当前位置:文档之家› 数学名师叶中豪 高中数学竞赛平面几何讲义 完整版

数学名师叶中豪 高中数学竞赛平面几何讲义 完整版

数学名师叶中豪 高中数学竞赛平面几何讲义 完整版
数学名师叶中豪 高中数学竞赛平面几何讲义 完整版

高中平面几何

叶中豪

学习要点

几何问题的转化

圆幂与根轴

P ’tolemy 定理及应用

几何变换及相似理论

位似及其应用

完全四边形与Miquel 点

垂足三角形与等角共轭

反演与配极,调和四边形

射影几何

复数法及重心坐标方法

例题和习题

1.四边形ABCD 中,AB=BC ,DE ⊥AB ,CD ⊥BC ,EF ⊥BC ,且

()sin 1tan sin 2θθγγ?+=。求证:

2EF=DE+DC。(10081902.gsp)

2.已知相交两圆O和O'交于A、B两点,且O'恰在圆O上,P为圆O的AO'B弧段上任意一点。∠APB的平分线交圆O'于Q点。求证:PQ2=PA×PB。( gsp)3.设三角形ABC的Fermat点为R,连结AR,BR,CR,三角形ABR,BCR,ACR的九点圆心分别为D,E,F,则三角形DEF为正三角形。(10082602.gsp)

4.在△ABC中,已知∠A的内角平分线和外角平分线分别交外接圆于D、E,点A关于D、E的对称点分别为F、G,△ADG和△AEF的外接圆交于A和另一点P。求证:AP//BC。(10092102.gsp)

5.圆O

1和圆O

2

相交于A、B两点,P是直线AB上一点,过P作两圆作切线,分别切

圆O

1和圆O

2

于点C、D,又两圆的一条外公切线分别切圆O

1

和圆O

2

于点E,F。

求证:AB、CE、DF共点。(10092201.gsp)

6.四边形ABCD中,M是AB边中点,且MC=MD,过C、D分别作BC、AD的垂线,两条垂线交于P点,再作PQ⊥AB于Q。求证:∠PQC=∠PQD。(10081601-26.gsp)7.已知RT△ABD∽RT△ADC,M是BC中点,AD与BC交于E,自C作AM垂线交AD 于F。求证:DE=EF。(10083001.gsp)

8.在△ABC中,AB=AC,D为BC边的中点,E是△ABC外一点,满足CE⊥AB,BE=BD。

过线段BE的中点M作直线MF⊥BE,交△ABD的外接圆的劣弧AD于点F。求证:ED⊥DF。(2010年女子竞赛)(10081601-4.gsp)

9.设圆I

1是△ABC的BC边外的旁切圆,D、E、F分别是切点,若I

1

D与EF交于P

点。求证:AP平分底边BC。(10082001-8.gsp)

10.如图,⊙O切△ABC的边AB于点D,切边AC于点C,M是边BC上一点,AM交CD于点N.求证:M是BC中点的充要条件是ON⊥BC。(09031302.gsp)11.已知:BC是圆上的定弦,而动点A在圆上运动,M是AC中点,作MP⊥AB于P。

求P点的轨迹。(10081601-4.gsp)

12.△ABC外接圆为圆O,P为AB上一点,过P分别作OA、OB的垂线,与AC、BC 交于S、T,与AB交于M、N。求证:PM=MS的充要条件是PN=NT。(10081601-3.gsp)13.在ΔABC中AC>BC,F是AB的中点,过F作它的外接圆直径DE,使得C、E在AB同一侧,又过C做AB的平行线交DE于L。

求证:(AC+BC) 2=4DL×EF。(09011003.gsp)

14.已知:P是垂直ABC外接圆BC弧上任意一点,PD⊥BC于D,PE⊥CA于E,PF⊥AB于F。求证:(BC/PD)=(AC/PE)+(AB/PF)。(09012201-7.1.gsp)

15.已知O是△ABC的外心,M是BC边中点,D是OM延长线上一点,满足DO=DB,E、

(10080302.gsp)F分别是AB、AC边上的点,满足∠MEA=∠MFA=∠A。求证:AD⊥EF。

16.已知△ABC中,AB=AC,线段AB上有一点D,线段AC延长线上有一点E,使得DE=AB。线段DE与△ABC的外接圆交于点T,P是线段AT延长线上的一点。求证:点P满足PD+PE=AT的充要条件是P在△ADE的外接圆上。(2000年国家集训队)(10082201-1.gsp)

17.已知△ABC中,内心I关于BC边中点M的对称点为I',S是BC弧(不含A点)

中点,直线SI'交△ABC的外接圆于另一点P。求证:P点到△ABC较远的顶点距离等于到另两个顶点距离的和。(10082201-5.gsp)

18.在△ABC外作△DBC∽△ECA∽△FAB,联结AD、BE、CF。

求证:AF+FB+BD+DC+CE+EA≥AD+BE+CF。(10081601-2.gsp)

19.过△ABC内一点O引三边AB、BC、CA的平行线与其它两边的交点分别为E、F、

G、H、I、K,过O作△ABC的外接圆的弦AL。

求证:OE·OF+OG·OH+OI·OK=OA·OL。(09042002.gsp)

20.一小圆内切大圆于点N,BA、BC是大圆的两条弦,且分别切小圆于K、M,劣弧

AB和劣弧BC的中点分别为Q、P,又设△BQK、△BPM外接圆的另一个交点为B

1

求证:BPB

1

Q为平行四边形。(10082001-1.gsp)

21.圆O与圆O

1、圆O

2

同时相切,切点为S、T,圆O

1

与圆O

2

交于A、B两点,且圆

O 2的圆心恰在圆O

1

上。设公共弦AB延长交圆O于C、D两点,联结SC、SD分别

交圆O

1于P和Q。求证:PQ与圆O

2

相切。(40届IMO)(10082001-12.gsp)

22.设KL、KN是圆O的切线,M是KN延长线上一点,过K、L、M三点的圆与圆O 交于P,作NQ⊥LM于Q。求证:∠MPQ=2∠NML。(98年伊朗竞赛)(10081601-5、

6.gsp)(09022203.gsp)

23.设△ABC内接于圆O,过O作OE⊥BC交圆O于E,交AB于F,交AC延长线于G。

过G作圆O的切线GT,T为切点。求证:TF⊥GE。(10092104.gsp)

24.已知圆O外一点P向圆O作切线PA、PB和一条割线PEF,M是EF上一点,联结BM延长交圆O于C。求证:AC//PEF的充要条件是M为EF中点。(.gsp)25.过点P任作圆O的两条割线PAB、PCD,直线AD与BC交于Q,弦DE//PQ,BE 交PQ延长线于M。求证:OM⊥PQ。(10092103-1.gsp)

26.如图,设⊙O

1与⊙O

2

交于AB两点。AC是⊙O

2

的切线,交⊙O

1

于C点。AD是⊙O

1

的切线,交⊙O

2于D点。过A任作直线,交⊙O

1

、⊙O

2

及经过A、C、D三点的圆

分别于M、N、P。求证:AM=NP。(10091002-6.gsp)

27.两圆圆O

1和圆O

2

相交于M、P,过M作圆O

2

的切线交圆O

1

于A;又过M作圆O

1

的切线交圆O

2

于B,在直线MP上截取PH=MP。求证:四边形MAHB内接于圆。(10091002-1.gsp)

28.已知两个半径不等的圆O

1和圆O

2

相交于M、N两点,且圆O

1

和圆O

2

分别与圆O

内切于S、T两点。求证:OM⊥MN的充要条件是S、N、T三点共线。(1997年全国联赛)(10090301-3.gsp)

29.设以O为圆心的圆经过△ABC的两个顶点A和C,且与边AB、BC分别交于K和N,又设△ABC和△KBN的外接圆交于B和另一点M。求证:∠OMB=90°。(1985年IMO)(10090301-1.gsp)

30.已知:在△OAB与△OCD中,OA=OB,OC=OD,直线AB与CD交于点P,△PAC与△PBD的外接圆交于P、Q两点。求证:OQ⊥PQ。(09022301.gsp)

31.已知半圆圆心为O,直径为AB,一直线交半圆于C、D,交AB延长线于P,设M

是△AOC 与△BOD 外接圆除O 点外的另一交点。求证:OM ⊥MP 。(10091001.gsp )

32.凸四边形ABCD 内接于圆O ,两组对边所在直线分别交于点E 、F ,对角线AC 、

BD 交于G ,作GH ⊥EF 于H ,圆O 的弦MN 经过G 点。求证:GH 与圆O 交点恰是△HMN 的内心。(10092103-2.gsp )

33.⊙O 为△ABC 的外接圆,P 为劣弧AB 上一点,E 、F 分别为AC 、AB 延长线上的点,

BE 、CF 交于D ,PE 、PF 分别交⊙O 于S 、R 。若AD 、BC 、RS 共点,求证:点D 在⊙O 上。(10090801.gsp )(10092103-8.gsp )

34.已知:D 、E 、F 分别在△ABC 三边上,满足EB =ED ,FC =FD ,O 是△ABC 外心。

求证:A 、E 、O 、F 四点共圆。(09033102.gsp )

35.如图,设N 是△ABC 的BAC 弧中点,M 是BC 边中点,I 是△ABC 的内心。求证:

∠ANI =2∠IMC 。(09021701.gsp )

36.设T 为△ABC 的内切圆与BC 边的切点,D 为BC 上任一点,I 1、I 2分别为△ABD 、

△ACD 的内心。求证:T I 1⊥T I 2。(10081701-9.gsp )

37.矩形ABCD 中,AB AC 。P 是以为AB 直径的半圆上任意一点,PC 、PD 分别交

AB 于F 、E 。求证:AE 2+BF 2=AB 2。(09013001.gsp )

38. AB 是圆O 的直径,P 是过B 所作切线上的任一点,过P 作圆O 的割线PCE ,联

结直线PO 分别交AC 、AD 于E 、F 。求证:OE=OF 。(10081001-4.gsp )

39.自圆O 外一点P 作切线PA 、PB 及割线PCD ,自C 作PA 的平行线,分别交AB 、

AD 于E 、F 。求证:CE=EF 。(10081001-5.gsp )

40.A 为圆O 上一点,B 为圆外一点,BC 、BD 分别相切圆O 于C 、D ,DE 垂直AO 于

E ,DE 分别交AB 、AC 于

F 、

G 。求证:DF =FG 。(09042001.gsp )

41.P 为圆外一点,PA 、PD 为切线,PCE 为割线。过D 作PA 的平行线,分别与AC

延长线及线段AE 交于B 、F 。求证:D 为BF 中点。(09031302.gsp )

42.已知P 、Q 是等腰三角形ABC (AB=AC )内两点,满足∠ABP=∠QCB ,且∠ACP=∠

QBC 。求证:A 、P 、Q 三点共线。(10090101-1.gsp )

43.已知锐角△ABC 中,AD 是高,O 是外心,AO 的延长线交过O 、B 、C 三点的圆于

P ,自P 作PE ⊥AB 于E ,PF ⊥AC 于F 。求证:DEPF 是平行四边形。(10091701.gsp )

44.已知E 、F 是圆内接四边形ABCD 对边AB 、CD 的中点,M 是EF 的中点,自E 分

别作BC 、AD 的垂线,垂足记为P 、Q 。求证:MP=MQ 。(10091701-1.gsp )

45.AD 为△ABC 内角平分线,I 1、I 2为△ABD 、△ACD 的内心,以I 1I 2为底向BC 边作

等腰△E I 1I 2,使得∠I 1EI 2=1

2

∠BAC 。求证:DE ⊥BC 。(10081701-1.gsp ) 46.已知P 是凸四边形内一点,满足∠PAB=∠CAD ,∠PCB=∠ACD 。求证:PB=PD 的

充要条件是ABCD 四点共圆。(2004年IMO )(10091701-6.gsp )(09030801.gsp )

47.已知D 是△ABC 底边BC 上任一点,P 是形内一点,满足∠1=∠2,∠3=∠4。

求证:(PB/PC)=(AB/AC)。(09030801.gsp )

48.已知:D 是△ABC 的BC 中垂线上一点,I 1、I 2是△ABD 、△ACD 的内心,E 是△

ABC 外接圆弧BAC 的中点。求证:A 、E 、I 1、I 2四点共圆。(08081201.gsp )

49.如图,△ABC 中,M 为BC 的中点,以AM 为直径的圆分别与AB 、AC 交于E 、F 两点,圆在E 、F 两点的切线交于点D 。

求证:DM ⊥BC 。(09013101.gsp )

50.已知:⊙O 两切线PA 、PB 和一割线PCD ,AD 、AP 交C 处的切线于E 、F ,BE 交DF 于K 。求证:K 在圆O 上。(09022201.gsp )

51.设⊙O 1与⊙O 2交于C 、D 。过D 的直线交⊙O 1与⊙O 2于A 、B 。点P 在弧AD

上,PD 与AC 的延长线交于M ,Q 在弧BD 上,QD 与BC 的延长线交于N ,O 为△ABC 外心。求证:MN ⊥OD 是P 、Q 、M 、N 四点共圆的充要条件。(09020401.gsp )

52.设X 是P 点的Simson 线关于△ABC 的垂极点。求证:XP 被Simson 线所平分。

(09031903.gsp )

53.已知:AD 是高,O 、H 是外心和垂心,过D 作OD 垂线,交AC 于E 。求证:∠DHE=∠C 。(09022202.gsp )

54.△ABC 中,AD 为边BC 上的中线,E 、F 、G 分别为AB 、AC 、AD 上的点,且A 、

E 、G 、

F 四点共圆。设△BDE 外心为O 1、半径为r 1;△CDF 外心为O 2、半径为

r 2。求证:GO 12+GO 22=r 12+r 22。(09031401.gsp )

55.已知P 是△ABC 内一点,A 1、B 1、C 1分别是圆弧BPC 、CPA 、APB 的中点。求证:

P 、A 1、B 1、C 1四点共圆。(09042401.gsp )

56.给定△ABC ,D 、E 、F 是边BC 、CA 、AB 上的任意三点,M 、N 分别是△BDF 、△

CDE 的外心。P 、Q 分别是BC 、MN 上的点,满足(BP/PC)=(MQ/QN)。AP 与⊙AEF

相交于R点。求证:(1)QR=QD;(2)∠RQD=2∠APC。(09042601.gsp)

57.已知⊙O

1与⊙O

2

交于C、D两点,A、B分别是两圆上的点,满足PA=PB,E、

F是弧AQ、BQ中点。求证:C、D、E、F四点共圆。(09022001.gsp)

58.△ABC中,D、E、F是边BC、CA、AB的中点,X、Y、Z是各边上高的垂足,EZ 与FY交于L,FX与DZ交于M,DY与EX交于N。求证:L、M、N三点共线。

(10092101.gsp)

59.设△ABC的内切圆分别与三边切于D、E、F,联结AD交内切圆于另一点P,联PB、PE、PF。求证:PF//BC的充要条件是∠BPD=∠EPD。(10091002-7.gsp)60.已知△ABC和任意直线d,自A、B、C作d的垂线,垂足分别为A'、B'、C';

再自A'、B'、C'分别作对边BC、CA、AB的垂线,设这三条垂线共点于H。在d上任取一个动点M,自M作d的垂线,分别交AB、AC所在直线于K、L。在线段BK、CL及HA'延长线上分别取分点P、Q、X,满足(BP/PK)=(CQ/QL)=(HA'/A'X)。求证:XM⊥PQ。(09031602.gsp)

61.已知ABCD是等腰梯形,P是其底边BC上任意一点,E、F两点分别位于AB、AC上,满足EB=EP,FP=FC。联接EF,并作P点关于EF的轴对称点Q。求证:DQ⊥PQ。(09041401.gsp)

62.设D、E分别为△ABC的边AB、BC上的点,P是△ABC内一点,且PE=PC,△DEP∽△PCA。求证:BP是△PAD的外接圆的切线。(09040601.gsp)

63.在凸四边形ABCD中,∠DCA与∠CDB的外角平分线分别是边CB与DA,E、F

分别为AC 、BD 的延长线上的点,且C 、E 、F 、D 四点共圆。平面上的一点P 使得DA 是∠PDE 的外角平分线,CB 是∠PCF 的外角平分线。边AD 与BC 所在直线交于点Q 。求证:点P 在边AB 上的充分必要条件是点Q 在线段EF 上。(09033001.gsp )

64.平面上有四个点A 1、A 2、A 3、A 4,其中任意三个点都不在一条直线上。并且它

们满足:A 1A 2×A 3A 4=A 1A 3×A 2A 4=A 1A 4×A 2A 3。对于任意{i ,j ,k ,l }={1,2,

3,4},我们设O i 为△A j A k A l 的外心。若对于1≤i ≤4均有A i ≠O i ,证明:四条

直线A i O i 平行或共点。(09030602.gsp )

65.圆O 1和圆O 2相交于P 、Q 两点,AB 是两圆的外公切线,BP 、AP 分别交另一圆于

C 、

D ,直线AC 、BD 交于X 点,过X 、A 、B 三点的圆与过X 、C 、D 三点的圆交于另一点M 。求证:∠MBX=∠MQP 。(10082901-1.gsp )

66.在任意△ABC 的BC 边下方取D 点,满足∠ABD =∠ACD =120°,并作正三角形

EBC 。求证:△ABC 的Euler 线平行于DE 。(10073102.gsp )

67.已知M 、N 是四边形ABCD 对边AD 、BC 上任意两点,E 、F 是对边AB 、CD 上两点,

满足(AE/EB)=(CF/FD)=(AM/MD)*(CN/NB),AN 、BM 交于P ,CM 、DN 交于Q 。求证:PQ//EF 。(10082601-3.gsp )

高中数学竞赛_函数【讲义】

1 第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。集合{f (x )|x ∈A }叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。例如:函数y =x -11的反函数是y =1-x 1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。 (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。 定义8 如果实数a a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x ) 的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x ) 的图象关于x 轴对称。 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。例如y = x -21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数。 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x -1|=x 1的正根的个数 .

高中数学竞赛讲义_复数

1 复数 一、基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=2 2b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2121z z z z =???? ??;(5)||||||2121z z z z ?=?;(6)|||||| 2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1=。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n πθπθ+++=,k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

高中数学竞赛讲义-抽屉原理

§23抽屉原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。 “抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。 (一)抽屉原理的基本形式 定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n 个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。 在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。 同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。 例题讲解 1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于 2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

高中数学竞赛_数列【讲义】

第五章 数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高中数学竞赛讲义_三角函数

三角函数 一、基础知识 定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。角的大小是任意的。 定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角的弧长为L ,则其弧度数的绝对值|α|=r L ,其中r 是圆的半径。 定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正 弦函数s in α= r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=y x ,正割函数se c α=x r ,余割函数c s c α=.y r 定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=α sec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α. 定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ??? ??-απ2=co s α, co s ??? ??-απ2=s in α, tan ?? ? ??-απ2=cot α(奇变偶不变,符号看象限)。 定理3 正弦函数的性质,根据图象可得y =s inx (x ∈R )的性质如下。单调区间:在区间 ?? ????+-22,22ππππk k 上为增函数,在区间??????++ππππ232,22k k 上为减函数,最小正周期为2π. 奇偶数. 有界性:当且仅当x =2kx +2π时,y 取最大值1,当且仅当x =3k π-2 π时, y 取最小值-1。对称性:直线x =k π+2 π均为其对称轴,点(k π, 0)均为其对称中心,值域为[-1,1]。这里k ∈Z . 定理4 余弦函数的性质,根据图象可得y =co s x (x ∈R )的性质。单调区间:在区间[2k π, 2k π+π]上单调递减,在区间[2k π-π, 2k π]上单调递增。最小正周期为2π。奇偶性:偶函数。对称性:直线x =k π均为其对称轴,点?? ? ?? +0,2ππk 均为其对称中心。有界性:当且仅当x =2k π时,y 取最大值1;当且仅当x =2k π-π时,y 取最小值-1。值域为[-1,1]。这里k ∈Z . 定理5 正切函数的性质:由图象知奇函数y =tanx (x ≠k π+ 2π)在开区间(k π-2π, k π+2π)上为增函数, 最小正周期为π,值域为(-∞,+∞),点(k π,0),(k π+2π ,0)均为其对称中心。 定理6 两角和与差的基本关系式:co s(α±β)=co s αco s β s in αs in β,s in (α±β)=s in αco s β±co s αs in β; tan (α±β)= .) tan tan 1()tan (tan βαβα ±

高中数学竞赛讲义_数列

数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高中数学竞赛标准教材讲义函数教案

第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射. 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射. 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射. 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆 映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1 : A →B . 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数.A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y 则y 叫做x 的象,x 叫y 的原象.集合{f (x )|x ∈A }叫函数的值域.通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1 : A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域.例如:函数y = x -11的反函数是y =1-x 1 (x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称. 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数. 定义7 函数的性质. (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有 f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间. (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期. 定义8 如果实数a a }记作开区间(a , +∞集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域.通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对 称;(5)与函数y =-f (-x )的图象关于原点成中心对称;(6)与函数y =f -1 (x )的图象关于直线y =x 对称;(7)与函数y =-f (x )的图象关于x 轴对称. 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”.例如y = x -21 , u=2-x 在(-∞,2)上是减函数,y = u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数. 注:复合函数单调性的判断方法为同增异减.这里不做严格论证,求导之后是显然的. 二、方法与例题

高中数学竞赛标准讲义---排列组合与概率

高中数学竞赛标准讲义----排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为11--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有11--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+

高中数学竞赛 函数【讲义】

高中数学竞赛标准教材 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。集合{f (x )|x ∈A }叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。例如:函数y =x -11的反函数是y =1-x 1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。 (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。 定义8 如果实数a a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x ) 的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x ) 的图象关于x 轴对称。 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。例如y = x -21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数。 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x -1|=x 1的正根的个数 .

高中数学竞赛讲义_复数

复数 一、基础知识 1.复数的定义:设i 为方程x 2 =-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ 表示cos θ+isin θ,则z=re i θ ,称为复数的指数形 式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2 1 21z z z z =???? ??;(5)||||||2121z z z z ?=?; (6)| || |||2121z z z z = ;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2 +|z 1-z 2|2 =2|z 1|2 +2|z 2|2 ;(9)若|z|=1,则z z 1= 。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1 212, 0r r z z z = ≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2) , .) (2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n π θπ θ+++= , k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n π π2sin 2cos +,则全部单位根可表示为1,1Z ,1 1 21,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

高中数学竞赛讲义

高中数学竞赛资料 一、高中数学竞赛大纲 全国高中数学联赛 全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。 全国高中数学联赛加试 全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是: 1.平面几何 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。 2.代数 周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角函数。递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。 第二数学归纳法。平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。 复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。 n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。 函数迭代,简单的函数方程* 3.初等数论 同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题 圆排列,有重复元素的排列与组合,组合恒等式。组合计数,组合几何。抽屉原理。容斥原理。极端原理。图论问题。集合的划分。覆盖。平面凸集、凸包及应用*。 注:有*号的内容加试中暂不考,但在冬令营中可能考。 二、初中数学竞赛大纲 1、数 整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。 2、代数式 综合除法、余式定理;因式分解;拆项、添项、配方、待定系数法;对称式和轮换对称式;整式、分工、根式的恒等变形;恒等式的证明。 3、方程和不等式 含字母系数的一元一次方程、一元二次方程的解法,一元二次方程根的分布;含绝对值的一元一次方程、一元二次方程的解法;含字母系数的一元一次不等式的解法,一元二次不等式的解法;含绝对值的一元一次不等式;简单的多元方程组;简单的不定方程(组)。 4、函数 二次函数在给定区间上的最值,简单分工函数的最值;含字母系数的二次函数。 5、几何 三角形中的边角之间的不等关系;面积及等积变换;三角形中的边角之间的不等关系;面积及等积变换;三角形的心(内心、外心、垂心、重心)及其性质;相似形的概念和性质;圆,四点共圆,圆幂定理;四种命题及其关系。 6、逻辑推理问题 抽屉原理及其简单应用;简单的组合问题简单的逻辑推理问题,反证法;

高中数学竞赛讲义(15)复数

高中数学竞赛讲义(十五) ──复数 一、基础知识 1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i 与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。 2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z). z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ<2π,则θ称为z的辐角主值,记作θ=Arg(z). r称为z的模,也记作|z|,由勾股定理知|z|=.如果用e iθ表示cosθ+isin θ,则z=re iθ,称为复数的指数形式。 3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。模与共轭的性质有:(1);(2);

(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8) |z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1), z2=r2(cosθ2+isinθ2), 则z1??z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θθ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2e i(θ1+θ1- 2), 5.棣莫弗定理:[r(cosθ+isinθ)]n=r n(cosnθ+isinnθ). 6.开方:若r(cosθ+isinθ),则 ,k=0,1,2,…,n-1。 7.单位根:若w n=1,则称w为1的一个n次单位根,简称单位根,记Z1=,则全部单位根可表示为1,,.单位根的基本性质有(这里记,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Z nq+r=Z r;(2)对任意整数m,当n≥2时,有=特别1+Z1+Z2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z1)(x-Z2)…(x-Z n-1)=(x-Z1)(x-)…(x-).

文本预览
相关文档 最新文档