当前位置:文档之家› 数值分析实习作业之不选主元法高斯分解(Matlab)

数值分析实习作业之不选主元法高斯分解(Matlab)

数值分析实习作业之不选主元法高斯分解(Matlab)
数值分析实习作业之不选主元法高斯分解(Matlab)

1,用不选主元法今儿选主元法的高斯消去法求解下列方程组,并记下变换后的增广矩阵:

(3)

0.729x1+0.81x2+0.9x3 = 0.6867

X1+x2+x3 = 1

1.331x1+1.21x2+1.1x3 = 1

Matlab程序:

(1)不选主元的高斯消去法求解

创建主程序:

clear

clc

A =input('输入线性方程组 Ax = b 的A = ');

b = input('输入线性方程组 Ax = b 的b = ');

x = fguass(A,b);

disp('通过不选主元的高斯消去法的到 x = ')

disp(x)

fguass函数

function x = fguass(A,b)

tic

A_b = [A,b];

[m,n] = size(A_b);

for k = 1:1:m-1;

for i = k+1:1:m

c = A_b(i,k)/A_b(k,k);

A_b(i,:) = A_b(i,:) - c*A_b(k,:);

end

end

disp('不选主元的高斯消去后的增广矩阵 A_b = ')

disp(A_b)

x(m) = A_b(m,n)/A_b(m,m);

for k = m-1:-1:1

x(k) = (A_b(k,n) - A_b(k,k+1:m)*x(k+1:m)')/A_b(k,k);

end

toc

matlab数值计算(命令与示例)

MATLAB数值计算 MATLAB数值计算 (1) 1创建矩阵 (3) 1.1直接输入 (3) 1.2向量 (3) 1.2.1linspace:线性分布 (3) 1.2.2冒号法 (3) 1.3函数创建 (4) 1.3.1eye:单位矩阵 (4) 1.3.2rand:随机矩阵 (4)

1.3.3zeros:全0矩阵 (4) 1.3.4ones:全1矩阵 (5) 2矩阵运算 (5) 2.1加减 (5) 2.1.1[M×N]±[M×N] (5) 2.2乘 (6) 2.2.1[M×N]*a (6) 2.2.2[M×N]*[N×M] (6) 2.3乘方 (7) 2.3.1[M×M]^a (7) 2.3.2a^[M×M] (7) 2.4特殊运算 (8) 2.4.1求逆inv (8) 2.4.2行列式det (8) 2.4.3特征值eig (8) 2.4.4转置'和.' (9) 2.4.5变形reshape (10) 2.4.6翻转rot90,fliplr,flipud (11) 2.4.7抽取diag,tril,triu (12) 2.5数组运算 (12) 2.5.1乘 (12) [M×N].*[M×N] (12) 2.5.2除 (13) [M×N]./[M×N] (14) [M×N].\[M×N] (14) 2.5.3乘方 (14) [M×N].^[M×N] (15) a.^[M×N] (15) 2.6除法 (15) 2.6.1求解线性方程组 (15) 3多项式 (16) 3.1系数表示法poly (16) 3.2求根roots (16) 3.3乘法conv (16) 3.4除法deconv (17) 3.5求值polyval (17) 3.6微分polyder (18)

Matlab作业3(数值分析)答案

Matlab作业3(数值分析) 机电工程学院(院、系)专业班组 学号姓名实验日期教师评定 1.计算多项式乘法(x2+2x+2)(x2+5x+4)。 答: 2. (1)将(x-6)(x-3)(x-8)展开为系数多项式的形式。(2)求解在x=8时多项 式(x-1)(x-2) (x-3)(x-4)的值。 答:(1) (2)

3. y=sin(x),x从0到2π,?x=0.02π,求y的最大值、最小值、均值和标准差。 4.设x=[0.00.30.8 1.1 1.6 2.3]',y=[0.500.82 1.14 1.25 1.35 1.40]',试求二次多项式拟合系数,并据此计算x1=[0.9 1.2]时对应的y1。解:x=[0.0 0.3 0.8 1.1 1.6 2.3]'; %输入变量数据x y=[0.50 0.82 1.14 1.25 1.35 1.40]'; %输入变量数据y p=polyfit(x,y,2) %对x,y用二次多项式拟合,得到系数p x1=[0.9 1.2]; %输入点x1 y1=polyval(p,x1) %估计x1处对应的y1 p = -0.2387 0.9191 0.5318 y1 = a) 1.2909

5.实验数据处理:已知某压力传感器的测试数据如下表 p为压力值,u为电压值,试用多项式 d cp bp ap p u+ + + =2 3 ) ( 来拟 合其特性函数,求出a,b,c,d,并把拟合曲线和各个测试数据点画在同一幅图上。解: >> p=[0.0,1.1,2.1,2.8,4.2,5.0,6.1,6.9,8.1,9.0,9.9]; u=[10,11,13,14,17,18,22,24,29,34,39]; x=polyfit(p,u,3) %得多项式系数 t=linspace(0,10,100); y=polyval(x,t); %求多项式得值 plot(p,u,'*',t,y,'r') %画拟和曲线 x = 0.0195 -0.0412 1.4469 9.8267

数值分析的matlab实现

第2章牛顿插值法实现 参考文献:[1]岑宝俊. 牛顿插值法在凸轮曲线修正设计中的应用[J]. 机械工程师,2009,10:54-55. 求牛顿插值多项式和差商的MA TLAB 主程序: function[A,C,L,wcgs,Cw]=newpoly(X,Y) n=length(X);A=zeros(n,n);A(:,1) =Y'; s=0.0;p=1.0;q=1.0;c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)-A(i-1,j-1))/(X(i)-X(i-j+1)); end b=poly(X(j-1));q1=conv(q,b);c1=c1*j;q=q1; end C=A(n,n);b=poly(X(n));q1=conv(q1,b); for k=(n-1):-1:1 C=conv(C,poly(X(k)));d=length(C);C(d)=C(d)+A(k,k); end L(k,:)=poly2sym(C);Q=poly2sym(q1); syms M wcgs=M*Q/c1;Cw=q1/c1; (1)保存名为newpoly.m 的M 文件 (2)输入MA TLAB 程序 >> X=[242,243,249,250]; >> Y=[13.681,13.526,13.098,13.095]; >> [A,C,L,wcgs,Cw]=newpoly(X,Y) 输出3阶牛顿插值多项式L 及其系数向量C 差商的矩阵A ,插值余项wcgs 及其 ) ()()1(ξ+n n f x R 的系数向量Cw 。 A = 13.6810 0 0 0 13.5260 -0.1550 0 0 13.0980 -0.0713 0.0120 0 13.0950 -0.0030 0.0098 -0.0003 C = 1.0e+003 *

第06章_MATLAB数值计算_例题源程序汇总

第6章 MATLAB 数值计算 例6.1 求矩阵A 的每行及每列的最大和最小元素,并求整个矩阵的最大和最小元素。 1356 78256323578255631 01-???? -? ?=???? -??A A=[13,-56,78;25,63,-235;78,25,563;1,0,-1]; max(A,[],2) %求每行最大元素 min(A,[],2) %求每行最小元素 max(A) %求每列最大元素 min(A) %求每列最小元素 max(max(A)) %求整个矩阵的最大元素。也可使用命令:max(A(:)) min(min(A)) %求整个矩阵的最小元素。也可使用命令:min(A(:)) 例6.2 求矩阵A 的每行元素的乘积和全部元素的乘积。 A=[1,2,3,4;5,6,7,8;9,10,11,12]; S=prod(A,2) prod(S) %求A 的全部元素的乘积。也可以使用命令prod(A(:)) 例6.3 求向量X =(1!,2!,3!,…,10!)。 X=cumprod(1:10) 例6.4 对二维矩阵x ,从不同维方向求出其标准方差。 x=[4,5,6;1,4,8] %产生一个二维矩阵x y1=std(x,0,1) y2=std(x,1,1) y3=std(x,0,2) y4=std(x,1,2) 例6.5 生成满足正态分布的10000×5随机矩阵,然后求各列元素的均值和标准方差,再求这5列随机数据的相关系数矩阵。 X=randn(10000,5); M=mean(X) D=std(X) R=corrcoef(X)

例6.6 对下列矩阵做各种排序。 185412613713-?? ??=?? ??-?? A A=[1,-8,5;4,12,6;13,7,-13]; sort(A) %对A 的每列按升序排序 -sort(-A,2) %对A 的每行按降序排序 [X,I]=sort(A) %对A 按列排序,并将每个元素所在行号送矩阵I 例6.7 给出概率积分 2 (d x x f x x -? e 的数据表如表6.1所示,用不同的插值方法计算f (0.472)。 x=0.46:0.01:0.49; %给出x ,f(x) f=[0.4846555,0.4937542,0.5027498,0.5116683]; format long interp1(x,f,0.472) %用默认方法,即线性插值方法计算f(x) interp1(x,f,0.472,'nearest') %用最近点插值方法计算f(x) interp1(x,f,0.472,'spline') %用3次样条插值方法计算f(x) interp1(x,f,0.472,'cubic') %用3次多项式插值方法计算f(x) format short 例6.8 某检测参数f 随时间t 的采样结果如表6.2,用数据插值法计算t =2,7,12,17,22,17,32,37,42,47,52,57时的f 值。 T=0:5:65; X=2:5:57;

数值分析的MATLAB程序

列主元法 function lianzhuyuan(A,b) n=input('请输入n:') %选择阶数A=zeros(n,n); %系数矩阵A b=zeros(n,1); %矩阵b X=zeros(n,1); %解X for i=1:n for j=1:n A(i,j)=(1/(i+j-1)); %生成hilbert矩阵A end b(i,1)=sum(A(i,:)); %生成矩阵b end for i=1:n-1 j=i; top=max(abs(A(i:n,j))); %列主元 k=j; while abs(A(k,j))~=top %列主元所在行 k=k+1; end for z=1:n %交换主元所在行a1=A(i,z); A(i,z)=A(k,z); A(k,z)=a1; end a2=b(i,1); b(i,1)=b(k,1); b(k,1)=a2; for s=i+1:n %消去算法开始m=A(s,j)/A(i,j); %化简为上三角矩阵 A(s,j)=0; for p=i+1:n A(s,p)=A(s,p)-m*A(i,p); end b(s,1)=b(s,1)-m*b(i,1); end end X(n,1)=b(n,1)/A(n,n); %回代开始 for i=n-1:-1:1 s=0; %初始化s for j=i+1:n s=s+A(i,j)*X(j,1);

end X(i,1)=(b(i,1)-s)/A(i,i); end X 欧拉法 clc clear % 欧拉法 p=10; %贝塔的取值 T=10; %t取值的上限 y1=1; %y1的初值 r1=1; %y2的初值 %输入步长h的值 h=input('欧拉法please input number(h=1 0.5 0.25 0.125 0.0625):h=') ; if h>1 or h<0 break end S1=0:T/h; S2=0:T/h; S3=0:T/h; S4=0:T/h; i=1; % 迭代过程 for t=0:h:T Y=(exp(-t)); R=(1/(p-1))*exp(-t)+((p-2)/(p-1))*exp(-p*t); y=y1+h*(-y1); y1=y; r=r1+h*(y1-p*r1); r1=r; S1(i)=Y; S2(i)=R; S3(i)=y; S4(i)=r; i=i+1; end t=[0:h:T]; % 红线为解析解,'x'为数值解 plot(t,S1,'r',t,S3,'x')

同济大学数值分析matlab编程题汇编

MATLAB 编程题库 1.下面的数据表近似地满足函数2 1cx b ax y ++=,请适当变换成为线性最小二乘问题,编程求最好的系数c b a ,,,并在同一个图上画出所有数据和函数图像. 625 .0718.0801.0823.0802.0687.0606.0356.0995 .0628.0544.0008.0213.0362.0586.0931.0i i y x ---- 解: x=[-0.931 -0.586 -0.362 -0.213 0.008 0.544 0.628 0.995]'; y=[0.356 0.606 0.687 0.802 0.823 0.801 0.718 0.625]'; A=[x ones(8,1) -x.^2.*y]; z=A\y; a=z(1); b=z(2); c=z(3); xh=-1:0.1:1; yh=(a.*xh+b)./(1+c.*xh.^2); plot(x,y,'r+',xh,yh,'b*')

2.若在Matlab工作目录下已经有如下两个函数文件,写一个割线法程序,求出这两个函数 10 的近似根,并写出调用方式: 精度为10 解: >> edit gexianfa.m function [x iter]=gexianfa(f,x0,x1,tol) iter=0; while(norm(x1-x0)>tol) iter=iter+1; x=x1-feval(f,x1).*(x1-x0)./(feval(f,x1)-feval(f,x0)); x0=x1;x1=x; end >> edit f.m function v=f(x) v=x.*log(x)-1; >> edit g.m function z=g(y) z=y.^5+y-1; >> [x1 iter1]=gexianfa('f',1,3,1e-10) x1 = 1.7632 iter1 = 6 >> [x2 iter2]=gexianfa('g',0,1,1e-10) x2 = 0.7549 iter2 = 8

matlab数值分析例题

1、 在MATLAB 中用Jacobi 迭代法讨论线性方程组, 1231231234748212515 x x x x x x x x x -+=?? -+=-??-++=? (1)给出Jacobi 迭代法的迭代方程,并判定Jacobi 迭代法求解此方程组是否收敛。 (2)若收敛,编程求解该线性方程组。 解(1):A=[4 -1 1;4 -8 1;-2 1 5] %线性方程组系数矩阵 A = 4 -1 1 4 -8 1 -2 1 5 >> D=diag(diag(A)) D = 4 0 0 0 -8 0 0 0 5 >> L=-tril(A,-1) % A 的下三角矩阵 L = 0 0 0 -4 0 0 2 -1 0 >> U=-triu(A,1) % A 的上三角矩阵 U = 0 1 -1 0 0 -1 0 0 0 B=inv(D)*(L+U) % B 为雅可比迭代矩阵 B = 0 0.2500 -0.2500 0.5000 0 0.1250 0.4000 -0.2000 0 >> r=eigs(B,1) %B 的谱半径

r = 0.3347 < 1 Jacobi迭代法收敛。 (2)在matlab上编写程序如下: A=[4 -1 1;4 -8 1;-2 1 5]; >> b=[7 -21 15]'; >> x0=[0 0 0]'; >> [x,k]=jacobi(A,b,x0,1e-7) x = 2.0000 4.0000 3.0000 k = 17 附jacobi迭代法的matlab程序如下: function [x,k]=jacobi(A,b,x0,eps) % 采用Jacobi迭代法求Ax=b的解 % A为系数矩阵 % b为常数向量 % x0为迭代初始向量 % eps为解的精度控制 max1= 300; %默认最多迭代300,超过300次给出警告D=diag(diag(A)); %求A的对角矩阵 L=-tril(A,-1); %求A的下三角阵 U=-triu(A,1); %求A的上三角阵 B=D\(L+U); f=D\b; x=B*x0+f; k=1; %迭代次数 while norm(x-x0)>=eps x0=x; x=B*x0+f; k=k+1; if(k>=max1) disp('迭代超过300次,方程组可能不收敛'); return; end end

数值分析matlab代码

1、%用牛顿法求f(x)=x-sin x 的零点,e=10^(-6) disp('牛顿法'); i=1; n0=180; p0=pi/3; tol=10^(-6); for i=1:n0 p=p0-(p0-sin(p0))/(1-cos(p0)); if abs(p-p0)<=10^(-6) disp('用牛顿法求得方程的根为') disp(p); disp('迭代次数为:') disp(i) break; end p0=p; end if i==n0&&~(abs(p-p0)<=10^(-6)) disp(n0) disp('次牛顿迭代后无法求出方程的解') end 2、disp('Steffensen加速'); p0=pi/3; for i=1:n0 p1=0.5*p0+0.5*cos(p0); p2=0.5*p1+0.5*cos(p1); p=p0-((p1-p0).^2)./(p2-2.*p1+p0); if abs(p-p0)<=10^(-6) disp('用Steffensen加速求得方程的根为') disp(p); disp('迭代次数为:') disp(i) break; end p0=p; end if i==n0&&~(abs(p-p0)<=10^(-6)) disp(n0) disp('次Steffensen加速后无法求出方程的解') end 1、%使用二分法找到方程 600 x^4 -550 x^3 +200 x^2 -20 x -1 =0 在区间[0.1,1]上的根, %误差限为 e=10^-4 disp('二分法')

a=0.2;b=0.26; tol=0.0001; n0=10; fa=600*(a.^4)-550*(a.^3)+200*(a.^2)-20*a-1; for i=1:n0 p=(a+b)/2; fp=600*(p.^4)-550*(p.^3)+200*(p.^2)-20*p-1; if fp==0||(abs((b-a)/2)0 a=p; else b=p; end end if i==n0&&~(fp==0||(abs((b-a)/2)

第3章 MATLAB数值计算-习题 答案

roots([1 -1 -1]) x=linspace(0,2*pi,10); y=sin(x); xi=linspace(0,2*pi,100); y1=interp1(x,y,xi); y2=interp1(x,y,xi,'spline'); y3=interp1(x,y,xi,'cublic'); plot(x,y,'o',xi,y1,xi,y2,xi,y3) x=[0 300 600 1000 1500 2000]; y=[0.9689 0.9322 0.8969 0.8519 0.7989 0.7491]; xi=linspace(0,2000,20); yi=1.0332*exp(-(xi+500)/7756); y1=interp1(x,y,xi,'spline'); subplot(2,1,1);plot(x,y,'o',xi,yi,xi,y1,'*') p=polyfit(x,y,2); y2=polyval(p,xi); subplot(2,1,2);plot(x,y,'o',xi,yi,xi,y2,'*') x=[0 300 600 1000 1500 2000]; y=[0.9689 0.9322 0.8969 0.8519 0.7989 0.7491]; xi=linspace(0,2000,20); y1=interp1(x,y,xi,'spline'); subplot(2,1,1);plot(x,y,'-o', xi,y1,'-*') p=polyfit(x,y,2); y2=polyval(p,xi); subplot(2,1,2);plot(x,y,'-o',xi,y2,'-*')

第2讲 matlab的数值分析

第二讲MATLAB的数值分析 2-1矩阵运算与数组运算 矩阵运算和数组运算是MATLAB数值运算的两大类型,矩阵运算是按矩阵的运算规则进行的,而数组运算则是按数组元素逐一进行的。因此,在进行某些运算(如乘、除)时,矩阵运算和数组运算有着较大的差别。在MATLAB中,可以对矩阵进行数组运算,这时是把矩阵视为数组,运算按数组的运算规则。也可以对数组进行矩阵运算,这时是把数组视为矩阵,运算按矩阵的运算规则进行。 1、矩阵加减与数组加减 矩阵加减与数组加减运算效果一致,运算符也相同,可分为两种情况: (1)若参与运算的两矩阵(数组)的维数相同,则加减运算的结果是将两矩阵的对应元素进行加减,如 A=[1 1 1;2 2 2;3 3 3]; B=A; A+B ans= 2 2 2 4 4 4 6 6 6 (2)若参与运算的两矩阵之一为标量(1*1的矩阵),则加减运算的结果是将矩阵(数组)的每一元素与该标量逐一相加减,如 A=[1 1 1;2 2 2;3 3 3]; A+2 ans= 3 3 3 4 4 4 5 5 5 2、矩阵乘与数组乘 (1)矩阵乘 矩阵乘与数组乘有着较大差别,运算结果也完全不同。矩阵乘的运算符为“*”,运算是按矩阵的乘法规则进行,即参与乘运算的两矩阵的内维必须相同。设A、B为参与乘运算的 =A m×k B k×n。因此,参与运两矩阵,C为A和B的矩阵乘的结果,则它们必须满足关系C m ×n 算的两矩阵的顺序不能任意调换,因为A*B和B*A计算结果很可能是完全不一样的。如:A=[1 1 1;2 2 2;3 3 3]; B=A;

A*B ans= 6 6 6 12 12 12 18 18 18 F=ones(1,3); G=ones(3,1); F*G ans 3 G*F ans= 1 1 1 1 1 1 1 1 1 (2)数组乘 数组乘的运算符为“.*”,运算符中的点号不能遗漏,也不能随意加空格符。参加数组乘运算的两数组的大小必须相等(即同维数组)。数组乘的结果是将两同维数组(矩阵)的对应元素逐一相乘,因此,A.*B和B.*A的计算结果是完全相同的,如: A=[1 1 1 1 1;2 2 2 2 2;3 3 3 3 3]; B=A; A.*B ans= 1 1 1 1 1 4 4 4 4 4 9 9 9 9 9 B.*A ans= 1 1 1 1 1 4 4 4 4 4 9 9 9 9 9 由于矩阵运算和数组运算的差异,能进行数组乘运算的两矩阵,不一定能进行矩阵乘运算。如 A=ones(1,3); B=A; A.*B ans= 1 1 1 A*A ???Error using= =>

东南大学-数值分析上机题作业-MATLAB版

2015.1.9 上机作业题报告 JONMMX 2000

1.Chapter 1 1.1题目 设S N =∑1j 2?1 N j=2 ,其精确值为 )1 1 123(21+--N N 。 (1)编制按从大到小的顺序1 1 131121222-+ ??+-+-=N S N ,计算S N 的通用程序。 (2)编制按从小到大的顺序1 21 1)1(111222-+ ??+--+-= N N S N ,计算S N 的通用程序。 (3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) (4)通过本次上机题,你明白了什么? 1.2程序 1.3运行结果

1.4结果分析 按从大到小的顺序,有效位数分别为:6,4,3。 按从小到大的顺序,有效位数分别为:5,6,6。 可以看出,不同的算法造成的误差限是不同的,好的算法可以让结果更加精确。当采用从大到小的顺序累加的算法时,误差限随着N 的增大而增大,可见在累加的过程中,误差在放大,造成结果的误差较大。因此,采取从小到大的顺序累加得到的结果更加精确。 2.Chapter 2 2.1题目 (1)给定初值0x 及容许误差ε,编制牛顿法解方程f(x)=0的通用程序。 (2)给定方程03 )(3 =-=x x x f ,易知其有三个根3,0,3321= *=*-=*x x x ○1由牛顿方法的局部收敛性可知存在,0>δ当),(0δδ+-∈x 时,Newton 迭代序列收敛于根x2*。试确定尽可能大的δ。 ○2试取若干初始值,观察当),1(),1,(),,(),,1(),1,(0+∞+-----∞∈δδδδx 时Newton 序列的收敛性以及收敛于哪一个根。 (3)通过本上机题,你明白了什么? 2.2程序

数值分析幂法与反幂法-matlab程序

数值分析幂法与反幂法 matlab程序 随机产生一对称矩阵,对不同的原点位移和初值(至少取3个)分别使用幂法求计算矩阵的主特征值及主特征向量,用反幂法求计算矩阵的按模最小特征值及特征向量。 要求 1)比较不同的原点位移和初值说明收敛性 2)给出迭代结果,生成DOC文件。 3)程序清单,生成M文件。 解答: >> A=rand(5) %随机产生5*5矩阵求随机矩阵 A = 0.7094 0.1626 0.5853 0.6991 0.1493 0.7547 0.1190 0.2238 0.8909 0.2575 0.2760 0.4984 0.7513 0.9593 0.8407 0.6797 0.9597 0.2551 0.5472 0.2543 0.6551 0.3404 0.5060 0.1386 0.8143 >> B=A+A' %A矩阵和A的转置相加,得到随机对称矩阵B B = 1.4187 0.9173 0.8613 1.3788 0.8044 0.9173 0.2380 0.7222 1.8506 0.5979 0.8613 0.7222 1.5025 1.2144 1.3467 1.3788 1.8506 1.2144 1.0944 0.3929 0.8044 0.5979 1.3467 0.3929 1.6286

B=?? ????? ???? ?? ???6286.13929.03467.15979.08044 .03929.00944 .12144.18506 .13788.13467.12144.15025.17222.08613.05979.08506.17222.02380.09173.08044.03788.18613 .09173 .04187.1 编写幂法、反幂法程序: function [m,u,index,k]=pow(A,u,ep,it_max) % 求矩阵最大特征值的幂法,其中 % A 为矩阵; % ep 为精度要求,缺省为1e-5; % it_max 为最大迭代次数,缺省为100; % m 为绝对值最大的特征值; % u 为对应最大特征值的特征向量; % index ,当index=1时,迭代成功,当index=0时,迭代失败 if nargin<4 it_max=100; end if nargin<3 ep=1e-5; end n=length(A); index=0; k=0; m1=0; m0=0.01; % 修改移位参数,原点移位法加速收敛,为0时,即为幂法 I=eye(n) T=A-m0*I while k<=it_max v=T*u; [vmax,i]=max(abs(v)); m=v(i); u=v/m; if abs(m-m1)

Matlab大数值计算题目

Matlab大数值计算题目 1、统计附件1中的数据,对其中的数据划分区间,从0到50,每 10个单位一个区间,分为5个区间,统计每个区间的数量,画出柱状图。 Matlab程序: clear;clc;close all Data=xlsread('数据.xls'); Q=0:10:50; n=length(Data); m=length(Q); T=zeros(size(Q)); for s=1:n for t=1:m-1 if Data(s)>Q(t)&Data(s)

2、统计附件2中第二列数据中1至100每个数字出现的总次数, 附件2中第三列为每出现第二列数字所对应的次数,最后画出柱状图。 Matlab程序: clear;clc;close all Data=load('WEIBOIDWITHCOMMENTS.txt'); DATA=Data(:,2); t=Data(:,3); % m=max(DATA); m=100; T=zeros(m,1); for i=1:m data=DATA; data(data~=ones(size(data))*i)=0; data(data~=0)=1; n=data.*t; N=sum(n); T(i)=N; end bar(T)

3、 找到矩阵迷宫的通路,矩阵第1行第1列为迷宫的入口,第8行 第8列为迷宫的出口。(0表示路,1表示墙) 000 00000011 11010000 01010010 11010010 11010010 00011010 01000011 11110?????????????????????????? Matlab 程序: 主程序: clear all clc maze=[0,0,0,0,0,0,0,0; 0,1,1,1,1,0,1,0; 0,0,0,0,1,0,1,0; 0,1,0,0,0,0,1,0; 0,1,0,1,1,0,1,0; 0,1,0,0,0,0,1,1; 0,1,0,0,1,0,0,0; 0,1,1,1,1,1,1,0]; total=0; maze(1,1)=3;

数值分析上机题(matlab版)(东南大学)

数值分析上机题(matlab版)(东南大学)

数值分析上机报告

第一章 一、题目 精确值为)1 1 123(21+--N N 。 1) 编制按从大到小的顺序 1 1 131121222-+??+-+-= N S N ,计算S N 的通用程序。 2) 编制按从小到大的顺序 1 21 1)1(111222-+??+--+-= N N S N ,计算S N 的通用程序。 3) 按两种顺序分别计算6 42 10,10, 10S S S ,并指出有效位 数。(编制程序时用单精度) 4) 通过本次上机题,你明白了什么? 二、通用程序 clear N=input('Please Input an N (N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); Sn1=single(0); for a=2:N; Sn1=Sn1+1/(a^2-1); end Sn2=single(0); for a=2:N; Sn2=Sn2+1/((N-a+2)^2-1); end fprintf('The value of Sn using different algorithms (N=%d)\n',N); disp('____________________________________________________') fprintf('Accurate Calculation %f\n',AccurateValue); fprintf('Caculate from large to small %f\n',Sn1); fprintf('Caculate from small to large %f\n',Sn2);

数值分析实验— MATLAB实现

数值分析实验 ——MATLAB实现 姓名sumnat 学号2013326600000 班级13级应用数学2班 指导老师 2016年1月

一、插值:拉格朗日插值 (1) 1、代码: (1) 2、示例: (1) 二、函数逼近:最佳平方逼近 (2) 1、代码: (2) 2、示例: (2) 三、数值积分:非反常积分的Romberg算法 (3) 1、代码: (3) 2、示例: (4) 四、数值微分:5点法 (5) 1、代码: (5) 2、示例: (6) 五、常微分方程:四阶龙格库塔及Adams加速法 (6) 1、代码:四阶龙格库塔 (6) 2、示例: (7) 3、代码:Adams加速法 (7) 4、示例: (8) 六、方程求根:Aitken 迭代 (8) 1、代码: (8) 2、示例: (9) 七、线性方程组直接法:三角分解 (9) 1、代码: (9) 2、示例: (10) 八、线性方程组迭代法:Jacobi法及G-S法 (11) 1、代码:Jacobi法 (11) 2、示例: (12) 3、代码:G-S法 (12) 4、示例: (12) 九、矩阵的特征值及特征向量:幂法 (13) 1、代码: (13) 2、示例: (13)

一、插值:拉格朗日插值 1、代码: function z=LGIP(x,y)%拉格朗日插值 n=size(x); n=n(2);%计算点的个数 syms a; u=0;%拉格朗日多项式 f=1;%插值基函数 for i=1:n for j=1:n if j==i f=f; else f=f*(a-x(j))/(x(i)-x(j)); end end u=u+y(i)*f;f=1; end z=expand(u);%展开 2、示例: >> x=1:6; y1=x.^5+3*x.^2-6; y2=sin(x)+sqrt(x); >> f1=LGIP(x,y1) f1 = -6+3*a^2+a^5 %可知多项式吻合得很好 >> f2=vpa(LGIP(x,y2),3) f2 = .962e-1*a^4+1.38*a+.300*a^2+.504-.436*a^3-.616e-2*a^5

MATLAB解决数值分析问题

1. 使用444(x)对数据进行插值,并写出误差分析理论。 建立脚本 x1=[0.2 0.4 0.6 0.8 1.0]; y1=[0.98 0.92 0.81 0.64 0.38]; n=length(y1); c=y1(:); for j=2:n %求差商 for i=n:-1:j c(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1)); end end syms x df d; df(1)=1;d(1)=y1(1); for i=2:n %求牛顿差值多项式 df(i)=df(i-1)*(x-x1(i-1)); d(i)=c(i)*df(i); end disp('4次牛顿插值多项式'); P4=vpa(collect((sum(d))),5) %P4即为4次牛顿插值多项式,保留小数点后5位数figure ezplot(P4,[0.2,1.08]); 输出结果为 P4 =- 0.52083*x^4 + 0.83333*x^3 - 1.1042*x^2 + 0.19167*x + 0.98 插值余项:R4(x)=f(5)( ξ)/ (5!)* (x - 0.6)*(x - 0.4)*(x - 0.8)*(x - 1)*(x-0.2) 新建一个M-file

syms x l; x1=[0.2 0.4 0.6 0.8 1.0]; y1=[0.98 0.92 0.81 0.64 0.38]; n=length(x1); Ls=sym(0); for i=1:n l=sym(y1(i)); for k=1:i-1 l=l*(x-x1(k))/(x1(i)-x1(k)); end for k=i+1:n l=l*(x-x1(k))/(x1(i)-x1(k)); end Ls=Ls+l; end Ls=simplify(Ls) %为所求插值多项式Ls(x). figure ezplot(Ls,[0.2,1.08]); 输出结果为 Ls =- (25*x^4)/48 + (5*x^3)/6 - (53*x^2)/48 + (23*x)/120 + 49/50 插值余项:R4(x)=f(5)( ξ)/ (5!)* (x - 0.6)*(x - 0.4)*(x - 0.8)*(x - 1)*(x-0.2) 2. 试求3次、 合曲线,用图示数据曲线及相应的三种拟合曲线。 建立脚本 X=[0.0 0.1 0.2 0.3 0.5 0.8 1.0]; Y=[1.0 0.41 0.50 0.61 0.91 2.02 2.46]; p1=polyfit(X,Y,3) p2=polyfit(X,Y,4)

数值分析五个题目的C语言及Matlab程序

本文档包含上一个文档中的五个数值分析实验题C语言程序及Matlab程序实验一 C程序 #include "stdio.h" #include "math.h" void main() { inti=0; float a=0.1,b=1.9,t=0.0,e=1.9; if((pow(a,7)-28*pow(a,4)+14)*(pow(b,7)-28*pow(b,4)+14)<0) if((7*pow(x,6)-112*pow(x,3))) printf("x=%f,i=%d,e=%f\n",x,i,e); for(i=1;i<7&&e>0.00001;i++) { t=x; x=x-(pow(x,7)-28*pow(x,4)+14)/(7*pow(x,6)-112*pow(x,3)); e=fabs(t-x); printf("x=%f,i=%d,e=%f\n",x,i,e);

} } Matable 程序 i=0; x=1.9;t=0.0;e=1.9; disp(['i=',num2str(i),' ','x=',num2str(x),' ','e=',num2str(e)]); for i=1:7 t=x; x=x-(x^7-28*x^4+14)/(7*x^6-112*x^3); e=abs(t-x); disp(['i=',num2str(i),' ','x=',num2str(x),' ','e=',num2str(e)]); if e<0.00001 break; end end 实验二 C程序 #include"stdio.h" #include"math.h" //已知量 double x[10]={1,2,3,4,5,6,7,8,9,10};

matlab程序题

1.采用数值计算方法,画出dt t t x y x ?=0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。 (提示:cumtrapz 快捷,在精度要求不高处可用;quad 也可试。巧用find 。)第一种答: 程序代码 clear; t=0:0.1:10; y=sin(t)./t; s =cumtrapz(t,y); plot(t,y) > y='sin(t)./t'; quad(y,0,4.5,0.01) 运行结果: ans = 1.6541 第二种答: 程序代码 d=0.5; %分区间的区间间隔 tt=0:d:10; t=tt+(tt==0)*eps; %使0被一个极小数代替 y=sin(t)./t; s=d*(cumtrapz(y)); %计算累计积分 plot(t,s),xlabel('x'),ylabel('y'),hold on y1=interp1(t,s,4.5) %插值法计算y(4.5) plot(4.5,y1,'*'),hold off 运行结果: y1 = 1.6542 4. 设0)0(,1)0(,1)(2)(3)(22===+-dt dy y t y dt t dy dt t y d ,用数值法和符号法求5.0)(=t t y 。 (提示:注意ode45和 dsolve 的用法。) 数值法: 编写M 函数文件DyDt.m function ydot=DyDt(t,y) ydot=[y(2);3* y(2)-2*y(1)-1]; %解算微分方程 tspan=[0.5,1]; y0=[1;0]; [tt,yy]=ode45(@DyDt,tspan,y0); figure(1) plot(tt,yy(:,1)) xlabel('t'),title('x(t)')

数值分析在生活中的应用举例及Matlab实现

Matlab 实验报告 学院:数学与信息科学学院班级:信息班 学号:20135034027 姓名:马永杉

最小二乘法,用MATLAB实现 1.数值实例 下面给定的是郑州最近1个月早晨7:00左右的天气预报所得到的温度,按照数据找出任意次曲线拟合方程和它的图像。下面用MATLAB编程对上述数据进行最小二乘拟合。 2、程序代码 x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9 ,7,6,5,3,1]; a1=polyfit(x,y,3) %三次多项式拟合% a2= polyfit(x,y,9) %九次多项式拟合% a3= polyfit(x,y,15) %十五次多项式拟合% b1=polyval(a1,x) b2=polyval(a2,x) b3=polyval(a3,x) r1= sum((y-b1).^2) %三次多项式误差平方和% r2= sum((y-b2).^2) %九次次多项式误差平方和% r3= sum((y-b3).^2) %十五次多项式误差平方和% plot(x,y,'*') %用*画出x,y图像% hold on plot(x,b1, 'r') %用红色线画出x,b1图像% hold on plot(x,b2, 'g') %用绿色线画出x,b2图像% hold on plot(x,b3, 'b:o') %用蓝色o线画出x,b3图像% 2.流程图

4.数值结果分析 不同次数多项式拟合误差平方和为: r1=67.6659 r2=20.1060 r3=3.7952 r1、r2、r3分别表示三次、九次、十五次多项式误差平方和。 5、拟合曲线如下图

相关主题
文本预览
相关文档 最新文档