当前位置:文档之家› 材料加工数值模拟技术

材料加工数值模拟技术

材料加工数值模拟技术
材料加工数值模拟技术

《材料加工数值模拟技术》

期末综述报告

题目:扭压复合加载之DEFORM模拟

学院:机械工程及自动化学院

SY1107110

学号:许亿

姓名:

张彦华教授

指导老师:

2012年6月

1绪论

1.1课题的背景[1]

锻造成形是现代制造业中的重要加工方法之一。锻造成形的制件有着其他加工方法难以达到的良好力学性能。随着科技发展,锻造成形工艺面临着巨大的挑战:各行业对锻件质量和精度的要求越来越高,成本要求越来越低。这就要求设计人员在尽可能短的时间内设计出可行的工艺方案和模具结构。但目前锻造工艺和模具设计,大多仍然采用实验和类比的传统方法,不仅费时而且锻件的质量和精度很难提高。随着有限元理论的成熟和计算技术的飞速发展,运用有限元数值模拟进行锻压成形分析,在尽可能减少或无需物理实验的情况下,得到成形中的金属流动规律、应力场、应变场等信息,并据此设计工艺和模具,已经成为一种行之有效的手段。

锻造成形大多属于三维非稳态塑性成形,一般不能简化为平面或轴对称等简单问题来近似处理。在成形过程中,即存在材料非线性,又有几何非线性,同时还存在边界条件非线性,变形机制十分复杂,并且接触边界和摩擦边界也难以描述。应用刚(粘)塑性有限元

法进行三维单元数值模拟,是目前国际公认的解决此类问题的最好方法之一。本文针对镦粗这一锻造中常用的加工方式,采用DEFORM数值模拟软件对其进行模拟,从而显现出数值模拟技术的巨大优势。

2镦粗工艺的概述

2.1镦粗的定义

自由锻是锻造常用的加工方法,自由锻造是利用冲击力或压力使金属在上下砧面间各

个方向自由变形,不受任何限制而获得所需形状及尺寸和一定机械性能的锻件的一种加工方法,而镦粗是自由锻的一种常用加工方式,既使毛坯高度减小而横截面增大的成形工序,它可以用于以下几个方面:

1.由横截面积较小的坯料得到横截面较大而高度较小的锻件。

2.冲孔前增大坯料横截面和平整坯料端面。

3.提高下一步拔长时的锻造比。

4.反复进行镦粗与拔长可以破碎合金工具钢中的碳化物。

镦粗一般可分为平砧镦粗、垫环镦粗和局部镦粗三类。本文涉及的主要是平砧镦粗。

2.2镦粗缺陷及问题

在镦粗过程中,由于工件与工具存在摩擦,阻碍金属流动,使成形所需的压力增加及导致不均匀变形,可能产生裂纹,鼓形等。同时在高温下镦粗时,温度降低快,屈服极限较高,产生不均匀变形更加明显。

如上图所示,开始镦粗后上下表面有摩擦力,阻碍金属向外流动,中间不存在摩擦力,而由于塑性变形总体积不变,所以出现了如图的鼓形。

因此,为提高锻件的质量和变形量,自由锻过程中应该尽量小鼓形,提高镦粗变形的均匀性,这对于难变形材料和锻件的镦粗尤为重要。

2.3扭压复合加载成形[3]

为了提高镦粗变形的均匀性,现在提出一种新型的加工的方法—扭压复合加载成形。

扭压复合加载成形的原理是在工件高度方向上施加压力的同时,使弓箭产生扭转运动,将

被动摩擦转化为促进金属流动的主动摩擦的一种新型工艺。

扭压复合加载成形通过主动摩擦力给工件施加扭压的作用,迫使工件产生高度方向上

的压缩变形和很界面上的剪切变形,以消除镦粗成形中摩擦的有害作用,促进金属的流

动(如下图所示),扭压成形时多出剪切应变,该剪切力在难变形区促进了晶粒的滑移

流动,均匀性自然就提高了。

为了验证该加工方式的科学性和合理性,我们可以用数值模拟技术—deform对其进行

模拟分析,通过对普通镦粗和扭压复合加载镦粗实验的对比,得到更优的加工方式,从而

在很大程度上降低实验所带来的繁琐。

3.DEFORM概述及实验模拟分析

3.1DEFORM概述

Deform是针对复杂金属成型过程的三维金属流动分析的功能强大的过程模拟分析软件。该软件的理论基础是经过修订的拉格朗日定理,属于钢塑性有限元法,其材料模型包括刚

性材料模型、塑性材料模型、多孔材料模型和弹性材料模型。Deform-2D的单元类型是四

边形,deform-3D的单元类型是经过特殊处理的四面体,更容易实现网格重划分。后者在

模拟金属成型过程中三维流动时可以提供极有价值的工艺分析数据及有关成型过程中的材

料和温度流动。典型应用包括锻造、摆碾、轧制、旋压、拉拔和其他成型加工手段。是模

拟3D材料流动的理想工具。不仅稳健性好,而且易于使用。Deform强大的功能模拟引擎

能够分析金属成型过程中多个关联对象耦合多用的大变形和热特性。系统中集成了任何在

必要时能够自行触发自动网格重画生成器,生成优化的网格系统。在要求精度较高的区域,

可划分细密的网格,从而降低题目的运算规模,并显著提高计算效率。

Deform图形界面既强大又灵活,为用户准备输入数据和观察结果提供了有效工具,还

提供了3D几何操作修正工具,这对于3D过程模拟极为重要。deform系统几十年来一贯秉

承力保计算准确可靠地传统。

3.2实验模拟与分析

3.2.1实验模拟[2]

Deform模拟过程主要可分为以下几个步骤:

设置模拟控制初始条件输入对象模型定义材料设置驱动条件后处理及分析生成数据文件设置对象关系设置模拟控制信息

接下来就对以上给出的几个步骤进行详细的分解,从中我们能感受到deform的优越性便捷

性。

首先我们进行材料的设置:毛坯材料为AL-2-17,高度80mm,直径60mm,单元网格10000。

上模为直径120mm,刚性,主动摸,垂直下压,下压速度为2mm/s,运动行程为40mm。对于

普通镦粗其角速度为0,扭压复合加载角速度为0.1745rad/s。下模直径为200mm,刚性,不

动。上模与工件及工件与下模的接触摩擦系数为0.12.加工温度为常温。

(1)设置模拟控制初始条件:主要是对模拟过程的单位(unite)及名称的设置。在

simulation control里的main进行。

(2)输入对象模型:先添加模块,在预先利用pro-e或catia等三维成形软件绘制模拟所需

要的上模,下模,加工件。通过geometry的import object插入所需要的上下模及工件。并

且通过object positioning调整各制件在空间中的位置,使其完美接触。

材料成型技术基础复习重点

1.常用的力学性能判据各用什么符号表示它们的物理含义各是什么 塑性,弹性,刚度,强度,硬度,韧性 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。 通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 工程材料的发展趋势

据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象 铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。 铸件的宏观组织一般包括三个晶区:表面的细晶粒区、柱状晶粒区和内部等轴晶区。 金属塑性成形指利用外力使金属材料产生塑性变形,使其改变形状、尺寸和改善性能,从而获得各种产品的加工方法。 主要应用: (1)生产各种金属型材、板材、线材等; (2)生产承受较大负荷的零件,如曲轴、连杆、各种工具等。 金属塑性成形特点

先进材料成型技术及理论

华中科技大学博士研究生入学考试 《先进材料成形技术与理论》考试大纲 一、《先进材料成形技术及理论》课程概述 编号:MB11001 学时数:40 学分:2.5 教学方式:讲课30、研讨6、实验参观4 二、教学目的与要求: 材料的种类繁多,其加工方法各异,近年来随同科学技术的发展,新材料、材料加工新技术不断出现。本课程将概述材料的分类及其加工方法的选择;重点介绍液态金属精密成形、金属材料塑性精确成形及金属连接成形等研究与应用领域的新技术、新理论;阐述材料加工中的共性与一体化技术。本课程作为材料加工工程专业的学位课,将使研究生对材料加工的新技术与新理论有个全面的了解,引导研究生在大材料学科领域进行思考与分析,为从事材料加工工程技术的研究与发展奠定基础。 三、课程内容: 第一章材料的分类及其加工方法概述 1.1材料的分类及加工方法概述 1.2材料加工方法的选择(不同材料)及不同加工方法的精度比较(同一种材料) 1.3材料加工中的共性(与一体化)技术 1.4材料加工技术的发展趋势 第二章液态金属精密成形理论及应用 2.1 材料液态成形的范畴及概述 2.2 消失模精密铸造原理及应用(原理、关键技术、应用实例、缺陷与防治) 2.3 Corsworth Process新技术(精密砂型铸造:锆英(砂)树脂砂型、电磁浇注、热法旧砂再生) 2.4 半固态铸造成形原理与技术(流变铸造、触变成形、注射成形) 2.5 铝、镁合金的精确成形技术(金属型铸造、压铸、反重力精密铸造、精密熔模铸造等) 2.6 特殊凝固技术(快速凝固、定向凝固、振动凝固) 2.7 金属零件的数字化铸造(铸件三维造型、工艺模拟及优化、样品铸件快速铸造、工业化生产及 其设计) 2.8 高密度粘土砂紧实机理及其成形技术(高压造型、气冲造型、静压造型) 第三章金属材料塑性精密成形工艺及理论 3.1 金属塑性成形种类与概述 3.2金属材料的超塑性及超塑成形(概念、条件、成形工艺) 3.3 复杂零件精密模锻及复杂管件的精密成形(精密模锻、复杂管件成形) 3.4 板料精密成形(精密冲裁、液压胀形、其它板料精密成型) 3.5 板料数字化成形(点(锤)渐进成形、线渐进(快速)成形、无模(面、液压缸作顶模)成形)

材料成形技术基础知识点总结

材料成形技术基础第一章 1-1 一、铸造的实质、特点与应用 铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。 1、铸造的实质 利用了液体的流动形成。 2、铸造的特点 A适应性大(铸件重量、合金种类、零件形状都不受限制); B成本低 C工序多,质量不稳定,废品率高 D力学性能较同样材料的锻件差。力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松,成分不均匀 3、铸造的应用 铸造毛胚主要用于受力较小,形状复杂(尤其是腔内复杂)或简单、重量较大的零件毛胚。 二、铸造工艺基础 1、铸件的凝固 (1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程。它由晶核的形成和长大两部分组成。通常情况下,铸件的结晶有如下特点: A以非均质形核为主 B以枝状晶方式生长为主。 结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒。晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或混合组织等。 (2)铸件的凝固方式 逐渐的凝固方式有三种类型:A逐层凝固B糊状凝固C中间凝固 2、合金的铸造性能 (1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。 生产上改善合金的充型能力可以从一下各方面着手: A选择靠近共晶成分的趋于逐层凝固的合金,它们的流动性好; B 提高浇注温度,延长金属流动时间; C 提高充填能力 D 设置出气冒口,减少型内气体,降低金属液流动时阻力。 (2)收缩性 A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中。对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。适当控制凝固顺序,让铸件按远离冒口部分最先凝固,然后朝冒口方向凝固,最后才是冒口本身的凝固(即顺序凝固方式),就把缩孔转移到最后凝固的部位——冒口中去,而去除冒口后的铸件则是所要的致密铸件。 具有宽结晶温度范围,趋于糊状凝固的合金,由于液固两相共存区很宽甚至布满整个断

材料加工数值模拟技术

《材料加工数值模拟技术》 期末综述报告 题目:扭压复合加载之DEFORM模拟 学院:学号:姓名:指导老师:机械工程及自动化学院SY1107110 许亿 张彦华教授 2012 年6月

1 绪论 1.1课题的背景[1] 锻造成形是现代制造业中的重要加工方法之一。锻造成形的制件有着其他加工方法难以达到的良好力学性能。随着科技发展,锻造成形工艺面临着巨大的挑战:各行业对锻件质量和精度的要求越来越高,成本要求越来越低。这就要求设计人员在尽可能短的时间内设计出可行的工艺方案和模具结构。但目前锻造工艺和模具设计,大多仍然采用实验和类比的传统方法,不仅费时而且锻件的质量和精度很难提高。随着有限元理论的成熟和计算技术的飞速发展,运用有限元数值模拟进行锻压成形分析,在尽可能减少或无需物理实验的情况下,得到成形中的金属流动规律、应力场、应变场等信息,并据此设计工艺和模具,已经成为一种行之有效的手段。 锻造成形大多属于三维非稳态塑性成形,一般不能简化为平面或轴对称等简单问题来近似处理。在成形过程中,即存在材料非线性,又有几何非线性,同时还存在边界条件非线性,变形机制十分复杂,并且接触边界和摩擦边界也难以描述。应用刚(粘)塑性有限元法进行三维单元数值模拟,是目前国际公认的解决此类问题的最好方法之一。本文针对镦粗这一锻造中常用的加工方式,采用DEFORM数值模拟软件对其进行模拟,从而显现出数值模拟技术 的巨大优势。 2镦粗工艺的概述 2.1 镦粗的定义 自由锻是锻造常用的加工方法,自由锻造是利用冲击力或压力使金属在上下砧面间各个方向自由变形,不受任何限制而获得所需形状及尺寸和一定机械性能的锻件的一种加工方法,而镦粗是自由锻的一种常用加工方式,既使毛坯高度减小而横截面增大的成形工序,它可以用于以下几个方面: 1.由横截面积较小的坯料得到横截面较大而高度较小的锻件。 2.冲孔前增大坯料横截面和平整坯料端面。 3.提高下一步拔长时的锻造比。

各种材料及其加工工艺详解

各种材料及其加工工艺详解 1. 表面立体印刷(水转印)水转印——是利用水的压力和活化剂使水转印载体薄膜上的剥离层溶解转移,基本流程为: a. 膜的印刷:在高分子薄膜上印上各种不同图案; b. 喷底漆:许多材质必须涂上一层附着剂,如金属、陶瓷等,若要转印不同的图案,必须使用不同的底色,如木纹基本使用棕色、咖啡色、土黄色等,石纹基本使用白色等; c. 膜的延展:让膜在水面上平放,并待膜伸展平整; d. 活化:以特殊溶剂(活化剂)使转印膜的图案活化成油墨状态; e. 转印:利用水压将经活化后的图案印于被印物上; f. 水洗:将被印工件残留的杂质用水洗净; g. 烘干:将被印工件烘干,温度要视素材的素性与熔点而定; h. 喷面漆:喷上透明保护漆保护被印物体表面; i. 烘干:将喷完面漆的物体表面干燥。水转印技术有两类,一种是水标转印技术,另一种是水披覆转印技术,前者主要完成文字和写真图案的转印,后者则倾向于在整个产品表面进行完整转印。披覆转印技术(CubicTransfer)使用一种容易溶解于水中的水性薄膜来承载图文。由于水披覆薄膜张力极佳,很容易缠绕于产品表面形成图文层,产品表面就像喷漆一样得到截然不同的外观。披覆转印技术可将彩色图纹披覆在任何形状之工件上,为生产商解决立体产品印刷的问题。曲面披

覆亦能在产品表面加上不同纹路,如皮纹、木纹、翡翠纹及云石纹等,同时亦可避免一般板面印花中常现的虚位。且在印刷流程中,由于产品表面不需与印刷膜接触,可避免损害产品表面及其完整性。 2. 金属拉丝直纹拉丝是指在铝板表面用机械磨擦的方法加工出直线纹路。它具有刷除铝板表面划痕和装饰铝板表面的双重作用。直纹拉丝有连续丝纹和断续丝纹两种。连续丝纹可用百洁布或不锈钢刷通过对铝板表面进行连续水平直线磨擦(如在有装置的条件下手工技磨或用刨床夹住钢丝刷在铝板上磨刷)获取。改变不锈钢刷的钢丝直径,可获得不同粗细的纹路。断续丝纹一般在刷光机或擦纹机上加工制得。制取原理:采用两组同向旋转的差动轮,上组为快速旋转的磨辊,下组为慢速转动的胶辊,铝或铝合金板从两组辊轮中经过,被刷出细腻的断续直纹。乱纹拉丝是在高速运转的铜丝刷下,使铝板前后左右移动磨擦所获得的一种无规则、无明显纹路的亚光丝纹。这种加工,对铝或铝合金板的表面要求较高。波纹一般在刷光机或擦纹机上制取。利用上组磨辊的轴向运动,在铝或铝合金板表面磨刷,得出波浪式纹路。旋纹也称旋光,是采用圆柱状毛毡或研石尼龙轮装在钻床上,用煤油调和抛光油膏,对铝或铝合金板表面进行旋转抛磨所获取的一种丝纹。它多用于圆形标牌和小型装饰性表盘的装饰性加工。 螺纹是用一台在轴上装有圆形毛毡的小电机,将其固定在桌

材料与材料加工技术

材料加工技术讲义 徐刚,韩高荣编制 浙江大学材料科学与工程学系 二0一二年六月

绪论 材料是人类文明的物质基础,是社会进步和高新技术发展的先导。自上世纪70年代开始,人们把信息、能源和材料看作是现代社会的三大支柱。新材料和新材料技术的研究、开发和应用反映了一个国家的科学技术与工业化水平。以大规模集成电路为代表的微电子技术,以光纤通信为代表的现代通信技术,以及及现代科技与技术于一体的载人航天技术等,几乎所有的高新技术的发展与进步,都以新材料和新材料技术的发展为突破和前提。 材料的制备与加工,和材料的成分与结构,材料的性能是决定材料使用性能的三大基本要素,构成材料科学与工程学四面体的底面,这充分反映了材料制备及加工技术的重要作用和地位。材料制备与加工技术的发展既对新材料的研究开发、应用和产业化具有决定性的作用,同时又可有效地改进和提高传统材料的使用性能,对传统材料产业的更新改造具有重要作用。因此,材料制备与加工技术的研究开发是目前材料科学与工程学最活跃的领域之一。 材料种类很多,按材料的键合特点和组成分类,大致分为四大类:金属材料、无机非金属材料、高分子材料和复合材料;按材料的用途分类,既可分为结构材料和功能材料两大类,也可细分为建筑材料、信息材料、能源材料、生物材料、航空航天材料等等。相应地,为了适应不同种类材料的键合特点,和使用特点及功能要求,材料制备和加工技术也多种多样。 本讲义是面向浙江大学材料科学与工程学专业学位硕士研究生培养而编写的“材料加工技术”。主要涉及金属材料加工和陶瓷粉体成型烧结先进制备技术,包括:金属材料快速凝固、定向凝固、半固态加工、连续铸轧、复合铸造技术,以及金属粉体、陶瓷粉体制备,和先进陶瓷成型、烧结等材料加工新技术新工艺。注重材料制备及加工技术案例分析,从技术个案的起源、开发、改进和完善的整个过程,对材料加工技术特点及其原理进行系统介绍,重点突出新技术创新的基本规律,培养学生自主创新和利用新技术开发新材料的能力。

材料先进加工技术

1. 快速凝固 快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。 2. 半固态成型 半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings 教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压) 3. 无模成型 为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。 4.超塑性成型技术 超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。 5. 金属粉末材料成型加工 粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。 6. 陶瓷胶态成型 20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。 7. 激光快速成型 激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组

1.1什么是材料加工

1.液态浇铸成形加工(铸造)、塑性变形加工、连接加工、粉体加工、 热处理改性、表面加工,在加工制造过程中,不仅材料的外部形状和表面状态发生改变,而且材料的内部组织和性能也发生巨大变化。——因为这类加工制造一般都需要将材料加热到一定的温度下才能进行,因而通常称又这类加工制造方法为热加工 2.另一类加工制造方法,如传统的车、铣、镗、刨、磨等切削加工, 以及直接利用电能、化学能、声能、光能等进行的特殊加工,如电火花加工、电解加工、超声波加工、激光加工等,在加工制造过程中通过去除一部分材料来使材料成形。——加工制造的目的主要是赋予材料一定的形状、尺寸和表面状态,尤其是尺寸精度和表面光洁度,而一般不改变材料的内部组织与性能——这类加工称为切削加工或去除加工——由于这种加工一般在常温下甚至往往是强制冷却到常温下进行,所以习惯上称为冷加工 3.不同的材料需要不同的适宜加工方法,同样的材料制造不同的工 件也要采用不同的加工方法。 4.铸造成形加工方法不仅可以通过合金成分的选择、熔体的改性处 理和铸造方法以及工艺的优化来改进铸件的性能,还是新材料开发的重要手段。 5.材料塑性成形是利用材料的塑性,在外力作用下使材料发生塑性 变形,从而获得所需形状和性能的产品的一种加工方法。 6.塑性变形还是消除内部气孔、裂纹等缺陷,改善组织结构,提高 材料性能的重要手段。要求高性能、高可靠性的零件往往要求采

用塑性成形加工。 7.金属的连接可以采用机械的方法、化学粘结的方法和焊接方法。 ——焊接是采用适当的手段使两个分离的固态物体产生原子(分子)间结合而连接在一起的加工方法。 8.分析各种加工方法的本质就会发现,所有加工方法均是成形与控 性的结合。

材料加工数值模拟复习题部分答案

复习题(以下问题用中英文回答均可) 1.简述“材料”、“材料加工”、“材料加工数值模拟”三个概念的含义,并分别 举例说明。 材料:材料是人类用于制造物品、器件、构件、机器或其他产品的那些物质 材料加工:采用铸造、锻压等方法将金属原材料加工成所需的形状尺寸,并达到一定的组织性能要求,又称为材料成型。 材料加工数值模拟:数值模拟即是通过数值计算得到用微分方程边值问题来描述的具体材料成型问题中工件和模具的温度场、速度场、应力场等,据此预测工件中组织性能的变化以及可能出现的缺陷;同时利用计算机图形技术将分析结果直观、动态地呈现出来,使研究设计人员能通过这一虚拟的材料加工过程检验工件的最终形状、尺寸、性能等是否符合设计要求。 2.简要说明材料加工数值模拟的发展趋势。 (1)研究对象尺度微观化 (2)模拟功能集成化(数值模拟功能已由单一的温度场、流场、应力/应变 场、组织场模拟普遍进入到耦合集成阶段) (3)模拟目的专门化(从共性、通用到专用特性) (4)重视提高数值模拟精度和速度的基础性研究 (5)重视物理模拟与精确测试技术 (6)在并行环境下,工艺模拟与生产系统其它技术环节实现集成,成为先进制造系统的重要组成部分 (7)以商业软件为基础,改进提高研究与普及应用相结合 3.定义或描述热传输的三种基本形式,并举出实例。 (1)导热:热传导是由于温度不同,在导体内存在温差或温度梯度,引起自由电子移动的结果。温差越大,自由电子的移动越激烈。 (2)对流:热对流是由运动的流体质点发生相对位移而引起热能转移的现象。它是利用不同温度的质点密度不同来传热,在流体受热密度变小而上浮的同时,冷的流体就会流过来补充,这样一个周而复始的过程,即所谓对流。(3)辐射:热辐射是物体受热后,内部原子振动而出现的一种电磁波能量传递。举例:凝固前后,高温金属----型砂空隙和大气,辐射传热; 浇注时及凝固前,液体金属内部、铸型----大气,对流传热; 凝固前后,金属内部、高温金属----铸型、铸型材料内部,传导传热。 (生活中有很多例子,可以多想几个O(∩_∩)O) 4.写出傅立叶热传导定律的数学表达式,写出对流换热基本公式、辐射换热基 本公式,并解释说明公式中符号所代表的物理量。 傅利叶热传导定律(单向稳态方程):q = ?k (dT/dx) k-导热系数,thermal conductivity,单位:W/mK; q-热流密度或热通量,heat flux,单位:W/m2; dT/dx-温度梯度,temperature gradient,单位:K/m; 对流计算基本公式(牛顿定律):

钢铁材料的加工过程

钢铁材料的加工过程 埃菲尔铁塔的浪漫美、鸟巢的自然美无不显示出钢铁材料在现实生活中的巨大作用。钢铁材料是人类经济建设和日常生活中所使用的罪重要的结构材料和产量最大的材料,是人类社会进步所依赖的重要物质基础。钢铁工业是为机械制造和金属加工、颜料动力、化学工业、建筑业、宇航与军工,以及交通运输业、农业等部门提供原材料和钢铁产品的重要基础工业。在世界上,不论是发达国家还是发展中国家,都非常重视发展钢铁工业,因为它是国家工业化的支柱。没有强大的钢铁工业,要实现工业化的社会是困难的。因此在一个相当长的历史时期,钢铁工业发展程度如何,是衡量一个国家工业化水平高低的重要标志之一。总之,钢铁材料是人类社会的基础材料,是社会文明的标志。那么,钢铁材料是如何从矿石加工成产品的呢? 大多数钢铁材料的加工过程可分为五个步骤:矿石的冶金、熔炼、铸造、锻造或者轧制、热处理。 首先是矿石的冶金,选矿是冶炼前的准备工作,从矿山开采下来矿石以后,首先需要将含铁、铜、铝、锰等金属元素高的矿石甄选出来,为下一步的冶炼活动做准备。选矿一般分为破碎、磨矿、选别三部分。为了保证供给高炉的铁矿石中铁含量均匀,并且保证高炉的透气性,需要把选矿工艺产出的铁精矿制成10-25mm的块状原料。铁矿粉造块目前主要有两种方法:烧结法和球团法。两种方法所获得的块矿分别为烧结矿和球团矿。高炉生产前的准备除了准备铁矿石(烧结矿和球团矿)外,还需要准备好必需的燃料--焦炭。焦炭是高炉冶炼的主要燃料,焦炭在风口前燃烧放出大量热量并产生煤气,煤气在上升过程中将热量传给炉料,使高炉内的各种物理化学反应得以进行。高炉炼铁生产是冶金(钢铁)工业最主要的环节。高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。高炉生产是连续进行的。转炉炼

材料加工技术作业

材料加工技术——作业5 (孙秀丽,21526082) 1:比较滚筒球磨制粉与气流磨制粉的优缺点? 气流研磨法是通过气体传输粉料,并通过粉料自身之间的相互摩擦、撞击或颗粒与制粉装置间的撞击使粗大颗粒细化的一种研磨方法。优点是其由于不使用研磨球及研磨介质,所以气流研磨粉的化学纯度一般比机械研磨法的要高。 滚筒球磨法是传统机械研磨法,其优点是:机械方法制备的粉体粒径分布较宽。缺点是:机械制粉方法获得的粉体粒径一般在微米级,进一步细化效率很低且比较困难、粉碎过程中易于引入杂质,难以满足特种陶瓷对原料粒度和纯度的要求。 2:分析拉瓦尔管喷嘴设计在气流磨金属制粉上的应用原理? 夹带有粉料的高压气流通过拉瓦尔管型硬质合金喷嘴喷出,在管颈部,气体加速,速度达到临界流速,在开口部,气体压力急剧下降,形成绝热膨胀过程。通过拉瓦尔管的喷出,会产生两个效应(1)加速效应,(2)冷却效应。冷流冲击是利用金属的冷脆性而开发的一种粉末制取技术。是将高速运动的粉末颗粒喷射到一个固定的硬质靶上,通过强烈碰撞而使粉末颗粒破碎。冷流冲击法制粉的粉末粒度与气流压力有关,气压越大,则粉末越细。 3:雾化制粉在存在哪三个过程?由这三个过程分析提高雾化制粉,应该采取哪些措施? 过程一:较大的金属的液珠在受到外力冲击的瞬间,破碎成数个小液滴。雾化时液体吸收的能量与雾化液滴的粒径存在一个对应关系,吸收的能量越高则粒径越小;反之亦然。 过程二:液体颗粒破碎的同时,还可能发生颗粒间相互接触,再次成为一个较大的液体颗粒,并且液体颗粒形状向球形转化,这个过程中,体系的总表面能降低,属于自发过程。 过程三:液体颗粒冷却形成小的固体颗粒。 为了提高雾化制粉效率,应该遵循的两个原则如下: 能量交换准则:提高单位时间内单位质量液体从系统中吸收能量的效率,以克服表面自由能的增加。 快速凝固准则:提高雾化液滴的冷却速度,防止液体微粒的再次聚集。 在实际雾化制粉时,依据以上两条准则,通过改变工艺方法、调整工艺参数、改变液体性质等措施,可以达到调整粉末粒度,实现高效制粉的目的。 4:如何提高干压成型粉体成形性能? 模压成形又称为干压成形,是将粉料填充到模具内部后,通过单向或双向加压,将粉料压制成所需形状。采用双向加压可以改善单项加压时坯体沿高度方向的密度不均匀性。 5:分析干压成形弹性后效产生的原因,易于引起单向或者双向干压成形坯体的何种缺陷?在等静压中成形有何应用? 在等静在压制过程中,当卸掉压制压力并把压坯从压模中压出后,由于弹性内应力的作用,压坯将发生弹性膨胀,这种现象称为弹性后效。出现弹性后效的原因是:粉体在压制过程中受到压力作用后,粉末颗粒发生弹塑性变形,在压坯内部聚集很大的内应力。当压制压力消除后,弹性内应力便要松弛,改变颗粒的外形和颗粒的接触状态,从而使压坯发生膨胀。压坯和压模的弹性后效是产生压坯裂纹以及压坯分层的主要原因。 6:如何提高塑性成形泥料的成形性能? 一是增加坯料中可塑性原料的含量;二是球磨,获得颗粒较细的坯料,不仅增加坯料的塑性,还可以提高坯料的烧结活性;三是坯料组织均匀而不含有空气有利于提高坯料的可塑性;四

材料加工数值模拟复习题部分答案

复习题(以下问题用中英文回答均可) 1.简述“材料”、“材料加工”、“材料加工数值模拟”三个概念的含义,并分别举例说明。 材料:材料是人类用于制造、器件、构件、机器或其他产品的那些物质 材料加工:采用铸造、锻压等方法将金属原材料加工成所需的形状尺寸,并达到一定的组织性能要求,又称为材料成型。 材料加工数值模拟:数值模拟即是通过数值计算得到用微分方程边值问题来描述的具体 材料成型问题中工件和模具的温度场、速度场、应力场等,据此预测工件中组织性能的变化以及可能出现的缺陷;同时利用计算机图形技术将分析结果直观、动态地呈现出来,使研究设计人员能通过这一虚拟的材料加工过程检验工件的最终形状、尺寸、性能等是否符合设计要求。 2.简要说明材料加工数值模拟的发展趋势。 (1)研究对象尺度微观化 (2)模拟功能集成化(数值模拟功能已由单一的温度场、流场、应力/应变场、组织 场模拟普遍进入到耦合集成阶段) (3)模拟目的专门化(从共性、通用到专用特性) (4)重视提高数值模拟精度和速度的基础性研究 (5)重视物理模拟与精确测试技术 (6)在并行环境下,工艺模拟与生产系统其它技术环节实现集成,成为先进制造系统的重要组成部分 (7)以商业软件为基础,改进提高研究与普及应用相结合 3.定义或描述热传输的三种基本形式,并举出实例。 (1)导热:热传导是由于温度不同,在导体内存在温差或温度梯度,引起自由电子移动的结果。温差越大,自由电子的移动越激烈。 (2)对流:热对流是由运动的流体质点发生相对位移而引起热能转移的现象。它是利用不同温度的质点密度不同来传热,在流体受热密度变小而上浮的同时,冷的流体就会流过来补充,这样一个周而复始的过程,即所谓对流。 (3)辐射:热辐射是物体受热后,内部原子振动而出现的一种电磁波能量传递。 举例:凝固前后,高温金属----型砂空隙和大气,辐射传热; 浇注时及凝固前,液体金属内部、铸型----大气,对流传热; 凝固前后,金属内部、高温金属----铸型、铸型材料内部,传导传热。(生活 中有很多例子,可以多想几个O(∩_∩)O) 4.写出傅立叶热传导定律的数学表达式,写出对流换热基本公式、辐射换热基本公式, 并解释说明公式中符号所代表的物理量。 傅利叶热传导定律(单向稳态方程):q = k (dT/dx) k-导热系数,thermal conductivity,单位:W/mK; q-热流密度或热通量,heat flux,单位:W/m2; dT/dx-温度梯度,temperature gradient,单位:K/m;

机械制造工艺基础复习题及答案

《机械制造工艺基础》复习题 第1章 切削与磨削过程 一、单项选择题 1、金属切削过程中,切屑的形成主要是( 1 )的材料剪切滑移变形的结果。 ① 第Ⅰ变形区 ② 第Ⅱ变形区 ③ 第Ⅲ变形区 ④ 第Ⅳ变形区 2、在正交平面内度量的基面与前刀面的夹角为( 1 )。 ① 前角 ② 后角 ③ 主偏角 ④ 刃倾角 3、切屑类型不但与工件材料有关,而且受切削条件的影响。如在形成挤裂切屑的条件下,若加大前角,提高切削速度,减小切削厚度,就可能得到( 1 )。 ① 带状切屑 ② 单元切屑 ③ 崩碎切屑 ④ 挤裂切屑 4、切屑与前刀面粘结区的摩擦是( 2 )变形的重要成因。 ① 第Ⅰ变形区 ② 第Ⅱ变形区 ③ 第Ⅲ变形区 ④ 第Ⅳ变形区 5、切削用量中对切削力影响最大的是( 2 )。 ① 切削速度 ② 背吃刀量 ③ 进给量 ④ 切削余量 6、精车外圆时采用大主偏角车刀的主要目的是降低( 2 )。 ① 主切削力F c ② 背向力F p ③ 进给力F f ④ 切削合力F 7、切削用量三要素对切削温度的影响程度由大到小的顺序是( 2 )。 ① f a v p c →→ ② p c a f v →→ ③ c p v a f →→ ④ c p v f a →→ 8、在切削铸铁等脆性材料时,切削区温度最高点一般是在( 3)。 ① 刀尖处 ② 前刀面上靠近刀刃处 ③ 后刀面上靠近刀尖处 ④ 主刀刃处 (加工钢料塑性材料时,前刀面的切削温度比后刀面的切削温度高,而加工铸铁等脆性材料时,后刀面的切削温度比前刀面的切削温度高。因为加工塑性材料时,切屑在前刀面的挤压作用下,其底层金属和前刀面发生摩擦而产生大量切削热,使前刀面的温度升高。加工脆性材料时,由于塑性变形很小,崩碎的切屑在前刀面滑移的距离短,所以前刀面的切削温度不高,而后刀面的摩擦产生的切削热使后刀面切削温度升高而超过前刀面的切削温度。) (前刀面和后刀面上的最高温度都不在刀刃上,而是离开刀刃有一定距离的 地方。切削区最高温度点大约在前刀面与切屑接触长度的一半处,这是因为切屑在第一变 形区加热的基础上,切屑底层很薄一层金属在前刀面接触区的内摩擦长度内又经受了第二 次剪切变形,切屑在流过前刀面时又继续加热升温。随着切屑沿前刀面的移动,对前刀面 的压力减小,内摩擦变为外摩擦,发热量减少,传出的热量多,切削温度逐渐下降。) 9、积屑瘤是在( 1 )切削塑性材料条件下的一个重要物理现象。 ① 低速 ② 中速 ③ 高速 ④ 超高速 10、目前使用的复杂刀具的材料通常为( 4)。 ① 硬质合金 ② 金刚石 ③ 立方氮化硼 ④ 高速钢

工程材料及成型技术基础考试题目

工程材料及成型技术基础考试题目 一、填空 1、常见的金属晶体结构:体心立方晶格、面心立方晶格、密排立方晶格。 2、晶体缺陷可分为:点缺陷、线缺陷、面缺陷。 3、点缺陷包括:空位、间隙原子、置换原子。 线缺陷包括:位错。位错的最基本的形式是:刃型位错、螺型位错。 面缺陷包括:晶界、亚晶界。 4、合金的相结构可分为:固溶体、化合物。 5、弹性极限:σe 屈服极限:σs 抗拉强度:σb弹性模量:E 6、低碳钢的应力应变曲线有四个变化阶段:弹性阶段、屈服阶段、抗拉阶段(强化阶段)、 颈缩阶段。 7、洛氏硬度HRC 压印头类型:120°金刚石圆锥、总压力:1471N或150kg 8、疲劳强度表示材料经无数次交变载荷作用而不致引起断裂的最大应力值。 9、冲击韧度用在冲击力作用下材料破坏时单位面积所吸收的能量来表示。 10、过冷度影响金属结晶时的形核率和长大速度。 11、以纯铁为例α– Fe为体心立方晶格(912℃以下) γ– Fe为面心立方晶格(1394℃以下)、δ– Fe为体心立方晶格(1538℃以下) 12、热处理中,冷却方式有两种,一是连续冷却,二是等温冷却。 13、单晶体的塑性变形主要通过滑移和孪生两种方式进行。 14、利用再结晶退火消除加工硬化现象。 15、冷变形金属在加热时的组织和性能发生变化、将依次发生回复、再结晶和晶粒长大。 16、普通热处理分为:退火、正火、淬火、回火。 17、退火可分为:完全退火、球化退火、扩撒退火、去应力退火。 18、调质钢含碳量一般为中碳、热处理为淬火+高温回火。 19高速钢的淬火温度一般不超过1300℃、高速钢的淬火后经550~570℃三次回火。 三次回火的目的:提高耐回火性,为钢获得高硬度和高热硬性提供了保证。 高速钢的淬火回火后的组织是:回火马氏体、合金碳化物、少量残余奥氏体。 20、铸铁的分类及牌号表示方法。P142

材料加工新技术与新工艺重点资料

一、绪论 1)材料与新材料的概念,生产特点及分类 材料:人类用以制造用于生活和生产的物品、器件、构件、机器以及其他产品的物质,也可简单定义为:材料是可以制造有用器件的物质。 新材料:新出现或正在发展之中的具有优异性能或特定功能的材料,或在传统材料基础上通过新技术处理获得性能明显提高或产生了新功能的材料。 2)材料的作用与地位 1,自20世纪70年代,人们就把信息、能源和材料誉为人类文明的三大支柱,把材料的重要性提高到一个前所未有的高度。2,20世纪80年代又把新材料技术与信息技术、生物技术一起列为高新技术革命的重要标志;事实上,新材料的研究、开发与应用反映着一个国家的科学技术与工业化水平。3,几乎所有的高新技术的发展与进步,都以新材料和新材料技术的发展和突破为前提。 3)材料技术的概念及其分类 材料技术:可以理解为是关于材料的制备、成形与加工、表征与评价,以及材料的使用和保护的知识、经验和诀窍;从学科的观点来考虑,将材料科学和其他相关学科(如计算机、机械、自动控制)的知识应

用于材料(制备)生产和使用的实际,以获得所需的材料产品、提高材料的使用效能的技艺。分类:(1)制备技术;(2)成形与加工技术;(3)改质改性技术;(4)防护技术;(5)评价表征技术;(6)模拟仿真技术;(7)检测与监控技术。 4)材料加工技术的分类及材料科学与工程要素 按照传统的三级学科进行分类,材料加工技术(方法)包括机加工(车钻刨铣磨等)、凝固加工(铸造)、粉末冶金、塑性加工(压力加工)、焊接(连接)、热处理等。 按照被加工材料在加工时所处的相态不同进行分类,材料加工技术包括气态加工、液态加工(凝固成形)、半固态加工、固态加工。 一般认为,现代材料科学与工程由四个基本要素组成:即材料的成分与结构、性质、制备与加工工艺、使用性能,它们之间形成所谓的四面体关系;材料的制备与加工与材料的成分和结构、材料的性质一起,构成决定材料使用性能的最基本的一大要素,也充分反映了材料制备与加工技术的重要作用和地位 发展趋势:过程综台、技术综合、学科综台。 主要特征:(1)性能设计与工艺设计的一体化;(2)在材料设计、制备、成形与加工处理的全过程中对材料的组织性能和形状尺寸进行精确控制 发展方向:(1)常规材料加工工艺的短流程化和高效化;(2)发展先进

加工过程的数值模拟作业

材料加工数值模拟 论文 专业:材料加工 姓名:闫禹伯 学号:2013432109

目录

第一章.铸造过程的数值模拟分析 传统铸件的生产是根据经验确定铸造工艺,先试浇铸,检验试样是否存在浇铸缺陷,如有则修改工艺方案,然后重复上述过程,直至获得合格铸件。由于这种方法必须在浇铸后才能对铸件工艺是否合理进行评价,因而该方法存在设计周期长、生产成本高、效率低等缺点;而且得到的往往不是最终铸造工艺,对于大型或复杂形状铸件该缺点显得更加突出。铸造CAE模拟技术是利用计算机技术来改造和提升传统铸造术,对降低产品的成本、提高铸造企业的竞争力有着不可替代的作用。 一.铸造过程数值模拟的发展现状 计算机技术的飞速发展,已使其自电力发明以来最具生产潜力的工具之一,数字化时代正一步步向我们走来。计算机辅助设计(CAD)、计算机辅助工程分析(CAM)和计算机辅助制造(CAE)等技术在材料科学领域的应用正在不断扩大和深入,已经成为材料科学领域的技术前沿和十分活跃的研究领域。就铸造领域而言,铸造过程数值模拟已经成为计算机在铸造研究和生产应用中最为核心的内容之一,涉及铸造理论、凝固理论、传热学、工程力学、数值分析、计算机图形学等多个学科[1-5],是公认的材料科学的前沿领域。 铸造过程数值模拟技术经过了四十年的发展历程,其间,从简单到复杂、从温度场发展到流动场、应力场,从宏观模拟深入到微观领域,从普通的重力铸造拓展到低压、压铸等特种铸造,从实验室研究进入到工业化实际应用。特别是近些年来,在包括计算机硬件、软件、信息处理技术以及相关学科的强有力的支持下,数值模拟技术在人类社会的各个领域得到了广泛的应用,取得了长足的进步。如果说10年前,大多数铸造技术人员对模拟仿真技术还抱有观望、怀疑的态度的话,那么10年后的今天,已有众多的企业纷纷采用数值模拟技术,应用于实际生产。目前欧美日等西方发达国家的铸造企业普遍应用了模拟技术,特别是汽车铸件生产商几乎全部装备了仿真系统,成为确定工艺的固定环节和必备工具。上世纪90年代中后期以来,国内铸造厂家逐渐认识到其重要性,纷纷引入该技术,目前已有超过200家铸造企业拥有模拟仿真手段,在实际生产中起到了较为

高分子材料加工工艺教学内容

高分子材料加工工艺

高分子材料加工技术复习提纲 一、填空题 1.大材料包括(金属)、(非金属)、(高分子)。 2.高分子材料加工前,原料的状态可分为(粉状)、(粒料)、(溶液)、(分 散体)。 3.成型加工后进行的处理有(调温)、(调湿)、(调温调湿)。 4.塑料可分为(热塑性)塑料、(热固性)塑料两大类。 5.塑料的三态:(玻璃态)、(高弹态)、(粘流态)。 6.高分子材料热机械特性与成型加工的关系(6个空)。 二、名词解释 1.挤出成型:挤出成型时预处理过的物料经料斗加入挤出机中,在外部加热和内摩擦生热作用下以流动状态通过口模成型的方法。

2.注塑成型 :注塑成型是将热塑性塑料先在加热机筒中均匀塑化,然后由螺杆或柱塞推压到闭合的模具型腔中,经冷却定型后得到所需的塑料制品的过程。 3.焦烧:橡胶分子在贮存和生产过程中提前硫化的现象. 4.喷霜:橡胶助剂渗出制品表面的现象。 5.塑料:相对分子量在10000以上,以高分子化合物为基本成分,添加助剂能够自由成型的一类材料的总称。 6.橡胶:橡胶是一种高弹性的高分子化合物,是无定形的高聚物。 7.弹性体:材料在受力发生大变形再撤出外力后迅速回复其近似初始形状和尺寸的材料。 8.相溶性:聚合物的共混物制品在预期的使用期内,其组分始终不析出或者不分层。 三、 简答题 1.简述塑料挤出造粒的工艺流程及影响因素。 原料预处理 配料挤出机头成型冷却 牵引造粒 2.简述塑料挤出成型的工艺流程并阐述影响注塑成型的主要因素。 3.简述橡胶配方的五大体系。 生胶体系、硫化促进活化体系、补强填充体系、防老体系、增塑体系 4.简述压缩模塑的工艺流程及其影响因素。 加料闭模排气固化脱模 清理模具 影响因素:模压压力、模压温度、模压时间。 口模 冷却定型 原料预处理电、加热、内摩擦生热

工程材料及成形技术基础A答案

一、填空题(每空1分,共20分) 1. 机械设计时常用屈服强度和抗拉强度两种强度指标。 2. 纯金属的晶格类型主要有面心立方、体心立方和密排六方三种。 3. 实际金属存在点、线和面缺陷等三种缺陷。 4.F和A分别是碳在α-Fe 、γ-Fe 中所形成的间隙固溶体。5. 加热是钢进行热处理的第一步,其目的是使钢获得奥氏体组织。 6. QT600-3中,QT表示球墨铸铁,600表示抗拉强度不小于600Mpa 。7.金属晶体通过滑移和孪生两种方式来发生塑性变形。 8.设计锻件时应尽量使零件工作时的正应力与流线方向相同 ,而使切应力与流线方向相垂直。 9.电焊条由药皮和焊芯两部分组成。 10.冲裁是冲孔和落料工序的简称。 1.在铁碳合金相图中,碳在奥氏体中的最大溶解度为( b )。 a、0.77% b、2.11% c、0.02% d、4.0% 2.低碳钢的焊接接头中,( b )是薄弱部分,对焊接质量有严重影响,应尽可能减小。 a、熔合区和正火区 b、熔合区和过热区 c、正火区和过热区 d、正火区和部分相变区 3.碳含量为Wc=4.3%的铁碳合金具有良好的( c )。 a、可锻性 b、可焊性 c、铸造性能 d、切削加工性 4.钢中加入除Co之外的其它合金元素一般均能使其C曲线右移,从而( b ) b、增加淬透性 c、减少其淬透性 d、增大其淬硬性 a、增大V K 5. 高碳钢淬火后回火时,随回火温度升高其( a ) a、强度硬度下降,塑性韧性提高 b、强度硬度提高 ,塑性韧性下降 c、强度韧性提高,塑性硬度下降 d、强度韧性下降,塑性硬度提高 6.感应加热表面淬火的淬硬深度,主要决定于因素( d ) a、淬透性 b、冷却速度 c、感应电流的大小 d、感应电流的频率 7.珠光体是一种( b ) a、单相间隙固溶体 b、两相混合物 c、Fe与C的混合物 d、单相置换固溶体8.灰铸铁的石墨形态是( a ) a、片状 b、团絮状 c、球状 d、蠕虫状

“材料加工模拟与仿真”课程教学大纲

西安交通大学 “材料加工模拟与仿真”课程教学大纲 英文名称:Simulation and Numerical Analysis in Materials Processing 课程编码:MA TL4060 学时:24 学分:1.5 适用对象:材料科学与工程专业本科生 先修课程:材料科学基础、材料制备与成形 使用教材及参考书: 陈立亮主编,《材料加工 CAD/CAM基础》,机械工业出版社,2003年 靳玉春主编,《成型过程数值模拟》,兵器工业出版社,2004年 董湘怀主编,《材料成形计算机模拟》,机械工业出版社出版社,2002年 张凯锋主编,《材料热加工过程的数值模拟》,哈尔滨工业大学,2001年 牛济泰主编,《材料和热加工领域的物理模拟技术》,国防工业出版社出版社,1999年 一、课程性质、目的和任务 本课程是向材料专业材料加工方向的高年级本科生介绍现代计算机模拟和仿真技术在材料加工中应用的专业课程。 通过本课程的学习,使学生初步掌握模拟与仿真的概念,培养高级的材料加工研究专门人才。 本课程在教学内容方面着重基本知识、基本理论和基本方法;在培养学生的实践能力方面,着重计算机软件高级开发能力的基本训练。本课程将介绍材料热加工数值模拟的基本知识,包括基本理论、方法、应用等。重点介绍材料热加工中的温度场、应力应变场、流场以及扩散方面的数值模拟与仿真内容。 二、教学基本要求 通过本课程的学习使学生能了解和掌握材料加工模拟与仿真的基础理论和应用技术,为进一步深入学习及从事材料加工研究和应用打下良好的基础。

三、教学内容及要求 第一章:模拟与仿真的基本原理 1. 材料成形数值模拟概述 2. 有限差分方法介绍 3. 有限元方法介绍 第二章:材料加工温度场数值模拟 1. 温度场及传热的基本概念 2. 传热问题的数值计算 3.温度模拟在材料热加工中的应用 第三章:材料热加工过程的应力应变场数值模拟 1. 材料热加工过程的固体应力应变数值分析的基本问题和基本方法 2. 弹性平面问题的有限元法 3. 弹塑性平面问题的有限元法 4. 热弹塑性有限单元法 5.大变形弹塑性有限单元法 第四章:金属热成形过程流场数值模拟 1. 金属液充型过程数值模拟 2. 充型流动的数学模型及数植模拟的前处理 3.数学模型的离散 4.边界条件 5 数值稳定性条件 6.固相析出的处理 第五章:金属中的扩散及扩散过程的数值模拟 1. 扩散的原子理论 2. 扩散过程的宏观描述 3.扩散系数的理论计算与实验测定方法

相关主题
文本预览
相关文档 最新文档