当前位置:文档之家› 仿生机器人的机构设计与运动仿真

仿生机器人的机构设计与运动仿真

仿生机器人的机构设计与运动仿真
仿生机器人的机构设计与运动仿真

前言

随着仿生学与机器人技术的飞速发展,仿生机器人已日益成为机器人领域的研究热点。仿生学将有关生物学原理应用到对工程系统的研究与设计中,尤其对当今日益发展的机器人科学起到了巨大的推动作用[3]。当代机器人研究的领域已经从结构环境下的定点作业中走出来,向航空航天、星际探索、海洋探索、水下洞穴探索、军事侦察、军事攻击、军事防御、水下地下管道探测与维修、疾病检查治疗、抢险救灾等非结构环境下的自主作业方面发展,未来的机器人将在人类不能或难以到达的已知或未知环境里工作。人们要求机器人不仅要适应原来结构化的、己知的环境,更要适应未来发展中的非结构化的、未知的环境。除了传统的设计方法,人们也把目光对准了生物界,力求从丰富多彩的动植物身上获得灵感,将它们的运动机理和行为方式运用到对机器人运动机理和控制的研究中,这就是仿生学在机器人科学中的应用。

本文结合当前仿生机器人的研究现状与未来发展方向,以慧鱼机器人模型为平台制作对机械本体结构、传动系统,控制系统的软件编程进行了系统设计及介绍。现对研究和实验当中取得的主要成果总结如下:

1.通过对甲虫六条腿的结构与功能的研究,设计了六足仿生机器人的足的结构,实现了机器人的结构仿生。

2.在对仿生模型的结构仿生与运动仿生分析的基础上,确定了采用慧鱼ROBO接口板作为控制器。

3.利用慧鱼ROBO接口板实现了电机和微动的控制,从而对机器人进行运动控制。

4.根据三角步态原理,设计了前进、后退以及转弯等不同运动状态。并对机器人进行了运动分析,得出了一般的结论。

5.以慧鱼公司开发的编程软件:ROBO PRO,对机器人进行软件编程,使它按规定的路线运动,实现对其运动的控制。

本次毕业设计的目的和意义是综合运用大学四年里所学到的基础理论知识达到设计目的并提高自己分析问题和解决问题的能力,提高机械控制系统设计、操纵机构的设计能力及运用PRO/E设计软件的建模能力,并增强自身的动手能力与计算机编程能力。

本课题的研究前景十分广阔。例如,可以通过对海蟹的研究,进行仿生设计,制造出海陆两用的仿生机器人,建立基于环境适应行为的智能运动控制策略。在此基础上,为未来智能化近海两栖作战新概念武器结构设计与分析提供新方法。

对于跟踪国际先进军事技术,建立新型作战武器有重要意义。同时,开展对海的

研究也可以为水下科学考察、海底探矿等领域的新型机器人的开发打下理论基础。在对未知空间的探索方面也有极大的发展空间。例如,令人讨厌的苍蝇,与宏伟的航天事业似乎风马牛不相及,但仿生学却把它们紧密地联系起来了。苍蝇是声名狼藉的“逐臭之夫”,凡是腥臭污秽的地方,都有它们的踪迹。苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到。但是苍蝇并没有“鼻子”,它靠什么来充当嗅觉的呢? 原来,苍蝇的“鼻子”——嗅觉感受器分布在头部的一对触角上。

每个“鼻子”只有一个“鼻孔”与外界相通,内含上百个嗅觉神经细胞。若有气味进入“鼻孔”,这些神经立即把气味刺激转变成神经电脉冲,送往大脑。大脑根据不同气味物质所产生的神经电脉冲的不同,就可区别出不同气味的物质。因此,苍蝇的触角像是一台灵敏的气体分析仪。

仿生学家由此得到启发,根据苍蝇嗅觉器的结构和功能,仿制成一种十分奇特的小型气体分析仪。这种仪器的“探头”不是金属,而是活的苍蝇。就是把非常纤细的微电极插到苍蝇的嗅觉神经上,将引导出来的神经电信号经电子线路放大后,送给分析器;分析器一经发现气味物质的信号,便能发出警报。这种仪器已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。这种小型气体分析仪,也可测量潜水艇和矿井里的有害气体。利用这种原理,还可用来改进计算机的输入装置和有关气体色层分析仪的结构原理中。

也可以对陆生的甲虫和蜈蚣等腿部运动的分析核研究制造出相应的产品,应用于军事,工业和科研。

目录

摘要................................................................... I ABSTRACT ................................................................ I I 第1章绪论 (1)

1.1仿生机器人概述 (1)

1.2仿生型多足步行机器人技术综述 (2)

1.2.1国外仿生机器人研究现状 (2)

1.2.2国内仿生机器人的研究现状 (4)

1.3多足机器人的关键技术 (5)

1.3.1协调控制问题 (6)

1.3.2信息融合问题 (6)

1.3.3机构设计问题 (6)

1.3.4微传感和微驱动问题 (6)

1.3.5能源问题 (6)

第2章仿生机器人总体设计方案的确定 (8)

2.1概述机构模型 (8)

2.2本体结构设计 (8)

2.2.1六面连接体设计 (8)

2.2.2步行足的结构模型 (9)

2.2.3仿生六足虫机器人的整体结构 (10)

2.2.4骨架的搭建 (11)

第3章仿生机器人运动系统的设计 (12)

3.1腿部的运动分析和设计 (12)

3.2传动部分结构设计 (12)

3.3步态规划及分析 (13)

3.3.1关于步态的参数描述 (13)

3.3.2 三角步态运动原理 (14)

第4章控制系统的设计 (16)

4.1控制的硬件系统设计 (16)

4.2慧鱼ROBO接口板介绍 (16)

4.2.1 外形尺寸和重量 (16)

4.2.2 电源9V直流,1000M (16)

4.2.3 处理器和存储器 (16)

4.2.4 输出M1-M4或者O1-O8 (16)

4.2.5 数字量输入I1-I8 (17)

4.2.6 模拟阻抗输入AX和AY (17)

4.2.7 模拟电压输入A1和A2 (17)

4.2.8 距离传感器输入D1和D2 (17)

4.2.9 红外线(IR)输入 (17)

4.2.10 USB接口和串口 (17)

4.2.11 接口的选择 (18)

4.2.12 端口的固定设置 (18)

4.2.13 红外测试功能 (18)

4.2.14 26针插槽 (18)

4.2.15 I/O扩展板用插槽 (19)

4.2.16 无线射频通信模块用插槽 (19)

4.2.17对接口板的程序控制 (19)

4.3ROBO接口板与机器人的连接 (22)

4.4软件系统 (22)

4.4.1软件介绍 (22)

4.4.2运动规划 (22)

4.4.3程序设计 (23)

第5章运动仿真 (26)

5.1计算机仿真技术 (26)

5.1.1基于proe的机器人运动仿真 (26)

5.1.2实物仿真 (28)

第6章总结与展望 (30)

致谢 (31)

参考文献 (32)

摘要

随着仿生学与机器人技术的飞速发展,仿生机器人已日益成为机器人领域的研究热点。本论文结合理论与实践,对仿生机器人的结构与控制系统进行了研究。

本论文主要研究内容包括仿生机器人的总体方案设计、驱动系统与运动系统的设计、运动控制系统的软硬件设计。总体方案设计主要讨论了仿生机器人的机械本体结构,机器人足的结构设计。驱动系统和运动系统主要分析了腿部的运动,机器人的运动规划和驱动系统结构。运动系统硬件设计是采用的慧鱼ROBO接口板。软件设计是结合慧鱼公司开发的编程软件(robot pro)进行编程。运用PROE对机器人进行运动仿真,并通过试验实现了设计要求。

关键词:仿生机器人,结构,控制,编程,运动仿真

ABSTRACT

With the fast development of the bionics and robot technology, bionic robot becomes a popular topic in the area of robot research. By combining theory and practice, the control system and structure of the bionic mobile robot were studied in this paper .

This paper main studies bionic hexapod—robot’s overall progra m design, the drive system and the movement system design, and the hardware and software design of the motion control system. Overall design of the bionic robot mainly describes mechanical body structure of the robot and the structure design of the robo t’s foot, T he legs’ campaign, robot’s motion planning and the structure of driving system were analyzed in the drive system and motion system . The fisher technik computing robo interface was used as the hardware of the movement system. Software design combines programming software (robot pro)of the Emily fish to program. Then the model is introduced to PROE software for dynamic simulation, then realize the requirement of the design through the experimentation.

Keywords: Bionic hexapod—robot,Structure,Control,Programming, Dynamic simulation

第1章绪论

1.1 仿生机器人概述

仿生学是研究生物系统的结构和性质以为工程技术提供新的设计思想及工作原理的科学。

仿生学一词是1960年由美国斯蒂尔根据拉丁文“bios”(生命方式的意思)和字尾“nlc”(“具有……的性质”的意思)构成的。

仿生学(bionics)在具有生命之意的希腊语bion上,加上有工程技术涵义的ics 而组成的词。大约从1960年才开始使用。生物具有的功能迄今比任何人工制造的机械都优越得多,仿生学就是要在工程上实现并有效地应用生物功能的一门学科。例如关于信息接受(感觉功能)、信息传递(神经功能)、自动控制系统等,这种生物体的结构与功能在机械设计方面给了很大启发。可举出的仿生学例子,如将海豚的体形或皮肤结构(游泳时能使身体表面不产生紊流)应用到潜艇设计原理上。仿生学也被认为是与控制论有密切关系的一门学科,而控制论主要是将生命现象和机械原理加以比较,进行研究和解释的一门学科。

苍蝇,是细菌的传播者,谁都讨厌它。可是苍蝇的楫翅(又叫平衡棒)是“天然导航仪”,人们模仿它制成了“振动陀螺仪”。这种仪器目前已经应用在火箭和高速飞机上,实现了自动驾驶。苍蝇的眼睛是一种“复眼”,由30O0多只小眼组成,人们模仿它制成了“蝇眼透镜”。“蝇眼透镜”是用几百或者几千块小透镜整齐排列组合而成的,用它作镜头可以制成“蝇眼照相机”,一次就能照出千百张相同的相片。这种照相机已经用于印刷制版和大量复制电子计算机的微小电路,大大提高了工效和质量。“蝇眼透镜”是一种新型光学元件,它的用途很多。

自然界形形色色的生物,都有着怎样的奇异本领?它们的种种本领,给了人类哪些启发?模仿这些本领,人类又可以造出什么样的机器?这里要介绍的一门新兴科学——仿生学。

仿生学是指模仿生物建造技术装置的科学,它是在本世纪中期才出现的一门新的边缘科学。仿生学研究生物体的结构、功能和工作原理,并将这些原理移植于工程技术之中,发明性能优越的仪器、装置和机器,创造新技术。从仿生学的诞生、发展,到现在短短几十年的时间内,它的研究成果已经非常可观。仿生学的问世开辟了独特的技术发展道路,也就是向生物界索取蓝图的道路,它大大开阔了人们的眼界,显示

了极强的生命力。

仿生学是20世纪60年代出现的一门综合性边缘科学.它由生命科学与工程技术学科相互渗透、相互结合而成,通过学习、模仿、复制和再造生物系统的结构、功能、工作原理及控制机制,来改进现有的或创造性的机械、仪器、建筑和工艺过程。仿生学将有关生物学原理应用到对工程系统的研究与设计中,尤其对当今日益发展的机器人科学起到了巨大的推动作用口当代机器人研究的领域已经从结构环境下的定点作业中走出来向航空航天、星际探索、军事侦察与攻击、水下地下管道探测与维修、疾病检查治疗、抢险救灾等非结构环境下的自主作业方面发展.未来的机器人将在人类不能或难以到达的已知或未知环境里工作。人们要求机器人不仅要适应原来结构化的、已知的环境,更要适应未来发展中的非结构化的、未知的环境。除了传统的设计方法,人们也把目光对准了生物界,力求从丰富多彩的动植物身上获得灵感,将它们的运动机理和行为方式运用到对机器人运动机理和控制的研究中,这就是仿生学在机器人科学中的应用。这一应用已经成为军用机器人研究领域的热点和未来发展方向之一。

最新发展:仿生学与遗传学的整合是系统生物工程(systems bio-engineering)的理念,也就是发展遗传工程的仿生学。人工基因重组、转基因技术是自然重组、基因转移的模仿,还天然药物分子、生物高分子的人工合成是分子水平的仿生,人工神经元、神经网络、细胞自动机是细胞系统水平的仿生,跟随单基因遗传学、单基因转移发展到多基因系统调控研究的系统遗传学(system genetics)、多基因转基因的合成生物学(synthetic biology),以及纳米生物技术(nano-biotechnology)、生物计算(bio - computation、DNA计算机技术的系统生物工程发展,仿生学已经全面发展到一个从分子、细胞到器官的人工生物系统(artificial biosystem)开发的时代。

1.2仿生型多足步行机器人技术综述

1.2.1国外仿生机器人研究现状

由于仿生机器人所具有的灵巧动作对于人类的生产和科研活动有着极大的帮助,所以,自80年代中期以来,机器人科学家们就开始了有关仿生机器人的研究。

(1)LAURON系列六足机器人

德国的卡尔斯鲁厄大学的KarstenBetas教授所领导的研究小组对多足仿生机器人进行了多年的研究。比较有代表性的研究成果是他们研制的LAURON系列六足机器人(如

图1.1所示)该机器人由躯体、头部和六

条相同的足构成。躯体装载有微控制器、

处理单元、电源和摄像头所有部件都装在

本体上,因此可以满足自主性的要求。它

总重16kg ,长宽均为70cm ,最大承载15kg

最大行进速度为0.5m /s 。它装有多种传

感器,包括轴编码器、力阻传感器、倾角

传感器、红外测距传感器以及用作视觉传

感器所的摄像头。通过对多种传感器反馈

信号的处理,LAURONII 可以实现不平地面上的自主运动。

(2)Hamlet 仿昆虫六足步行机器人

新西兰的坎特伯雷大学

(University of Canterbury)在2000

年底研制成功了一种微型伺服电机驱

动的六足步行机器人。它是以竹节虫为

生物模拟对象的具有全方位步态的步

行机器人(如图1.2所示)。该机器人

共有六条三关节的步行足,单个关节由

一台功率为IOW 的Maxon 电机驱动通过

齿轮箱减速输出4.5Nm 的扭矩。每条

步行足端部装有一个框架应变结构的

三维力传感器并使用碳纤维包覆的保护稍对接触地面的足端进行保护。该机器人采用二级分布式控制框架,硬件部分采用了集成了2个MS320C44芯片的集成控制板卡对关节驱动信号和力、姿态传感器信号进行处理运算。该机器人尺寸为650mmX500mmX400mm ,重12.7kgt 能以0.2m /s 的平均速度

在复杂地形中自主行走运动.并具有

越障能力。

(3)Lobstei 机器龙虾

在美国的国防高级研究项目代理

部(Defense Advanced Research

图1.1 LAURON Ⅱ 图1.2 Hamlet 机器人

Projects Agency DARPA)资助下,美国海军与马萨产品公司和波士顿的东北大学联合研究的仿龙虾八足步行机器人(如图1.3所示)可以在海底进行水雷搜索和引爆的作业。它包括4×8英寸的壳体,壳体由8条3自由度腿驱动,能够浮游与爬行,头部装有2个钳子,起到液动控制舵的作用,尾部伸出8英寸长的水流动力控制平面来保持稳定。机器龙虾的关节动作采用肌肉型驱动器(用形状记忆合金镍钦诺做成的力可恢复型人造肌肉)控制。该控制器采用了一套决定机器龙虾行为的行为库,行为库是基于围绕决定机器龙虾行动的一组状态变量而组织的命令。同时它也能承载用于销毁水雷的传感器和少量炸药。

(4) Hexplorer 2000六足步行机器人

加拿大Waterlo大学研究开发的

Hexplorer 2000步行机器人如图1.4所

示,在一个圆形机体上均布有6条腿。

每条腿有3个关节,每个关节由一个独

立的电机控制。控制系统采用TI公司的

C2000系列DSP,整个系统共采用7片

DSP芯片分层控制,其中每片控制一条

腿3个关节,另外一片作为中心控制器,

向另外6片发送和接收指令。每条腿是

一个独立的子系统,依靠从中心控制器

图1.4 Hexplorer 2000

传来的位置信号来进行步态规划。通信

和事件管理采用CAN总线接口模式。

1.2.2国内仿生机器人的研究现状

国内在相关领域的研究起步较晚,国内对多足步行世纪八十年代末九十年代初起步。北京航空航天大学于上个世纪九十年代初研制过一台仿牲畜的四足步行机器人,它采用液压驱动,每足有二个自由度,总重约二吨。

中国科学院沈阳自动化研究所也开展了这个领域的研究工作,它与长春光机所于1989年3月共同研制了海蟹号六足步行机器人。它采用的是极坐标的具有25个自由度的六足机构,潜深300米,重1.5吨。

清华大学在1990年研制出了一台QW-II 型全方位四足步行机器人,各足沿圆周

均匀分布,每条腿三个自由度,由电机驱动,大小腿垂直布置。在此样机基础上做了直走,横走各种步态和转弯等各种实验研究。

上海交通大学的马培荪等人研制了一种形状记忆合金丝驱动的微小型六足机器人,它的行走机构重14.18g,平均行走速度为1 mm/s,采用4.5 V电源,控制系统简单、小巧、轻便。上海交通大学还研制出了一种仿哺乳动物的关节式四足步行机器人“JTLJWM-III",它能以对角线步态行走,在足底加了PVDF测力传感器,在上位机中利用模糊神经网络系统对力反馈信息进行处理,调整步行参数,提高了步行的稳定性。目前有北航、上海交大、北科大、国防科大、东南大学、沈阳自动化所和哈工大等科研院所正在从事仿生机器人的研究。

北航机器人

所在国家“863”

智能机器人主题

支持下,研制出

了能实现简单抓

取和操作作业的

多指灵巧手(如

图 1.5所示)。

BH-4型灵巧手采

图1.5北航BH-4灵巧手

用精密齿轮传动

结构,具有4手指,16关节,每关节为一直流电机驱动,并实现了将电机安装于手指中。控制系统采用多层多目标递阶控制系统。其中,由PC机完成物体的理想轨迹跟踪层、手指协调层工作,由四个控制器完成四个手指关节位置控制。手指内各关节控制器在物理上位于同一控制器内,以便必要时相互交换信息提高控制精度,减小藕合造成的控制误差。同时北航机器人所的一个研究小组正在进行微小型鱼类仿生机器人(潜水器)技术的研究,研制了仿生“机器鱼”实验模型,并开展“多机器鱼协调控制”技术研究。哈工大机器人研究所研制了高灵活性的仿人手臂及拟人双足步行机器人。其仿人手臂具有工作空间大、关节无奇异姿态、结构紧凑等特点。通过软件可实现避障、回避关节极限和优化动力学性能等。

1.3多足机器人的关键技术

现代仿生学与机器人技术相结合的研究和应用己经得到了各国相关研究人员和专

家的极大关注,取得了大量可喜成果和积极进展,主要集中在以下几个方面开展广泛和深入的研究。

1.3.1协调控制问题

机器人的自由度越多,机构越复杂,必将导致控制系统的复杂化。复杂大系统的实现不能全靠子系统的堆积,要做到“整体大于组分之和”,同时要研究高效优化的控制算法才能使系统具有实时处理能力。

1.3.2信息融合问题

在仿生机器人的设计开发中,为实现对不同物体和未知环境的感知,都装备有一定量的传感器,多传感器的信息融合技术把分布在不同位置的多个同类或不同类的传感器所提供的局部境的不完整信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,从而提高系统决策、规划、反应的快速性和正确性。

1.3.3机构设计问题

合理的机构设计是仿生机器人实现的基础。生物的形态经过千百万年的进化,其结构特征极具合理性,而要用机械来完全仿制生物体几乎是不可能的,只有在充分研究生物肌体结构和运动特性的基础上提取其精髓进行简化,才能开发全方位关节机构和简单关节组成高灵活性的机器人机构。

1.3.4微传感和微驱动问题

微型仿生机器人作为仿生机器人中特殊的种类,绝不是传统常规机器人的按比例缩小,它的开发涉及到电磁、机械、热、光、化学、生物等多学科。对于微型仿生机器人的制造,需要解决一些工程上的问题。如动力源、驱动方式、传感器集成控制以及同外界的通讯等,实现微传感和微驱动的一个关键技术是机电光一体结合的微加工技术。同时,在设计时必须考虑到尺寸效应、新材料、新工艺等问题。

1.3.5能源问题

要使机器人在相对较广的范围内完成较长时间的复杂工作,能源问题是不得不考虑的。目前,广泛作为无缆机器人能源的电池还不能满足机器人长时间,大范围的工

仿生六足机器人中期报告

编号: 哈尔滨工业大学 大一年度项目中期检查报告 项目名称:仿生六足机器人 项目负责人:学号 联系电话:电子邮箱: 院系及专业:机电工程学院 指导教师:职称: 联系电话:电子邮箱: 院系及专业:机电工程学院 哈尔滨工业大学基础学部制表 填表日期:2014 年 6 月28 日

一、项目团队成员(包括项目负责人、按顺序) 二、指导教师意见 三、项目专家组意见

四、研究背景 1.研究现状 4.1国内研究现状 随着电子技术发展,计算机性能的提高,使多足步行机器人技术进入了基于计算机控制的发展阶段。其中有代表性的研究为1993年,美国卡内基-梅隆大学开发出有缆的八足步行机器人DANTE,图1所示,用于对南极的埃里伯斯火山进行了考察,其结构由2个独立的框架构成。这一阶段研究的重点在于机器人的运动机构的设计、机器人的步态生成与规划及传统的控制方法在机器人行走运动控制过程的应用。Boston Dynamics公司的Big Dog四足机器人用于为军队运输装备,其高3英尺,重165磅,可以以3.3英里的速度行进,其采用汽油动力。 图1 Adaptive Suspension Vehicle 图2 Odex1步行机器人 图3 MIT腿部实验室的四足和双足机器人图4 DANTE步行机器人 由于新的材料的发现、智能控制技术的发展、对步行机器人运动学、动力学高效建模方法的提出以及生物学知识的增长促使了步行机器人向模仿生物的方向发展。 4.2国外研究现状 我国步行机器人的研究开始较晚,真正开始是在上世纪80年代初。1980年,中国科学院长春光学精密机械研究所采用平行四边形和凸轮机构研制出一台八足螃蟹式步行机,主要用于海底探测

最新西华大学机器人创新设计实验报告(工业机械手模拟仿真)

实验报告 (理工类) 课程名称: 机器人创新实验 课程代码: 6003199 学院(直属系): 机械学院机械设计制造系 年级/专业/班: 2010级机制3班 学生姓名: 学号: 实验总成绩: 任课教师: 李炜 开课学院: 机械工程与自动化学院 实验中心名称: 机械工程基础实验中心

一、设计题目 工业机器人设计及仿真分析 二、成员分工:(5分) 三、设计方案:(整个系统工作原理和设计)(20分) 1、功能分析 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。 本次我们小组所设计的工业机器人主要用来完成以下任务: (1)、完成工业生产上主要焊接任务; (2)、能够在上产中完成油漆、染料等喷涂工作; (3)、完成加工工件的夹持、送料与转位任务; (5)、对复杂的曲线曲面类零件加工;(机械手式数控加工机床,如英国DELCAM公司所提供的风力发电机叶片加工方案,起辅助软体为powermill,本身为DELCAM公司出品)

仿生机器人课程报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 仿生感知与先进机器人技术 课程报告(1) 报告题目:仿生机械的发展 院系:机电学院 班级: 姓名: 学号: 哈尔滨工业大学机电工程学院

仿生学及仿生机械学的由来 仿生学(Bionics)是模仿生物的特殊本领的一门科学。仿生学籍了解生物的结构和功能原理,来研制新的机械和新技术,或解决机械技术的难题。1960年由美国的J.E.Steele 首先提出。 仿生学这个名词来源于希腊文“Bio”,意思是“生命”,字尾“nic”有“具有……的技术中利用这些原理,提供新的设计思想、工作原理和系统架构的技术科学。 仿生机械学是上世纪60年代初期出现的一门综合性的新兴边缘学科,它是生命科学与工程技术科学相互渗透、相互结合而形成的。包含着对生物现象进行力学研究,对生物的运动、动作进行工程分析,并把这些成果根据社会的要求付之实用化。 仿生学的研究方向 (1)生物材料力学和机械力学,是以骨或软组织(肌肉、皮肤等)作为对象,通过模型实验方法,测定其应力、变形特性,求出力的分布规律。还可根据骨骼、肌肉系统力学的研究,对骨和肌肉的相互作用等进行分析。另外,生物的形态研究也是一大热门。因为生物的形态经过亿万年的变化,往往已形成最佳结构,如人体骨骼系统具有最少材料、最大强度的构造形态,可以通过最优论的观点来学习模拟建造工程结构系统。 (2)生物流体力学,主要涉及生物的循环系统,关于血液动力学等的研究已有很长的历史,但仍有许许多多的问题尚未解决,特别是因为它的研究与心血管疾病关系十分密切,已成为一门倍受关注的学科。 (3)生物运动学,生物的运动十分复杂,因为它与骨骼和肌肉的力学现象、感觉反馈及中枢控制牵连在一起。虽然各种生物的运动或人体各种器官的运动测定与分析都是重要的基础研究,但在仿生机械学中,目前特别重视人体上肢运动及步行姿态的测定与分析,因为人体上肢运动机能非常复杂,而下肢运动分析对动力学研究十分典型。这对康复工程的研究也有很大的帮助。 (4)生物运动能量学,生物的形态是最优的,同样,节约能量消耗量也是生物的基本原理。从运动能量消耗最优性的特点对生物体的运动形态、结构和功能等进行分析、研究,特别是对有关能量的传递与变换的研究,是很有意义的。

六足仿生机器人实验室开放项目结项报告

淮北师范大学实验室开放项目
总结报告
基于 STC12C5A60S2 单片机的六足机器人

院: 物理与电子信息学院 韩润 陆家双
负 责 人:
小组成员: 史浩东 史良东 张莹莹 指导老师: 方 振 康强强 国

一 、项目重述
1.1 项目名称:智能六足机器人 1.2 项目背景及意义:
背景:在社会迅速发展的今天,单片机的的运用已经渗透到我们生活的每个 角落,也似乎很难找到哪个领域没有单片机的足迹。智能仪表、医疗器械,导弹的 导航装置, 智能监控、通讯与数据传输 ,工业自动化过程的实时控制和数据处理 , 广泛使用的各种智能 IC 卡, 汽车的安全保障系统, 动控制领域的机器人 , 数码像 机、电视机、全自动洗衣机的控制,电话机以及程控玩具、电子宠物等等,这些都 离不开单片机。 意义:单片机的学习、开发与应用将对于现代社会的发展,经济的繁荣,和提高 满足人类日益增长的物质文化需求有着至关重要的作用。 也成就了一批又一智能 化控制的工程师和科学家。科技越发达,智能化的东西就越多。学习单片机是社 会发展的必然需求,也是我们现代高级技工所必须要掌握的技能。
1.3 项目内容:
以 51 单片机为控制器的核心, 利用单片机内部中断产生 PWM 波控制舵机。 利用开环函数组成的动作组使六足做仿生动作,制作出了动作灵活、价格低廉以 及模块化结构的六足机器人。该机器人能够严格按三角步态进行行走,实现诸如 直线、转弯、躲避障碍物和追踪物体等行走功能。

二、方案简介
本项目可细分为控制部分、机械部分、恒流源部分、超声波检测部分。 控制部分采用 STC12C5A60S2 单片机为核心处理器。通过 PWM 波使舵机 转动,机械部分采取合理的机械构造,实现机器人在行走的情况下的平稳。恒流 源部分采取 LM7805 稳压芯片为单片机和舵机供电, 由于舵机在运转的过程中会 有较大的电流波动。 因此采用恒流电路进行恒流。超声波壁障采用超声波遇故障 反射的原理。实现对物体识别和规避。

智能机器人课程报告

智能机器人课程报告 学院:电气工程与自动化 姓名:郭胜 班级:自动化10-06 内容提要:远古时期地球上诞生了无组织的单细胞生物,然后形成了具有一定组织结构的多细胞生物,最后形成了具有复杂系统的高等生物,而我们人类则是其中的佼佼者。人类具有复杂的神经系统,具

有超强处理能力和自我意识的大脑,以及灵活坚韧的身躯,这使得人类在长期自然竞争中生存下来。随着科技的发展的,很多问题的解决需要耗费很多人力,人们迫切需要一种机器来代替自己做事情,这就形成了机器人的雏形。随着科技的发展,以及认知心理学,神经心理学,和计算科学的发展,人们提出了制造具有判断,推理,学习,自我意识的机器人的想法,这就是人工智能。智能机器人就是基于人工智能的具有判断,思维,推理,学习的能力的新一代机器人,他们在一定程度上具有了人类的思维方式。 关键词:人工智能,智能机器人,机器视觉 一关于智能机器人的一些认识 我们从广泛意义上理解所谓的智能机器人,它给我们的最深刻的印象是一个独特的进行自我控制的“活物”。其实,这个自控“活物”

的主要器官并没有像真正的人那样微妙而复杂,他的组织结构和工作方式在一定程度上模仿了生物体的功能与控制机制。下面我们以人体的工作机制为引例,引入机器世界的组成结构。 人具有耳朵,眼睛,鼻子,舌头,等感觉器官,用于接受外界刺激,外界刺激经由这些传感器变成微电信号,经由神经传导网络送入各级处理神经系统进行处理,处理结果以神经冲动的形式传导给相应的组织和器官,从而引起人体对于外界刺激的反应。在这个过程中,我们不难发现,人类的活动机制包括宏观上的硬件和软件组成,其中硬件是各种功能形成的前提,是逻辑,抽象的基础;软件是基于硬件的高级抽象性的活动,是一种虚拟的逻辑形式,他以思维,意识的形式存在。软件硬件的结合,才能形成具有一定行为能力的个体。机器人就在以上理论基础上建立的复杂系统的集合。和人体相似,机器人需要各种传感器对外界和本体内部信息进行收集和转换,然需要各种通信网络将信息准确,高速的传输出去,之后需要具有高处理能力的处理器对传入的信号进行分析和处理,最后需要具有一定自由度的机械系统去完成处理器的指令要求。总的来说,机器人也是有两个大部分总成,一个是实现各种机械运动和逻辑活动的硬件,二是实现各种控制的程序和数据。 机器人可以根据构造他们的硬件和软件进行分类。根据硬件的不同,可以将机器人分为双足,三足,多足,类人型等,根据软件部分大体可以分为非智能机器人和智能机器人。智能机器人是基于人工智能的机器人,他们具有形形色色的内部信息传感器和外部信息传感器,如

仿生鱼机器人设计说明书

仿生鱼机器人设计说明书

目录 第一章绪论 (3) 1.1目的及意义 (4) 1.2研究现状 (4) 1.3本文的主要工作 (4) 第二章概述 (5) 2.1 整体构思 (5) 2.2 仿生依据 (5) 第三章机械结构设计 (7) 3.1机械设计思路及建模 (7) 3.2创新点 (8) 3.3 零件明细 (9) 第四章仿真分析 (10) 第五章电路设计 (12) 第六章控制系统 (13) 第七章总结 (17) 7.1优势及创新点 (17) 7.2主要关键技术 (17) 7.3 应用前景与趋势 (18) 7.4 不足与改进 (18)

仿生鱼机器人设计说明书 第一章绪论 1.1目的及意义 21世纪是海洋的世纪,占全球71%面积的海洋将是下一个世纪,也是未来人类赖以生存的资源海洋,对于人类的发展和社会的进步将起到至关重要的作用。在民用上,海洋蕴藏着丰富的矿物资源、海洋生物资源和能源,是人类社会可持续发展的重要财富。因此,对于海洋的开发和争夺成了很多发达国家的战略重点,而且愈演愈烈。在各种海洋技术中,作为用在一般潜水技术不可能到达的深度或区域进行综合考察和研究并能完成多种作业使命的水下机器人使海洋开发进入了新时代。随之“蓝色经济”越来越成为各沿海地区经济发展的“正能量”,大规模的开发探测和利于海洋资源,已经成为我们21 世纪要面对和必须解决的现实问题。另外,军事方面对其需求也日益增加,为了适应这种需求,研究和开发潜水器和水下机器人成为了极佳的选择。鱼类经过长期的自然选择,具备非凡的游动能力,近年来随着仿生技术的进步,人类纷纷模仿自然界中鱼类的运动方式和运动器官,即各种各样的水下机器人。世界上第一台水下机器人“Poodle”诞生于1953 年。近20 年来,水下机器人有了很大的发展,它们既可军用又可民用。到目前为止,全世界大约共建造了6000 多台各种各样的水下机器。水下机器人有广泛的应用空间,民用和军用均可,不仅可以代替潜水员在深水长时间工作,降低工作风险,提高工作效率,而且还可以检测水污染状况,监测鱼类生长状况,探测海底火山活动状况;在军事方面,可以用于跟踪敌人的船舰和潜艇,捕获地方军事信息,也可以降低敌人对我军的探测几率,甚至可以携带炸药至敌人军舰处,炸毁敌方舰艇的动力系统,摧毁敌方舰队。此外,仿鱼形水下机器人还可以应用于海洋动物园。仿鱼形水下机器人是一种集机械、智能控制与一体的高科技设备,在民用、军事、科学研究等领域体现出了广阔的应用前景和巨大的潜在价值。

能力风暴机器人结题报告

编号:201301143 哈尔滨工业大学 大一年度项目结题报告 越野避障机器人的研究项目名称: 项目负责人:学号: 联系电话:电子邮箱: 院系及专业: 指导教师:职称:

联系电话:电子邮箱: 院系及专业: 哈尔滨工业大学基础学部制表 填表日期:2014年7 月9日1 一、项目团队成员(包括项目负责人、按顺序) 二、指导教师意见

三、项目专家组意见 四、项目成果 1

摘要 自从我们小组确定了《越野避障机器人的研究》这一科创项目后,以小组合作的形式进行了为期一学期的学习,主要针对其中的控制系统进行测试与运行。我们学习了传感器的使用以及相关运动指令的编程,并达到了预期效果。目前,我们能初步的控制机器人使之按照预定程序有效避障,课题目标基本达成,并采用实例展示。 有效避障运动编程关键词:避障机器人 (一)课题背景 1.项目意义 自从1959年世界上诞生了第一台机器人以来,机器人技术取得了长足的进步和发展至今已发展成为一门综合性尖端科学。机器人技术的发展集成了多学科的发展成果,代表高技术的发展前沿,是一个国家高科技水平和工业自动化程度的重要标志和体现。 随着计算机技术和遥控技术的迅猛发展,机器人正向多功能、多领域、智能化方向发展,各种用途的机器人如仿生机器人,灭火机器人,越野机器人等已开始研发、生产、应用并取得了不错的效果。而在近期发生的一系列自然灾害中避障探路机器人更是发挥了重要的作用。作为越野机器人的一个重要分支,它是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统,能够在大范围运动,广泛的为人类承担各种任务,不只是搜救,更能完成深海地貌分析等多种任务。因此对越野机器人的避障技术研究无疑具有现实意义。 2.研究现状 随着计算机技术、传感器技术的发展和进步,避障探路机器人向实用化、智能化、系列化进军,日本、德国、美国都取得了各方面的先进研究成果。我国的研究从八五期间开始,至今在清华大学,哈尔滨工业大学,中科院自动化所,浙江大学等都取得了可喜的研究成果。目前,我国避障探路机器人的研究发展水平还和发达国家有一定的差距。 避障探路机器人的研究一直是一个重大的主题,它要求机器人必须能在具有障碍物的复杂环境中完成局部在线避障,需要解决三个重要问题:障碍物在空间的位置方向的精确检测;所获信息的分析和环境模型的建立;使机器人安全避障的策略。目前机器人的环境建模方法有以下几种: 可视图法(VGraph):由Nilsson在1968年提出的,其算法简单且能找到最短路径,但是由于其缺乏灵活性,在障碍物较多时,搜索时问将会很长并且要求障碍物的形状不能接近圆形,因此现在限制了其实际的应用。进而现在通常采用基于切线图法(Tangent Graph)和Voronoi法的改进可视图法。 栅格法(Grid):由W.E.Howden在1968年提出的,是目前研究较广泛的路径规划方法。其中栅格的大小影响着环境信息存储量的大小和时间的长短。栅格划

仿生机器人报告-仿生扑翼UUV

仿生扑翼UUV研究现状分析 摘要 本文对一种新型扑翼UUV的研究现状做了分析。首先简要介绍扑翼UUV的产生背景和应用前景,然后对扑翼UUV进行了流体动力学分析、推进性能分析并对基于CPG的扑翼UUV运动控制方法进行了分析。通过流体动力学分析得到了关于扑翼UUV攻角和翼型对推进性能的影响,推进性能分析则得到了扑动频率、拍动幅度和翻转幅度对推进性能的影响。基于CPG的运动控制方法将CPG引入到UUV 的控制中,简化了控制参数,可实现扑翼UUV的节律运动和转弯运动。 关键词:仿生扑翼UUV 流体动力学推进性能 CPG

1绪论 1.1仿生扑翼UUV产生背景 无人水下航行器(Unmanned Undersea Vehicle)的研究工作开始于20世纪中期,进入21世纪以来,由于人类对海洋资源开发、海洋环境研究的重视以及海洋在军事领域的重要作用,水下探测器的研究越来越受到重视。在过去的十年中,全世界大约有60个UUV研制计划,并建造了大约200个UUV(大部分为实验用),但是随着技术的成熟和近海工业发展的需要,商业用途的UUV也开始出现,并且在不断地发展和壮大。 然而,以往的UUV均是以传统的螺旋桨做为推进动力。在自然界中,有一类依靠扑翼游动的生物如海龟、企鹅等,他们的运动方式效率较高,而且机动灵活。仿生扑翼UUV是近几年提出的一种利用仿生扑翼作为推动力的新型UUV,正是以海龟等扑翼游动生物为仿生对象,依靠扑翼推进结构为其提供动力实现整个UUV 在水下的各种运动,包括上浮、下潜、转弯等,具有推进效率高、稳定性强、机动性及操纵性好等优点。 1.2仿生扑翼UUV的特点 仿生扑翼UUV的仿生对象是依靠扑翼进行运动的动物,他们具有爆发力强、机动性高、稳定性好等特点,对于游动和姿态的控制能力是目前任何水下设备无法模拟的。与传统的螺旋桨推进方式相比,水下扑翼UUV具有以下特点: ●良好的运动性能:仿生扑翼推进器可提高水下航行器的起动、加速和转向性 能,在低速条件下保持高机动性和稳定性。 ●流体性能更完善:海洋生物通过扑翼的划动产生推进力,具有更理想的流体 力学性能。 ●能源利用率高:仿生扑翼推进器可以大大节省能量,提高能源利用率,延长 航行器的水下作业时间。 ●噪声小:仿生扑翼推进器运行期间的噪音比螺旋桨运行期间的噪音要低得 多,不易被对方声纳发现或识别,有利于突防,具有重要的军事价值。 ●推进器和舵的统一:仿生扑翼推进器的应用将改变目前螺旋桨和舵机系统分 开,功能单一,结构庞大,机构复杂的情况,实现桨一舵功能的合二为一。 ●可采用多种驱动方式:仿生扑翼推进器可采用机械驱动,也可以采用液压驱 动和气压驱动,以及混合驱动方式;对于微小型水下运动装置,可采用形状记忆合金、人造合成肌肉以及压电陶瓷等多种驱动元件。 1.3仿生扑翼UUV的用途 由于仿生扑翼UUV较传统UUV的优势,其用途更加广泛。

仿生蜘蛛机器人的设计与研究

毕业设计(论文)仿生蜘蛛机器人的设计与研究 姓名:寇艳虎 学号: 专业:机械工程与自动化 系别:机械与电气工程系 指导教师:孔繁征 2021年4月

摘要 本文总结了背景和目标,仿生蜘蛛机器人的简单介绍。通过研究机器人的六足仿生的运动,这种设计已确定脚结构,使用3自由度的分析实现向前运动,把运动的机器人。想象的组件和装配映射仿生蜘蛛机器人以与相关部件的检查,确保机械设计的可行性都包含在总设计。 关键词:仿生;机器人;机构

ABSTRACT The paper has summarized the background and the goal of its topic and has made the simple introduction of the bionic hexapod robot. Through the research of the motion of the six feet of the robot, This design has determined the foot structure,using the analysis of 3 degrees of freedom realizes the forward motion and turning motion of the robot . Picturing of the component and assembly mapping of the bionic hexapod robot as well as the inspection of related parts which ensures the feasibility of the machinery design are both included in the total design. KEYWORDS:bionics ;hexapod robot ;machinery

一种码垛机器人的设计与仿真

一种码垛机器人的设计与仿真 节 1.01 摘要 21世纪,科学技术的发展可谓日新月异,各种信息技术的不断发展进步,推动着社会生产的各个领域的进步,尤其是自动化技术的应用。码垛技术是近年来活跃在物流自动化领域的一项新兴的技术。码垛技术的概念是指在日常的物流运输的过程中,为了实现实现物料的搬运、装卸等物流的活动,设计一定的物料的堆码成垛的模式,这种模式是基于集成单元化的思想之上的,这种堆码成垛实现物流运输的技术就是码垛技术。 我们在实现码垛技术的同时,发明了相关的码垛机器人。码垛机器人是基于码垛技术而产生的,它是一种具备特殊功能的机器人,具有垂直的多关节型的特点。码垛机器人自产生以来,已经广泛应用于社会生产的不同的专业领域,比如食品加工、石油化工等。对于不同的物流对于码垛要求参数的不同,码垛机器人可以通过自身的主计算机进行相应的参数的设置,从而进一步实现不同产品包装的码垛要求。现代物流的发展,对于码垛机器人的要求也呈现出越来越高的趋势,比如物料的码垛的精度的提高,是的码垛机器人必须具有一定的刚度和强度,防止搬运过程中出现差池。 本文主要是设计一种码垛机器人的机械部分,应用于自动化生产线的物料的码垛。在进行码垛机器人的设计的时候,主要是结果机械、电子以及码垛机器人的软件等方面,根据不同方面的特点进行综合的分析,实现码垛机器人的设计。 关键词:码垛技术,机器人,有限元分析,运动仿真 Abstract In the 21st century, the development of science and technology is changing, all kinds of the continuous development of information technology progress, push the progress of the various fields of social production, especially the application of automation technology. Stacking technology is active in recent years a new technology in the field of logistics automation. Stacking technology refers to the concept of in the daily logistics transportation process, in order to achieve the

(完整版)机器人仿生机器龟设毕业课程设计

课程设计设计题目:仿生机器龟设计

课程设计任务书 课程设计题目:仿生机器龟设计

仿生机器龟设计 1 设计主要内容及要求 1.1设计目的: (1)了解机器人技术的基本知识以及有关电工电子学、单片机、机械设计、传感器等相关技术。 (2)初步掌握机器人的运动学原理、基于智能机器人的控制理论,并应用于所设计的机器人中。 (3)通过学习,具体掌握机器人的控制技术,并使机器人能独立执行一定的任务。 1.2基本要求: (1)要求设计一个具有仿生功能的机器人; (2)要求设计机器人的行走机构,控制系统、传感器类型的选择及排列布局。 (3)要求机器人具有趋光功能(龟喜欢晒太阳),避障功能(不能撞到障碍物上),知道饥饿(电池电量检测功能)。 1.3发挥部分: 自由发挥 2 设计过程及论文的基本要求: 2.1 设计过程的基本要求 (1)基本部分必须完成,发挥部分可任选;

(2)符合设计要求的报告一份,其中包括总体设计框图、电路原理图各一份; (3)设计过程的资料、草稿要求保留并随设计报告一起上交;报告的电子档需全班统一存盘上交。 2.2 课程设计论文的基本要求 (1)参照毕业设计论文规范打印,包括附录中的图纸。项目齐全、不许涂改,不少于3000字。图纸为A4,所有插图不允许复印。 (2)装订顺序:封面、任务书、成绩评审意见表、中文摘要、关键词、目录、正文(设计题目、设计任务、设计思路、设计框图、各部分电路及相应的详细的功能分析和重要的参数计算、工作过程分析、元器件清单、主要器件介绍)、小结、参考文献、附录(总体设计框图与电路原理图)。 3 时间进度安排 沈阳工程学院 机器人技术及其应用课程设计成绩评

仿生机器人论文

仿生机器人探秘 经过数十亿年的进化和自然选择,自然界的生物为人类的创新提供了天然的宝库,令人不得不惊叹大自然的鬼斧神工,感受到生命进化演变的魅力。 几千年来,人类从大自然的杰作里获得了取之不竭的灵感:鸽子滑翔在半空,工程师由此发明了木质自动平衡飞行器;看见黄蜂筑巢,四大发明之一的造纸术由此诞生;因模仿生物的结构和形态而获得优良性能的建筑和艺术品更是数不胜数。机器人未问世之前,人们除研究制造自动偶人外,对机械动物非常感兴趣,如传说诸葛亮制造木牛流马,现代计算机先驱巴贝吉设计的鸡与羊玩具,法国著名工程师鲍堪松制造的凫水的铁鸭子等,都非常有名。 如今的仿生学,不仅仅局限于传统机械、化学、建筑学等,而融入了很多现代元素,是一门生命科学、物质科学、数学与力学、信息科学、工程技术以及系统科学等学科的交叉学科。在过去的几十年,随着人类科学技术的高速发展,机器人专家借鉴了更多来自数学、力学、电子和计算机科学的知识。一方面,这种方法无疑整合了技术的基础学科使生产非常成功的产品成为可能,特别是在工业机器人领域。另一方面,它能够用来更好地认识机器和动物的差距,努力去缩小这种差距,使得机器人更加“人类化”。 仿生形态 文章首先介绍了仿生形态。一是对动物本身的生物形态和动作表现的运用,如娱乐产业的动画。二是运用了其与人类的交互功能:老人和孩子接受和喜爱仿生动物陪伴,它们不仅外形像宠物,有的还能够感知和应对人类情感,甚至能够生动地表达自己的情绪。这些人性化的机器人可以使面部表情,具有眼睛的眨动,头的摇晃,身体动作和姿势。它们用手臂和手,依靠在它们的衣服和皮肤上灵敏的触摸传感器,对可变压力做出反应,达成响应。 另一个活跃的研究领域是能够发挥重要作用的变形,科学家们在尝试使机器人可以根据内部或外部环境,动态重新配置他们的形态。生物的灵感来源于生物体,失去了附件还可以再生,像蜥蜴的尾巴,或从在发展阶段过渡,如形态形成两栖类的变化。感觉这个研究会用到一些拓扑学和流形的知识,令我非常感兴趣。

慧鱼机器人课设报告(1)

目录 1.绪论 1 1.1课题背景 1 1.2 慧鱼机器人 2 1.3 走进实验室 3 1.4 按键式传感器 3 1.5 设计工作原理 4 1.6慧鱼模型操作规程 5 2. 仿生机器人6 2.1仿生机器人迈克仿真示意图 6 2.2仿生机器人迈克仿真程序图示 6 2.3仿生机器人结构简图7 3. 移动机器人8 3.1 移动机器人基础模型8 3.2 移动机器人仿真图8 3.3移动机器人结构简图9 3.4移动机器人仿真程序框图10 4.工业寻光机器人10 4.1 寻光机器人仿真图11 4.2寻光机器人结构简图11 4.3寻光机器人仿真程序12 5.躲避障碍机器人14 5.1 躲避机器人仿真模型14 5.2连线图和结构简图15 5.3躲避机器人仿真程序16 6.工业寻踪机器人18 6.1寻踪机器人仿真模型19 6.2寻踪机器人仿真图

一、绪论 1.1课题背景 由机器人的发展和快速广泛的被使用,可知科学家对于机器人的功能也相提高,除了超强的逻辑运算、记忆能力及具备类似的自我思考能力,另外在机器人的外表及内部结构,科学家更希望能模仿人类。对于外在资讯的选集,也透过各种感应器,企图达到类似人类各种触觉的功能,选集了外在环境的资讯,一旦外在环境起了改变,机器人一定要能随着变化,做出该有的反应动作,更新自己的资料库,达到类似人类学习的功能。 移动式机器人形态分为车轮式、特殊车轮式、不限轨道式、不行式等,若是在平坦的地面上移动时,车轮式是最具效率的,不懂机构简单,且具实用性,但其缺点是在凹凸不平的岩地上便不能行走。此外,因普通车轮无法在阶梯及有段差的地外行走,因此积极研究一种有车轮、三辆以上连结构的特殊形态,及特殊组合的不限轨道式机器人,最近亦努力开发步行机器人,使其能登上阶梯。 本次研究即为移动机器人设计及其在控制器的实现,是说明当移动机器人在轨行动作中若遇到障碍物时会透过微动开关将讯息传回电路板中进行判断,再配合计数器的动作使机器人能避开障碍物并往下个路径前进,知道要到远的目标。

仿生蜘蛛机器人的设计与研究

毕业设计(论文) 仿生蜘蛛机器人的设计与研究 姓名:寇艳虎 学号: 专业:机械工程及自动化 系别:机械与电气工程系 指导教师:孔繁征

2020年6月

摘要 本文总结了背景和目标,仿生蜘蛛机器人的简单介绍。通过研究机器人的六足仿生的运动,这种设计已确定脚结构,使用3自由度的分析实现向前运动,把运动的机器人。想象的组件和装配映射仿生蜘蛛机器人以及相关部件的检查,确保机械设计的可行性都包含在总设计。 关键词:仿生;机器人;机构

ABSTRACT The paper has summarized the background and the goal of its topic and has made the simple introduction of the bionic hexapod robot. Through the research of the motion of the six feet of the robot, This design has determined the foot structure,using the analysis of 3 degrees of freedom realizes the forward motion and turning motion of the robot . Picturing of the component and assembly mapping of the bionic hexapod robot as well as the inspection of related parts which ensures the feasibility of the machinery design are both included in the total design. KEYWORDS:bionics ;hexapod robot ;machinery

关于机器人实习报告

关于机器人实习报告 您需要登录后才可以回帖登录 | 注册发布 篇一:机器人实训报告 实训项目机器人模块组装实训报告 专业: 班级: 学号: 姓名: 指导老师: 机器人 1.简介: 机器人是高级整合控制论、机械电子、计算机、材料和仿生学的产物。在工业、医学、农业、建筑业甚至军事等领域中均有重要用途。 现在,国际上对机器人的概念已经逐渐趋近一致。一般来说,人们都可以接受这种说法,即机器人是靠自身动力和控制能力来实现各种功能的一种机器。联合国标准化组织采纳了美国机器人协会给机器人下的定义:“一种可编程和多功能的操作机;或是为了执行不同的任务而具有可用电脑改变和可编程动作的专门系统。”它能为人类带来许多方便之处! 2.来历:

robot,原为robo,意为奴隶,即人类的仆人。作家罗伯特创造的词汇。 3.组成: 机器人一般由执行机构、驱动装置、检测装置和控制系统和复杂机械等组成。 是驱使执行机构运动的机构,按照控制系统发出的指令信号,借助于动力元件使机器人进行动作。它输入的是电信号,输出的是线、角位移量。机器人使用的驱动装置主要是电力驱动装置,如步进电机、伺服电机等,此外也有采用液压、气动等驱动装置。 4.检测装置的作用: 是实时检测机器人的运动及工作情况,根据需要反馈给控制系统,与设定信息进行比较后,对执行机构进行调整,以保证机器人的动作符合预定的要求。作为检测装置的传感器大致可以分为两类:一类是内部信息传感器,用于检测机器人各部分的内部状况,如各关节的位置、速度、加速度等,并将所测得的信息作为反馈信号送至控制器,形成闭环控制。一类是外部信息传感器,用于获取有关机器人的作业对象及外界环境等方面的信息,以使机器人的动作能适应外界情况的变化,使之达到更高层次的自动化,甚至使机器人具有某种“感觉”,向智能化发展,例如视觉、声觉等外部传感器给出工作对象、工作环境的有关信息,利用这些信息构成一个大的反馈回路,从而将大大提高机器人的工作精度。 5.控制系统有两种方式:

仿生六足机器人研究报告学士学位论文

项目研究报告 ——小型仿生六足探测机器人 一、课题背景: 仿生运动模式的多足步行机器人具有优越的越障能力,它集仿生学原理、机构学理论、自动控制原理与技术、计算机软件开发技术、传感器检测技术和电机驱动技术于一体。 不论在何种地面上行走,仿生六足机器人的运动都具有灵活性与变化性,但其精确控制的难度很大,需要有良好的控制策略与精密的轨迹规划,这些都是很好的研究题材。 二、项目创新点: 作为简单的关节型伺服机构,仿生六足机器人能够实现实时避障,合理规划行走路线。 简单的关节型机器人伺服系统不仅具有可批量制造的条件,作为今后机器人群系统的基本组成,也可以作为探索复杂伺服机构的研究对象。 三、研究内容: 1.仿生学原理分析: 仿生式六足机器人,顾名思义,六足机器人在我们理想架构中,我们借鉴了自然界昆虫的运动原理。 足是昆虫的运动器官。昆虫有3对足,在前胸、中胸和后胸各有一对,我们相应地称为前足、中足和后足。每个足由基节、转节、腿节、胫节、跗节和前跗节几部分组成。基节是足最基部的一节,多粗短。转节常与腿节紧密相连而不活动。腿节是最长最粗的一节。第四节叫胫节,一般比较细长,长着成排的刺。第五节叫跗节,一般由2-5个亚节组成﹔为的是便于行走。在最末节的端部还长着两个又硬又尖的爪,可以用它们来抓住物体。 行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并向后蹬时,另外三条腿即抬起向前准备替换。 前足用爪固定物体后拉动虫体向前,中足用来支持并举起所属一侧的身体,后足则推动虫体前进,同时使虫体转向。 这种行走方式使昆虫可以随时随地停息下来,因为重心总是落在三角支架之内。并不是所有成虫都用六条腿来行走,有些昆虫由于前足发生了特化,有了其他功用或退化,行走就主要靠中、后足来完成了。 大家最为熟悉的要算螳螂了,我们常可看到螳螂一对钳子般的前足高举在胸前,而由后面四条足支撑地面行走。

仿生爬虫机器人实验指导书

工业机器人基础 实验指导书及试验报告 实验名称 系别 专业 班级 姓名 指导教师 年月日

仿生爬虫机器人实验 一、实验目的 多足爬行机器人是一种典型的仿生机器人。这类机器人使用多条腿交替地移动来完成爬行,通常采用仿生的结构和运动步态。在本实践中,我们将搭建一个较复杂的,每条腿都有2 个自由度,一共具有9个自由度(头部有 1 自由度)的仿生机械爬虫。 了解: 多足类仿生概念和进一步了解四足机器人运动步态规划的相关知识; 熟悉: 9 自由度的仿生机器爬虫; 掌握: 掌握“创意之星”机器人套件的搭建和装配技巧,尤其是如何使用螺栓、螺母 进行连接,如何提高组装机器人的结构刚度;在UP-MRcommander 软件中,熟悉舵机的控制,写入动作程序,让仿生机器爬虫运动起来; 二、“创意之星”实验设备介绍 “创意之星”结构件介绍 “创意之星”机器人套件提供了400 多个结构部件,其中包括以下几大类: 1)I 型结构件,共有4 种、40 个,都是白色,聚碳酸酯(PC)材质,结构特点是长条状,具有多个标准孔,零件边缘有加强肋。零件以大孔的数量命名。 2)L 型结构件,字母L 形状,共有6 种,54 个,都是白色,聚碳酸酯(PC)材质,结构特点是字母“L”状,具有多个标准孔,零件边缘内侧有加强肋。零件以两侧的大孔数量命名。 3)U 型结构件共有7 种,70 个,都是橙色,聚碳酸酯(PC)材质,结构特点是字母“U”状,具有多个标准孔,零件边缘内侧有加强肋。零件以三侧面的大孔数量命名。4)V 型结构件,共有2 种,20 个。白色,聚碳酸酯(PC)材质,结构特点是字母“V”状,具有多个标准孔,零件边缘内侧有加强肋。零件以两侧的大孔数量命名。 5)舵机支撑构件,共有2 种,20 个。白色,聚碳酸酯(PC)材质,结构特点是字母“V”状,具有多个标准孔: 以上各件依次如下图所示: 6)基础构件,共有3 种,4个; 7)机械手组件共有5 种,18 个。这部分零件是组装机械手爪专用的零件;

类人形机器人项目总体设计报告

类人型机器人项目 总体设计报告 编制单位: 作者: 版本: 发布日期:

审核人:批准人:

目录 1.引言 (1) 1.1背景 (1) 1.2定义 (2) 1.2.1专门术语的定义 (2) 1.2.2外文首字母组词的原词组 (2) 1.3参考资料 (3) 2.总体设计 (3) 2.1开发与运行环境 (3) 2.1.1系统硬件运行环境 (3) 2.1.2系统软件运行环境 (4) 2.2硬件功能描述 (4) 2.3硬件结构(如图2所示) (4) 3.硬件模块设计 (4) 3.1机器人套件 (5) 3.1.1舵机 (5) 3.1.2机器人合金零件 (7) 3.2舵机控制器电路 (7) 4.嵌入式软件设计 (8) 4.1流程逻辑 (8)

4.1.1程序流程图 (8) 4.1.2程序流程图简述 (9) 4.2算法 (9) 4.2.1主要计算方法 (9) 4.2.2源程序说明 (10) 5.系统调试与总结 (13) 5.1系统调试 (13) 5.1.1单个舵机的研究和控制 (13) 5.1.2单个舵机的研究和控制 (15) 5.1.3机器人下肢运动的动作分解及实现 (15) 5.2总结 (16) 5.2.1总结一(作者:王刚) (16) 5.2.2总结二(作者:赵爱芳) (19) 5.2.3总结三(作者:刘丹) (24) 5.2.4总结四(作者:张瑞娜) (24) 附录一系统源程序 (32)

1.引言 类人型机器人是现在机器人研究领域的一个热点,无论是SONY公司不断更新的“阿西莫”机器人,还是每年在机器人世界杯上不断推陈出新的足球机器人,大家都把目光聚焦于更加拟人化的类人型双足行走机器人。 基于双足平台的机器人要正常工作首先需要能够平稳的行走,而双足步行是步行方式中自动化程度最高、最为复杂的动态系统。它具有支撑面积小、支撑面的形状随时间变化较大,质心的相对位置高的特点,是最复杂、控制难度最大的动态系统。但由于双足机器人比其它足式机器人具有更高的灵活性,因此具有自身独特的优势,更适合在人类的生活或工作环境中与人类进行协同工作,而不需要专门为其对这些环境进行大规模改造。例如代替危险作业环境中(如核电站)的工作人员,在不平整地面上搬运货物等等。此外将来社会环境的变化使得双足机器人在护理老人、康复医学以及一般家务处理等方面也有很大的潜力。 目前对双足行走机构的研究主要基于仿生学原理与动态控制原理,SONY公司的“阿西莫”主要基于仿生学原理,这种研究方式也是类人型机器人舞蹈比赛与人形组机器人足球比赛中常见的控制方式,因为这种控制方法容易上手,能够从最简单的步伐控制开始了解类人型机器人控制的基本原理。 1.1背景 本小组以类人型机器人为课题,着重研究类人型机器人的结构与控制原理,掌握舵机的控制方式,掌握双足步行机器人步伐调整原理。 项目初期主要以上海英集斯公司的8自由度双足步行机器人为研究平台,以最基本的对单个舵机结构的研究及运动控制为起点,从而从每一个关节开始了解类人型机器人的组成,逐步过渡到多个舵机的

仿生四足机器人的研究:回顾与展望(3)

仿生四足机器人的研究:回顾与展望 摘要:本文侧重于仿生四足机器人。在这一领域的主要挑战是如何设计高动力性和高负载能力的仿生四足机器人。本文首先介绍了仿生四足机器人,尤其是具有里程碑意义的四足机器人的历史。然后回顾了仿生四足机器人驱动模式的现代技术。随后,描述了四足机器人的发展趋势。基于仿生四足机器人的技术现状,简要回顾了四足机器人的技术难点。又介绍了山东大学研制的液压四足机器人。最后是总结和展望未来的四足机器人。 一、导言 代替人类在复杂和危险的环境中工作的移动机器人的需求引起越来越多的关注,如煤矿井下,核电站,以及打击恐怖主义的战争。一般移动机器人可分为三种类型:空中机器人,水下机器人和地面机器人。地面机器人的开发主要是运用轨道或轮子。轮式和履带式机器人可以在平整地面工作,但大多数是无法在凹凸不平的地面上工作。换句话说,现有的地面机器人只能在部分地面工作。与轮式和履带式机器人相比,腿式机器人有可能适应更为广泛的地形,就像如同有腿的动物,几乎可以行走在所有的地形。例如,羚羊具有很强的运动能力,即便在高度复杂的环境中也一样。因此,近些年人们积极地投入腿式机器人的研究中。腿式机器人可以去动物能够到达的地方,应该要构建并运用于实际。尽管机器人技术领域取得了巨大成就,腿式机器人仍然远远落后于它们的仿生学 [1,2]。 基于机械结构,腿式机器人可分为步行机器人和爬行机器人。与爬行动物的机器人相比,步行机器人几乎与躯干垂直的腿被认为更适应载重。步行机器人可以有效地承受更大的载重。具有联合执行机构的步行机器人具有良好的行走速度和运输能力。因此,基于哺乳类动物的仿生机器人的研究已成为机器人领域的重要发展方向。 现已有一、二、三、四甚至更多条腿的腿式机器人。最普遍的是具有高效率步态和稳定性能的偶数条腿的腿式机器人[3]。在腿式机器人中,四足机器人具

机器人实习报告(20201101124019)

技师核心技术专题研修 课程设计报告 论文题目________ 机器人实习报告_____________ 专业班级10 电气技师1 学生姓名________ 杨明洁___________ 学号_____________ 101921 _______ 指导教师___________ 方铮 __________ 宁波技师学院电气技术系 二零一五年五月

摘要 机械手是能模仿人和臂的某些动作功能,用以固定程序抓取、搬运物件或操作工具的自动操作装置。为了满足生产的需要,机械手要求设置多种工作方式,例如手动和自动(包括连续、单周期、单步和自动返回初始状态)工作方式。在运动控制方面,PLC可以用于圆周运动或直线运动的控制。所以利用PLC程序控制可以实现机械手的控制要求。通过梯形图程序使各动作电磁阀动作,配合各极限位置的限位开关,准确而又循环的连续操作。系统以液压传动为驱动方式,避免使用三相异步电动机,具有防过载的优点。机械手、PLC液压系统组成的整 体具有高效、安全、经济、实用等特点。 关键字:机械手,液压,PLC电子阀,机械臂

目录 1 引言 (1) 2 硬件组成 (2) 2.1 机械臂的选择 (2) 2.2 控制器的类型 (3) 2.3 示教单元 (4) 2.4 JOG 操作 (6) 2.5 PLC (8) 2.6 控制电源的ON/OFF (11) 2.7 抓手的操作 (12) 2.8 JOG 操作中的机器人动作 (14) 附录 1 (17)

1 引言 通过本门课的学习,机器人一般由执行机构、驱动装置、检测装置和控制系统和复杂机械等组成。 机器人(Robot)是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。 机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。

相关主题
文本预览
相关文档 最新文档