识) (1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。 (2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表 c x dx x +?+?=?+???11 1(α≠1,α为常数) (4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则 []??????±?=?±??=??dx x g dx x f dx x g x f dx x f a dx x f a )()()()()()(②① (7)[][]c x F dx x x f +=??)()(')(???复合函数的积分: c b x F dx b x f c b ax F a b ax d b ax f a dx b ax f ++=?+++?=+?+?=?+???)()()(1)()(1)(一般地, (9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。 (10)不定积分的计算方法 ①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性 ③分部积分法: 【解释:一阶微分形式不变性】 数乘运算 加减运线性运 (8

释义:函数 对应:y=f(u) 说明: (11)c x dx a x a x ++??++?22ln 1 22 (12)分段函数的积分 例题说明:{} dx x ??2,1max (13)在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一 (16)隐函数求不定积分 例题说明: (17)三角有理函数积分的万能变换公式 (18)某些无理函数的不定积分 ②欧拉变换 (19)其他形式的不定积分 2.补充知识(课外补充) ☆【例谈不定积分的计算方法】☆ 1、不定积分的定义及一般积分方法 2、特殊类型不定积分求解方法汇总 1、不定积分的定义及一般积分方法 (1)定义:若函数f(x)在区间I 上连续,则f(x)在区间I 上存在原函数。其中Φ(x)=F(x)+c 0,(c 0为某个常数),则Φ(x)=F(x)+c 0属于函数族F(x)+c (2)一般积分方法 值得注意的问题:

2018考研高数重点复习定积分与不定积分定理总结

2018考研高数重点复习定积分与不定积 分定理总结 在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要的汇总。本文为同学们整理了高数部分的定积分与不定积分定理定义汇总。 ?不定积分 1、原函数存在定理 ●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x ∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。 ●分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ?定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2)变速直线运动的路程 2、函数可积的充分条件 ●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 ●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。 3、定积分的若干重要性质 ●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 ●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。 ●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx ≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 ●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。 4、关于广义积分 设函数f(x)在区间[a,b]上除点c(a ?定积分的应用 1、求平面图形的面积(曲线围成的面积) ●直角坐标系下(含参数与不含参数) ●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2) ●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程) ●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积) ●功、水压力、引力 ●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)

高等数学-不定积分例题、思路和答案(超全)

第4章不定积分 内容概要 课后习题全解 习题4-1

1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数 5 2 x -=,由积分表中的公式(2)可解。 解:5 322 23x dx x C --==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 3332223()2 4dx x x dx x dx x dx x x C --=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:22 32122ln 23x x x x dx dx x dx x C +=+=++???() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 222223)325x dx x dx x dx x x C -=-=-+??? ★★(5)4223311x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 1 1x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?????34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++?? ★★(9) 思路=?11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+?? ★★(10) 221(1)dx x x +? 思路:裂项分项积分。

有理函数及三角函数有理式的积分

§3.6 有理函数及三角函数有理式的积分 教学目的:使学生理解有理函数及三角函数有理式积分法,掌握有理函数及三角函数有理式积分法的一般步骤及其应用。 重点:有理函数及三角函数有理式积分法及其应用 难点:有理函数及三角函数有理式积分法及其应用 教学过程: 一、问题的提出 前面两节我们利用基本积分表、不定积分性质和两种基本积分发(换元积分法与分部积分法)已经求出了一些不定积分。从求解过程中可见,求不定积分不像求导数那样,只要按照求导法则并利用基本求导公式就一定能求出一个函数的导数,而求不定积分却没有那样容易。即使一个看起来并不复杂的函数,要求出结果,有时候都需要一定的技巧,有些甚至还“积不出”。例如, ????+-31,,ln ,sin 2 x dx dx e x dx dx x x x , 被积函数都是初等函数,看起来也并不复杂,但是在初等函数范围内却积不出来,这是 因为被积函数的原函数不是初等函数。本节主要介绍几类常见的函数类型的积分方法与积分计算技巧。 求不定积分的主要方法有“拆、变、凑、换、分、套” “拆”,即将被积函数拆项,把积分变为两个或几个较简单的积分。“变”,即代数恒等变形:加一项减一项、乘一项除一项、分子分母有理化、提取公因子;三角恒等变形:半角、倍角公式,平方和公式,积化和差、和差化积、和角公式;陪完全平方:根号下配完全平方、分母配完全平方等;“凑”,即凑微法(第一类换元法)。“换”,即第二类换元法(三角代换、倒代换、指数代换法等)。“分”,即分部积分法。“套”,即套基本公式。 求不定积分的主要技巧在一个“巧”字和一个“练”字,即巧用上述方法和综合 运用上述方法。 二、 有理函数的积分 有理函数)(x R 是指由两个多项式的商所表函数,即 =)(x R m m m m n n n n b x b x b x b a x a x a x a x Q x P +++++++= ----11101110) ()(ΛΛ 其中m 和n 都是非负整数;n a a a a ,,,,2 10Λ及m b b b b ,,,,210Λ都是实数,通常总假定 分子多项式)(x P 与分母多项式)(x Q 之间没有公因式,并且00≠a ,00≠b . 当m n <时,称)(x R 为真分式;而当m n ≥时,称)(x R 为假分式. 一个假分式总可化为一个多项式和一个真分式之和的形式.例如 111122 234-++++=-+x x x x x x x .

不定积分技巧总结

不定积分技巧总结 作者:蔡浩然 题记题记::不定积分不定积分,,是一元函数积分学的基础是一元函数积分学的基础,,题型极多题型极多,,几乎是每一道题就一种题型。乍一看感觉思路很乱,很难把握其中的规律一道题就一种题型。乍一看感觉思路很乱,很难把握其中的规律,,结果是一做题就凭感觉乱闯结果是一做题就凭感觉乱闯,,运气好运气好,,有时可以闯出来有时可以闯出来,,有很多时候是闯不出来候是闯不出来,,或者碰到了庞大的计算量便到此为止了或者碰到了庞大的计算量便到此为止了。。为了在求不定积分时有一个确切简单的思路,我在此作以如下总结。首先,除了那些基本积分公式,还要熟记推广公式的有: ? ???????→????????+??? ?????→+→+∫∫∫x c a ac x c a d x c a ac dx x c a c dx c ax arctan 11 111111222即??? ? ????→ +∫x c a ac dx c ax arctan 1 1 2 【相乘开根作分母,前比后,开根作系数】 另外,[] x x x x dx tan sec ln tan sec 21 sec 3 ++=∫最好也可以记下来最好也可以记下来,,因为经常要用到因为经常要用到,,并且也不难记并且也不难记, ,括号里面是x sec 的原函数和导数之和。 一、一、三角函数篇 三角函数篇原则是:尽量凑微分,避免万能代换。

1.11.1、 、正余弦型1.1.11.1.1、分母二次带常数,分子不含一次项型 、分母二次带常数,分子不含一次项型∫ +dx x A 2 sin 1 或 dx x A x ∫ +2 2 sin cos 右式可通过变形,分离常数化为左式。而 ()→++→+→+∫∫∫ A x A x d dx x x A x dx x A 2 2222tan 1tan tan sec sec sin 1()C x A A A A +??? ?????++→ tan 1arctan 11 1.1.21.1.2、分母一次带常数,分子常数型 、分母一次带常数,分子常数型∫∫ ??→+dx x A x A dx x A 2 2sin sin sin 1()∫∫+?+?→dx x A x d dx x A A 2 222cos 1cos sin 特别的,当 1 =A 时,原式就可化为 ∫∫+→dx x x d dx x A 2 2cos cos cos 1.1.31.1.3、分母一次无常数,分子常数型 、分母一次无常数,分子常数型

《高等数学》不定积分课后习题详解Word版

不定积分内容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1) 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解:53 22 2 3 x dx x C -- ==-+ ? ★ (2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:114 111 333 222 3 ()2 4 dx x x dx x dx x dx x x C -- -=-=-=-+ ???? ★(3)2 2x x dx + ?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:223 21 22 ln23 x x x x dx dx x dx x C +=+=++ ??? ( ) ★(4)3) x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 2222 2 3)32 5 x dx x dx x dx x x C -=-=-+ ??

★★(5)4223311 x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?? ???34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x -=-=-+++?? ★★(9) 思路=11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+? ★★(10)221(1)dx x x +? 思路:裂项分项积分。

不定积分总结

不定积分

一、原函数 定义1 如果对任一I x ∈,都有 )()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。 例如:x x cos )(sin =',即x sin 是x cos 的原函数。 2 211)1ln([x x x +='++,即)1ln(2x x ++是 2 11x +的原函数。 原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上一定有原函数,即存在区间I 上的可导函数)(x F ,使得对任一I x ∈,有)()(x f x F ='。 注1:如果)(x f 有一个原函数,则)(x f 就有无穷多个原函数。 设)(x F 是)(x f 的原函数,则)(])([x f C x F ='+,即C x F +)(也为)(x f 的原函数,其中C 为任意常数。 注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则)(x F 与)(x G 之差为常数,即C x G x F =-)()((C 为常数) 注3:如果)(x F 为)(x f 在区间I 上的一个原函数,则C x F +)((C 为任意常数)可表达)(x f 的任意一个原函数。 二、不定积分 定义2 在区间I 上,)(x f 的带有任意常数项的原函数,成为)(x f 在区间I 上的不定积分,记为?dx x f )(。 如果)(x F 为)(x f 的一个原函数,则 C x F dx x f +=?)()(,(C 为任意常数)

x y o )(x F y = C x F y +=)( 三、不定积分的几何意义 不定积分的几何意义如图5—1所示: 图 5—1 设)(x F 是)(x f 的一个原函数,则)(x F y =在平面上表示一条曲线,称它为 )(x f 的一条积分曲线.于是)(x f 的不定积分表示一族积分曲线,它们是由) (x f 的某一条积分曲线沿着y 轴方向作任意平行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x 的点处有互相平行的切线,其斜率都等于)(x f . 在求原函数的具体问题中,往往先求出原函数的一般表达式C x F y +=)(,再从中确定一个满足条件 00)(y x y = (称为初始条件)的原函数)(x y y =.从几何上讲,就是从积分曲线族中找出一条通过点),(00y x 的积分曲线. 四、不定积分的性质(线性性质) [()()]()()f x g x dx f x dx g x dx ±=±??? ()() kf x dx k f x dx =??k ( 为非零常数)

高等数学不定积分习题

第四章 不 定 积 分 § 4 – 1 不定积分的概念与性质 一.填空题 1.若在区间上)()(x f x F =',则F(x)叫做)(x f 在该区间上的一个 , )(x f 的 所有原函数叫做)(x f 在该区间上的__________。 2.F(x)是)(x f 的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为 dx x x d 2 11)(arcsin -= ,所以arcsinx 是______的一个原函数。 4.若曲线y=?(x)上点(x,y)的切线斜率与3 x 成正比例,并且通过点A(1,6)和B(2,-9),则该 曲线方程为__________?。 二.是非判断题 1. 若f ()x 的某个原函数为常数,则f ()x ≡0. [ ] 2. 一切初等函数在其定义区间上都有原函数. [ ] 3. ()()()??'='dx x f dx x f . [ ] 4. 若f ()x 在某一区间内不连续,则在这个区间内f ()x 必无原函数. [ ] 5. =y ()ax ln 与x y ln =是同一函数的原函数. [ ] 三.单项选择题 1.c 为任意常数,且)('x F =f(x),下式成立的有 。 (A )?=dx x F )('f(x)+c; (B )?dx x f )(=F(x)+c; (C )? =dx x F )()('x F +c; (D) ?dx x f )('=F(x)+c. 2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)≠0,则下式成立的有 。 (A )F(x)=cG(x); (B )F(x)= G(x)+c; (C )F(x)+G(x)=c; (D) )()(x G x F ?=c. 3.下列各式中 是| |sin )(x x f =的原函数。 (A) ||cos x y -= ; (B) y=-|cosx|; (c)y={ ;0,2cos , 0,cos <-≥-x x x x (D) y={ . 0,cos ,0,cos 21<+≥+-x c x x c x 1c 、2c 任意常数。 4.)()(x f x F =',f(x) 为可导函数,且f(0)=1,又2 )()(x x xf x F +=,则f(x)=______.

不定积分解法总结

不定积分解题方法总结 摘要:在微分学中,已知函数求它的导数或微分是需要解决的基本问题。而在实际应用中,很多情况需要使用微分法的逆运算——积分。不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。希望本文能起到抛砖引玉的作用,为读者在学习不定积分时提供思路。文中如有错误之处,望读者批评指正。 1 换元积分法 换元积分法分为第一换元法(凑微分法)、第二换元法两种基本方法。而在解题过程中我们更加关注的是如何换元,一种好的换元方法会让题目的解答变得简便。 1.当出现 22x a ±,22a x -形式时,一般使用t a x sin ?=,t a x sec ?=, t a x tan ?=三种代换形式。 C x a x x a dx C t t t t a x x a dx +++=+++==+? ??222 22 2 ln tan sec ln sec tan 2.当根号内出现单项式或多项式时一般用t 代去根号。 C x x x C t t t tdt t t tdt t x t dx x ++-=++-=--==???sin 2cos 2sin 2cos 2) cos cos (2sin 2sin 但当根号内出现高次幂时可能保留根号, c x dt t dt t t dt t t t dt t t t t x x x dx +- =--=--=--=??? ? ??-?-? = --? ????66 12 12 5 12 6 212 12arcsin 6 1 11 6 1 111 11 1 11 1 3.当被积函数只有形式简单的三角函数时考虑使用万能代换法。 使用万能代换2 tan x t =,

高等数学-不定积分例题、思路和答案(超全)

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积 分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134( -+-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12) 3x x e dx ?

关于高等数学不定积分例题思路和答案超全

关于高等数学不定积分例题思路和答案超全 Last revision on 21 December 2020

第4章 不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解:53 2 2 23x dx x C - -==-+?

★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:315 3 2 2 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个 整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134 (-+-) 2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-? ????34134(-+-)2

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

有理函数的原函数

120 §6.3 有理函数的原函数 有理函数 若,P Q 都是实系数多项式函数,则称P R Q =为实有理函数;当P 的次数严格小于Q 的次数时,称有理函数P R Q = 为真分式. 引理 首系数为1的实系数多项式Q 在实数范围内有唯一的因式分解 22()()()()()Q x x a x b x px q x rx s αβμν=--++++ , 其中,,a b 是互不相同的实数;(,),(,)p q r s 是互不相同的实数偶, 满足224,,4p q r s << ;,,,,,,2()αβμναβμν*∈+++++ 恰为多项式Q 的次数. 证: 由代数学的基本定理(任何《复变函数》教材中都会证明)容易得 到这里的结论.只要注意到,当复数(0)A iB B +≠是Q 的k 重根时,A iB - 也是Q 的k 重根.故Q 含有因式 22[()][()][()]k k k x A iB x A iB x A B -+--=-+ 222222(2),(2)4()k x Ax A B A A B =-++<+.□ 例1 将41x +在实数范围内因式分解. 解: 41x +有4 个复根 2i i ± -±,故 41( 2222222 2 x x i x i x i x i + =---++-++ 222211(((1)(1)2222x x x x ????=-+++=-+++????? ???.□ 例2 将32584x x x +++在实数范围内因式分解. 解: 32584x x x +++有实根1-,故 3222584(1)(44)(1)(2)x x x x x x x x +++=+++=++.□ 定理6.1(部分分式分解) 若P R Q =是真分式,其分母Q 有形如引理所 述的因式分解,则P R Q = 在实数范围内有唯一的部分分式分解

不定积分知识点总结

不定积分知识点总结 不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F'(x)=f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积

3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论|∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m (b-a )≤∫abf(x)≤dx≤M (b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)(b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c (a

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积 (1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. 第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量 注: (1) ∑ =?n i i i x f 1 )(ξ与区间的分割法x i 和取点法 i 有关; 而 ? b a dx x f )(与x i 和 i 无 关. (2) ? b a dx x f )(与a 、b 、f 有关,与x 无关,即: [][]???? ===b a b a b a b a d f du u f dt t f dx x f )()()()( 2.定积分存在定理 定理 若)(x f 在[a , b ]上有界且只有有限个间断点,则)(x f 在[a , b ]上可积. 推论 若)(x f 在[a , b ]上连续,则)(x f 在[a , b ]上可积. 例1. 求 ?1 xdx

相关主题
文本预览
相关文档 最新文档