当前位置:文档之家› 2017中考二次函数压轴题专题分类训练(可编辑修改word版)

2017中考二次函数压轴题专题分类训练(可编辑修改word版)

2017中考二次函数压轴题专题分类训练(可编辑修改word版)
2017中考二次函数压轴题专题分类训练(可编辑修改word版)

y C A x

B

D

1

O 1 2017 中考二次函数压轴题专题分类训练

题型一:面积问题

【例 1】如图 2,抛物线顶点坐标为点 C (1,4),交 x 轴于点 A (3,0),交 y 轴于点 B .

(1) 求抛物线和直线 AB 的解析式; (2) 求△CAB 的铅垂高 CD 及 S △CAB ;

(3) 设点 P 是抛物线(在第一象限内)上的一个动点,是否存在一点 P ,使 S △PAB = 9

S △CAB ,若存在,

8

求出 P 点的坐标;若不存在,请说明理由.

图 2

【变式练习】

1. 如图,在直角坐标系中,点 A 的坐标为(-2,0),连结 OA ,将线段 OA 绕原点 O 顺时针旋转 120°,

得到线段 OB .

(1) 求点 B 的坐标;

(2) 求经过 A 、O 、B 三点的抛物线的解析式;

(3) 在(2)中抛物线的对称轴上是否存在点 C ,使△BOC 的周长最小?若存在,求出点 C 的坐标;

若不存在,请说明理由.

(4) 如果点 P 是(2)中的抛物线上的动点,且在 x 轴的下方,那么△PAB 是否有最大面积?若有,

求出此时 P 点的坐标及△PAB 的最大面积;若没有,请说明理由.

y

B

A O x

2. 如图,抛物线 y = ax 2 + bx + 4 与 x 轴的两个交点分别为 A (-4,0)、B (2,0),与 y 轴交于点 C ,

顶点为 D .E (1,2)为线段 BC 的中点,BC 的垂直平分线与 x 轴、y 轴分别交于 F 、G .

(1) 求抛物线的函数解析式,并写出顶点 D 的坐标;

(2) 在直线 EF 上求一点 H ,使△CDH 的周长最小,并求出最小周长; (3) 若点 K 在 x 轴上方的抛物线上运动,当 K 运动到什么位置时,

△EFK 的面积最大?并求出最大面积.

3. 如图,已知:直线 y = -x + 3 交 x 轴于点 A ,交 y 轴于点 B ,抛物线 y=ax 2

+bx+c 经过 A 、B 、C (1,0)

三点.

(1) 求抛物线的解析式;

(2) 若点 D 的坐标为(-1,0),在直线 y = -x + 3 上有一点 P,使 ΔABO 与 ΔADP 相似,求出

点 P 的坐标;

(3) 在(2)的条件下,在 x 轴下方的抛物线上,是否存在点 E ,使 ΔADE 的面积等于四边形 APCE

的面积?如果存在,请求出点 E 的坐标;如果不存在,请说明理由.

y D C G

E A

F

O

B x

题型二:构造直角三角形

【例2】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x 轴交于另一点B.

(1)求这条抛物线所对应的函数关系式;

(2)在抛物线的对称轴x=1 上求一点M,使点M 到点A 的距离与到点C 的距离之和最小,并求此时点M 的坐标;

(3)设点P 为抛物线的对称轴x=1 上的一动点,求使∠PCB=90o的点P 的坐

标.

E

【变式练习】

1.如图,抛物线y= 与x 轴交于A、B 两点(点A 在点B 的左侧),与y 轴交于点C.(1)求点 A、B 的坐标;

(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点 D 的坐标;(3)若直线 l 过点E(4,0),M 为直线 l 上的动点,当以 A、B、M 为顶点所作的直角三角形有且只有三个时,求直线 l 的解析式.

3 10 y

1

O 1

x

2. 在平面直角坐标系 xOy 中,已知抛物线 y= a (x +1)2 + c (a > 0) 与 x 轴交于 A 、B 两点(点 A 在点 B

的左侧),与 y 轴交于点 C ,其顶点为 M,若直线 MC 的函数表达式为 y = kx - 3 ,与 x 轴的交点为 N ,

且 COS∠BCO=

10

(1) 求此抛物线的函数表达式;

(2) 在此抛物线上是否存在异于点 C 的点 P ,使以 N 、P 、C 为顶点的三角形是以 NC 为一条直角边

的直角三角形?若存在,求出点 P 的坐标:若不存在,请说明理由;

(3) 过点 A 作 x 轴的垂线,交直线 MC 于点 Q.若将抛物线沿其对称轴上下平移,使抛物线与线段 NQ

总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

3. 在平面直角坐标系内,反比例函数和二次函数 y=k (x 2

+x ﹣1)的图象交于点 A (1,k )和点 B (﹣1,

﹣k ).

(1) 当 k=﹣2 时,求反比例函数的解析式;

(2) 要使反比例函数和二次函数都是 y 随着 x 的增大而增大,求 k 应满足的条件以及 x 的取值范围; (3) 设二次函数的图象的顶点为 Q ,当△ABQ 是以 AB 为斜边的直角三角形时,求 k 的值

4. 如图(1),抛物线 y = x 2 + x - 4 与 y 轴交于点 A ,E (0,b )为 y 轴上一动点,过点 E 的直线 y = x + b

与抛物线交于点 B 、C . (1)求点 A 的坐标;

(2)当 b =0 时(如图(2), ABE 与 ACE 的面积大小关系如何?当b > -4 时,上述关系还成立吗,为什么?

(3)是否存在这样的 b ,使得 BOC 是以 BC 为斜边的直角三角形,若存在,求出 b ;若不存在, 说明理由.

图(1)

图(2)

第 26 题

题型三:构造等腰三角形

【例 3】如图,已知抛物线y =ax 2+bx + 3 (a≠0)与x 轴交于点A(1,0)和点B (-3,0),与y 轴交于点C.

(1)求抛物线的解析式;

(2)在x 轴上是否存在一点 Q 使得△ACQ为等腰三角形?若存在,请直接写出所有符合条件的点 Q

的坐标;若不存在,请说明理由;

(3)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P,使△CMP 为等腰三角形?若

存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.

【变式练习】

1.如图,在平面直角坐标系中,点 A 的坐标为(m,m),点 B 的坐标为(n,﹣n),抛物线经过 A、O、B

三点,连接 OA、OB、AB,线段 AB 交 y 轴于点 C.已知实数 m、n(m<n)分别是方程 x2﹣2x﹣3=0 的

两根.

(1)求抛物线的解析式;

(2)若点 P 为线段 OB 上的一个动点(不与点 O、B 重合),直线 PC 与抛物线交于 D、E 两点(点D

在y 轴右侧),连接 OD、BD.

①当△OPC 为等腰三角形时,求点 P 的坐标;

②求△BOD 面积的最大值,并写出此时点 D 的坐标.

y C B

1

A

0 1

x

2. 如图,抛物线 y = ax 2 - 5ax + 4 经过△ABC 的三个顶点,已知 BC ∥ x 轴,点 A 在 x 轴上,点 C

在 y 轴上,且 AC=BC .

(1) 写出 A,B,C 三点的坐标并求抛物线的解析式;

(2) 探究:若点 P 是抛物线对称轴上且在 x 轴下方的动点,是否存在△PAB 是等腰三角形.若存

在,求出所有符合条件的点 P 坐标;不存在,请说明理由.

3. 已知抛物线 y = ax 2 + bx + c (a ≠ 0) 顶点为 C (1,1)且过原点 O.过抛物线上一点 P (x ,y )向

5

直线 y =

作垂线,垂足为 M ,连 FM (如图).

4

(1) 求字母 a ,b ,c 的值;

3 (2) 在直线x =1 上有一点 F (1, ) ,求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM

4

为正三角形;

(3) 对抛物线上任意一点 P ,是否总存在一点 N (1,t ),使 PM =PN 恒成立,若存在请求出 t 值,

若不存在请说明理由.

题型四:构造相似三角形

【例4】如图,已知抛物线经过 A(﹣2,0),B(﹣3,3)及原点 O,顶点为 C.

(1)求抛物线的解析式;

(2)若点 D 在抛物线上,点 E 在抛物线的对称轴上,且 A、O、D、E 为顶点的四边形是平行四边形,求点 D 的坐标;

(3)P 是抛物线上的第一象限内的动点,过点 P 作PM⊥x轴,垂足为M,是否存在点 P,使得以 P、M、A 为顶点的三角形△BOC 相似?若存在,求出点 P 的坐标;若不存在,请说明理由.

【变式练习】

1.如图,已知抛物线经过 A(4,0),B(1,0),C(0,-2)三点.

(1)求该抛物线的解析式;

(2)在直线 AC 上方的该抛物线上是否存在一点 D,使得△DCA的面积最大?若存在,求出点 D 的坐标及△DCA面积的最大值;若不存在,请说明理由.

(3)P 是直线 x=1 右侧的该抛物线上一动点,过 P 作PM⊥x轴,垂足为M,是否存在P 点,使得以A、P、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存

在,请说明理由.

2. 如图,二次函数的图象经过点 D(0,7

3 ),且顶点 C 的横坐标为 4,该图象在 x 轴上截得的线

9

段 AB 的长为 6.

(1)求二次函数的解析式;

(2)在该抛物线的对称轴上找一点 P,使PA+PD 最小,求出点 P 的坐标;

(3)在抛物线上是否存在点 Q,使△QAB与△ABC相似?如果存在,求出点 Q 的坐标;如果不存在,请说明理由.

【例5】如图,已知抛物线 y=错误!未找到引用源。x2-错误!未找到引用源。(b+1)x+错误!未找到引用源。(b 是实数且 b>2)与 x 轴的正半轴分别交于点 A、B(点 A 位于点 B 的左侧),与 y 轴的正半轴交于点C.

(1)点B 的坐标为,点 C 的坐标为(用含 b 的代数式表示);

(2)请你探索在第一象限内是否存在点 P,使得四边形 PCOB 的面积等于 2b,且△PBC是以点 P 为直角顶点的等腰直角三角形?如果存在,求出点 P 的坐标;如果不存在,请说明理由;

(3)请你进一步探索在第一象限内是否存在点 Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点 Q 的坐标;如果不存在,请说明理由.

【变式练习】

1.如图,平面直角坐标系xOy中,已知点A(2,3),线段AB垂直于y 轴,垂足为B ,将线段AB 绕点A 逆时针方向旋转90°,点B 落在点C 处,直线BC 与x 轴的交于点D .

(1)试求出点D 的坐标;

(2)试求经过A 、B 、D 三点的抛物线的表达式,

并写出其顶点E 的坐标;

(3)在(2)中所求抛物线的对称轴上找点F ,使得

以点A 、E 、F 为顶点的三角形与△ACD 相似.

(图7)

2.已知直线y =1

x +1 与x 轴交于点A,与y 轴交于点B,将△AOB 绕点O 顺时针旋转90?,使点A 2

落在点C,点B 落在点D,抛物线y =ax2+bx +c 过点A、D、C,其对称轴与直线AB 交于点P,(1)求抛物线的表达式;

(2)求∠POC 的正切值;

(3)点M 在x 轴上,且△ABM 与△APD 相似,求点M 的坐标。

3.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C

画直线.

(1)求二次函数的解析式;

(2)点P 在x 轴正半轴上,且PA=PC,求OP 的长;

(3)点M 在二次函数图象上,以M 为圆心的圆与直线AC 相切,切点为H.

①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;

②若⊙M 的半径为,求点M 的坐标.

题型五:构造梯形

【例 6】已知,矩形OABC 在平面直角坐标系中位置如图 1 所示,点A 的坐标为(4,0),点C 的坐标为

(0,- 2) ,直线y=-2

x与边BC相交于点D.3

(1)求点D 的坐标;

(2)抛物线y =ax 2+bx +c 经过点A、D、O,求此抛物线的表达式;

(3)在这个抛物线上是否存在点M,使O、D、A、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

2 【变式练习】

1. 已知平面直角坐标系 xOy 中, 抛物线 y =ax 2-(a +1)x 与直线 y =kx 的一个公共点为 A(4,8). (1) 求此抛物线和直线的解析式;

(2) 若点 P 在线段 OA 上,过点 P 作 y 轴的平行线交(1)中抛物线于点 Q ,求线段 PQ 长度的最大值; (3) 记(1)中抛物线的顶点为 M ,点 N 在此抛物线上,若四边形 AOMN 恰好是梯形,求点 N 的坐标

及梯形 AOMN 的面积.

2. 已知二次函数的图象经过 A (2,0)、C (0,12) 两点,且对称轴为直线 x =4,设顶点为点 P ,与

x 轴的另一交点为点 B .

(1) 求二次函数的解析式及顶点 P 的坐标;

(2) 如图 1,在直线 y =2x 上是否存在点 D ,使四边形 OPBD 为等腰梯形?若存在,求出点 D 的坐标;

若不存在,请说明理由;

(3) 如图 2,点 M 是线段 OP 上的一个动点(O 、P 两点除外),以每秒 个单位长度的速度由点 P

向点 O 运动,过点 M 作直线 MN //x 轴,交 PB 于点 N . 将△PMN 沿直线 MN 对折,得到△P 1MN . 在动点 M 的运动过程中,设△P 1MN 与梯形 OMNB 的重叠部分的面积为 S ,运动时间为 t 秒,求 S 关于 t 的函数关系式.

3. 如图 1,二次函数 y = x 2

+ px + q ( p < 0) 的图象与 x 轴交于 A 、B 两点,与 y 轴交于点 C (0,-1),△

ABC 的面积为5 .

4

(1)求该二次函数的关系式;

(2)过y 轴上的一点M(0,m)作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;

(3)在该二次函数的图象上是否存在点D,使以A、B、C、D 为顶点的四边形为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.

题型六:构造平行四边形

【例7】如图,在平面直角坐标系中,抛物线经过 A(—1,0),B(3,0),C(0,—1)三点。(1)求该抛物线的表达式;

(2)点 Q 在y 轴上,点 P 在抛物线上,要使以点 Q、P、A、B 为顶点的四边形是平行四边形,求所有满足条件的点 P 的坐标。

【变式练习】

1.如图,在平面直角坐标系xOy 中,一次函数(m 为常数)的图象与x 轴交于点A(﹣3,0),与y 轴交于点 C.以直线 x=1 为对称轴的抛物线 y=ax2+bx+c(a,b,c 为常数,且a≠0)经过 A,C两点,并与 x 轴的正半轴交于点 B.

(1)求m 的值及抛物线的函数表达式;

(2)设E 是y 轴右侧抛物线上一点,过点 E 作直线 AC 的平行线交 x 轴于点 F.是否存在这样的点 E,使得以 A,C,E,F 为顶点的四边形是平行四边形?若存在,求出点 E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;

(3)若P 是抛物线对称轴上使△ACP的周长取得最小值的点,过点 P 任意作一条与 y 轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.

2.如图 1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.

(1)求抛物线的解析式;

(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m,△MAB 的面积为S,求S 关于m 的函数关系式,并求出S 的最大值;

(3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P、Q、B、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

3.如图,抛物线 y=ax2+bx+c 交x 轴于点 A(﹣3,0),点B(1,0),交y 轴于点 E(0,﹣3).点C 是点A 关于点B 的对称点,点F 是线段 BC 的中点,直线 l 过点F 且与y 轴平行.直线 y=﹣x+m 过点 C,交 y 轴于D 点.

(1)求抛物线的函数表达式;

(2)点K 为线段 AB 上一动点,过点 K 作x 轴的垂线与直线 CD 交于点 H,与抛物线交于点 G,求线段HG 长度的最大值;

(3)在直线 l 上取点 M,在抛物线上取点 N,使以点 A,C,M,N 为顶点的四边形是平行四边形,求点N 的坐标.

【例8】已知平面直角坐标系xOy(如图 1),一次函数y =3 x + 3 的图像与y轴交于点A,点M在正

4

比例函数y =3

x 的图像上,且MO=MA.二次函数2

y=x2+bx+c 的图像经过点A、M.(1)求线段AM 的长;

(2)求这个二次函数的解析式;

(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数y =3

x + 3

4 的图像上,且四边形ABCD 是菱形,求点C 的坐标.

【变式练习】

1.将抛物线c1:y =-

3x2+

3 沿x 轴翻折,得到抛物线c2,如图 1 所示.

(1)请直接写出抛物线c2的表达式;

(2)现将抛物线c1向左平移m 个单位长度,平移后得到新抛物线的顶点为M,与x 轴的交点从左到右依次为A、B;将抛物线c2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N,与x 轴的交点从左到右依次为D、E.

①当B、D 是线段AE 的三等分点时,求m 的值;

②在平移过程中,是否存在以点A、N、E、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.

题型七:线段最值问题

【例9】如图,抛物线y=x2+bx﹣2 与x 轴交于A,B 两点,与y 轴交于C 点,且A(﹣1,0).(1)求抛物线的解析式及顶点 D 的坐标;

(2)判断△ABC的形状,证明你的结论;

(3)点M(m,0)是x 轴上的一个动点,当 MC+MD 的值最小时,求 m 的

值.

y

A

O B C x 1.如图,已知抛物线y=ax 2+bx+c 与y 轴交于点A(0,3),与x 轴分别交于B(1,0)、C(5,0)两

点.

(1)求此抛物线的解析式;

(2)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴

上某点(设为点F),最后运动到点A.求使点P运动的总路径最短的点E、点F的坐标,并求出这

个最短总路径的长.

2.(2011 广东深圳)如图 13,抛物线 y=ax2+bx+c(a≠0)的顶点为(1,4),交 x 轴于A、B,交 y

轴于 D,其中 B 点的坐标为(3,0)

(1)求抛物线的解析式

(2)如图 14,过点 A 的直线与抛物线交于点 E,交 y 轴于点 F,其中 E 点的横坐标为 2,若直线 PQ

为抛物线的对称轴,点 G 为 PQ 上一动点,则 x 轴上是否存在一点 H,使 D、G、F、H 四点围成的四

边形周长最小.若存在,求出这个最小值及 G、H 的坐标;若不存在,请说明理由.

(3)如图 15,抛物线上是否存在一点 T,过点 T 作 x 的垂线,垂足为 M,过点 M 作直线MN∥BD,交

线段 AD 于点N,连接 MD,使△DNM∽△BMD,若存在,求出点 T 的坐标;若不存在,说明理由.

l

H

K

A O

B x

l

H

K

A O

B x

1.已知,如图 11,二次函数y =ax2+ 2ax - 3a (a ≠ 0) 图象的顶点为H ,与x 轴交于A 、B 两点( B 在

A 点右侧),点H 、

B 关于直线l :y =

3 x +

3

对称.

(1)求A 、B 两点坐标,并证明点A 在直线l 上;

(2)求二次函数解析式;

(3)过点B 作直线BK ∥AH 交直线l 于K 点, M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.

y y

2.如图.在直角坐标系中,已知点 A(0.1.),B( -4 .4).将点 B 绕点A 顺时针方向旋转90°得到点C,顶点在坐标原点的抛物线经过点 B.

(1)求抛物线的解析式和点 C 的坐标;

(2)抛物线上一动点 P.设点 P 到x 轴的距离为d1 ,点 P 到点A 的距离为d2 ,试说明d2 =d1 +1 ;

(3)在(2)的条件下,请探究当点 P 位于何处时.△PAC的周长有最小值,并求出△PAC的周长的最小值。

3

【例 10】如图,已知直线y =1 x +1 与y 轴交于点 A,与x 轴交于点 D,抛物线y =1 x2+bx +c 与

2 2

直线交于 A、E 两点,与x 轴交于 B、C 两点,且 B 点坐标为 (1,0)。(1)求该抛物线的解析式;(2)动点 P 在轴上移动,当△PAE是直角三角形时,求点 P 的坐标 P。

(3)在抛物线的对称轴上找一点 M,使| AM -MC |的值最大,求出点 M 的坐标。

【变式练习】

1.如图所示,在平面直角坐标系中,四边形 ABCD 是直角梯形,BC∥AD,∠BAD=90°,BC 与 y 轴相

交于点 M,且 M 是 BC 的中点,A、B、D 三点的坐标分别是 A(﹣1,0),B(﹣l,2),D(3,0).连

接DM,并把线段 DM 沿DA 方向平移到 ON.若抛物线 y=ax2+bx+c 经过点 D、M、N.

(1)求抛物线的解析式.

(2)抛物线上是否存在点 P,使得 PA=PC?若存在,求出点 P 的坐标;若不存在,请说明理由.

(3)设抛物线与 x 轴的另一个交点为 E,点 Q 是抛物线的对称轴上的一个动点,当点 Q 在什么位置

时有|QE﹣QC|最大?并求出最大值.

2017中考二次函数专题(含答案)

1.如图,抛物线y=x 2+bx+c 与直线y=x ﹣3交于A 、B 两点,其中点A 在y 轴上,点B 坐标为(﹣4,﹣5),点P 为y 轴左侧的抛物线上一动点,过点P 作PC ⊥x 轴于点C ,交AB 于点D .(1)求抛物线的解析式;(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由.(3)当点P 运动到直线AB 下方某一处时,过点P 作PM ⊥AB ,垂足为M ,连接PA 使△PAM 为等腰直角三角形,请直接写出此时点P 的坐标. 2. 在直角坐标系xoy 中,(0,2)A 、(1,0)B -,将ABO ?经过旋转、平移变化后得到如图15.1所示的BCD ?.

(1)求经过A 、B 、C 三点的抛物线的解析式;(2)连结AC ,点P 是位于线段BC 上方的抛物线上一动点,若直线PC 将ABC ?的面积分成1:3两部分,求此时点P 的坐标;(3)现将ABO ?、BCD ?分别向下、向左以1:2的速度同时平移,求出在此运动过程中ABO ?与BCD ?重叠部分面积的最大值. 3. 如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 图15.1 C D O B A x y

轴的另一个交点为B .⑴若直线y =mx +n 经过B ,C 两点,求直线BC 和抛物线的解析式;⑵在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;⑶设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标. 4. 如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经 第25题图

中考数学压轴题分类思想

中考数学压轴题分类思想 一、耐心填一填——一锤定音 1.矩形ABCD 中,AB=5,BC=12,如果分别以A 、C 为圆心的两圆相切,点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围是__________________. 解析:分⊙A 与⊙C 内切、外切两种情况. 答案:1

2016年中考数学压轴题精选及详解

2020年中考数学压轴题精选解析 中考压轴题分类专题三——抛物线中的等腰三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为等腰三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。 利用中点公式求出AB 的中点M ; 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ; 利用中点M 与斜率k 求出AB 的垂直平分线的解析式; 将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为腰时,分两类讨论: ①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。 ②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以 AB 为半径的圆上。 利用圆的一般方程列出A e (或B e )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 中考压轴题分类专题四——抛物线中的直角三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M e 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率 k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。 三、 中点公式: 四、 已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++22 2121y y ,x x 。 五、 任意两点的斜率公式: 已知两点()()2211y ,x Q ,y ,x P ,则直线PQ 的斜率: 2 12 1x x y y k PQ --= 。 中考压轴题分类专题五——抛物线中的四边形 基本题型:一、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上, 或抛物线的对称轴上),若四边形ABPQ 为平行四边形,求点P 坐标。 分两大类进行讨论: (1)AB 为边时 (2)AB 为对角线时 二、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为距形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边互相垂直 (2)对角线相等 三、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为菱形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边相等 (2)对角线互相垂直

2017中考二次函数专题(含答案)

1.如图,抛物线 y=x2+bx+c 与直线 y=x﹣3 交于 A、B 两点,其中点 A 在 y 轴上,点 B 坐标为(﹣4,﹣5),点 P 为 y 轴左侧的抛物线上一动点,过点 P 作 PC⊥x 轴于点 C,交 AB 于点 D.(1)求抛物线的解析式;(2)以 O, A,P,D 为顶点的平行四边形是否存在?如存在,求点 P 的坐标;若不存在,说明理由.(3)当点 P 运动到 直线 AB 下方某一处时,过点 P 作 PM⊥AB,垂足为 M,连接 PA 使△PAM 为等腰直角三角形,请直接写出此 时点 P 的坐标.
2. 在直角坐标系 xoy 中, A(0, 2) 、 B(1, 0) ,将 ABO 经过旋转、平移变化后得到如图15.1所示的 BCD . (1)求经过 A 、B 、C 三点的抛物线的解析式;(2)连结 AC ,点 P 是位于线段 BC 上方的抛物线上一动点,

若直线 PC 将 ABC 的面积分成1: 3 两部分,求此时点 P 的坐标;(3)现将 ABO 、BCD 分别向下、向左 以1: 2 的速度同时平移,求出在此运动过程中 ABO 与 BCD 重叠部分面积的最大值.
y A
C
BO D
x
图15.1
3. 如图,已知抛物线 y=ax2+bx+c(a≠0)的对称轴为直线 x=-1,且经过 A(1,0),C(0,3)两点,与 x 轴 的另一个交点为 B.⑴若直线 y=mx+n 经过 B,C 两点,求直线 BC 和抛物线的解析式;⑵在抛物线的对称轴 x=-1 上找一点 M,使点 M 到点 A 的距离与到点 C 的距离之和最小,求点 M 的坐标;⑶设点 P 为抛物线的

中考数学压轴题十大类型经典题

D C B A P Q K E D C B A (2011吉林)如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s ,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s ,△PAQ 的面积为y cm 2,(这里规定:线段是面积为0的三角形)解答下列问题: (1) 当x =2s 时,y =_____ cm 2;当x =9 2s 时,y =_______ cm 2. (2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式. (3)当动点P 在线段BC 上运动时,求出15 4=y S 梯形ABCD 时x 的值. (4)直接写出在整个.. 运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值. (2007河北)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长; (2)当点P 运动到AD 上时,t 为何值能使PQ ∥DC ? (3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式; (4)△PQE 能否成为直角三角形?若能,写出t 的取值范围;若不能,请说明理由. 备用图 (2008河北)如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时 出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >). (1)D F ,两点间的距离是 ; (2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;

2020中考数学压轴题常见的6种类型+中考模拟卷(可编辑)

2020中考数学压轴题常见的6种类型+中考模拟卷(可编辑)2020年中考数学:压轴题常见的 6 种类型 其实压轴题难度也是有约定的:历年中考,压轴题一般都由 3 个小题组成。 第(1)题容易上手,得分率在 0.8 以上; 第(2)题稍难,一般还是属于常规题型,得分率在 0.6 与 0.7 之间,第(3)题较难,能力要求较高,但得分率也大多在 0.3 与 0.4 之间。 而从近几年的中考压轴题来看,大多不偏不怪,得分率稳定在 0.5 与 0.6 之间,即考生的平均得 分在 7 分或 8 分。由此可见,压轴题也并不可怕。 我给听课的 6000 多名讲了几种中考数学常考的压轴题类型,课后很多同 学都反映很有用,今天我就分享给大家,希望对数学有困难的同学有帮助。 (1)线段、角的计算与证明问题 中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题 或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个 做题过程中士气,军心的影响。 (2)一元二次方程与二次函数 在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。 中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中

难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。 (3)多种函数交叉综合问题 初中数学所涉及的函数就一次函数,反比例函数以及二次函数。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。 (4)列方程(组)解应用题 在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。 从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。 (5)动态几何与函数问题 整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。 但是这两种侧重也没有很严格的分野,很多题型都很类似。其中通过图中已给几何图形构建函数是重点考察对象。做这类题时一定要有“减少复杂性”“增大灵活性”的主体思想。 (6)几何图形的归纳、猜想问题 中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列 的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。对于这类归纳总结问题来说,思考的方法是最重要的。

2017中考数学试题总汇编:二次函数

2017中考试题汇编--------二次函数(2017贵州铜仁)25.(14分)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上). (1)求该抛物线所表示的二次函数的表达式; (2)在抛物线上找出两点P1,P2,使得△MP1P2与△MCB全等,并求出点P1,P2的坐标; (3)在对称轴上是否存在点Q,使得∠BQC为直角,若存在,作出点Q(用尺规作图,保留作图痕迹),并求出点Q的坐标. 【分析】(1)利用待定系数法求二次函数的表达式; (2)分三种情况: ①当△P1MP2≌△CMB时,取对称点可得点P1,P2的坐标; ②当△BMC≌△P2P1M时,构建?P2MBC可得点P1,P2的坐标; ③△P1MP2≌△CBM,构建?MP1P2C,根据平移规律可得P1,P2的坐标;(3)如图3,先根据直径所对的圆周角是直角,以BC为直径画圆,与对称轴的交点即为点Q,这样的点Q有两个,作辅助线,构建相似三角形,证明△BDQ1

∽△Q1EC,列比例式,可得点Q的坐标. 【解答】解:(1)把A(﹣1,0),B(0,﹣2)代入抛物线y=x2+bx+c中得:, 解得:, ∴抛物线所表示的二次函数的表达式为:y=x2﹣x﹣2; (2)如图1,P1与A重合,P2与B关于l对称, ∴MB=P2M,P1M=CM,P1P2=BC, ∴△P1MP2≌△CMB, ∵y=x2﹣x﹣2=(x﹣)2﹣, 此时P1(﹣1,0), ∵B(0,﹣2),对称轴:直线x=, ∴P2(1,﹣2); 如图2,MP2∥BC,且MP2=BC, 此时,P1与C重合, ∵MP2=BC,MC=MC,∠P2MC=∠BP1M, ∴△BMC≌△P2P1M, ∴P1(2,0), 由点B向右平移个单位到M,可知:点C向右平移个单位到P2, 当x=时,y=(﹣)2﹣=, ∴P2(,);

中考压轴题十大类型之动点问题

中考数学压轴题十大类型目录 第一讲中考压轴题十大类型之动点问题 第一讲中考压轴题十大类型之动点问题 1. (2011吉林)如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E, AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A-B-C-E方向运动,到点E停止;动点Q沿B-C-E-D方向运动,到点D停止,设运动时间为xs,△PAQ的面积为y cm2,(这里规定:线段是面积为0的三角形)解答下列问题: (1)当x=2s时,y=_____ cm2;当x=9 2 s时,y=_______ cm2. (2)当5 ≤ x ≤ 14时,求y与x之间的函数关系式. (3)当动点P在线段BC上运动时,求出15 4 yS梯形ABCD时x的值. (4)直接写出在整个..运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值. 2. (2007河北)如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P 从点B出发沿折线段BA-AD-DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD-DA-AB于点E.点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0). (1)当点P到达终点C时,求t的值,并指出此时BQ的长; (2)当点P运动到AD上时,t为何值能使PQ∥DC ? (3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的关系式; (4)△PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由.

中考数学压轴题归类复习(十大类型附详细解答)

中考数学压轴题辅导(十大类型) 目录 动点型问题 (3) 几何图形的变换(平秱、旋转、翻折) (6) 相似不三角函数问题9 三角形问题(等腰直角三角形、等边三角形、全等三角形等) (13) 不四边形有关的二次函数问题 (16) 刜中数学中的最值问题 (19) 定值的问题 (22) 存在性问题(如:平行、垂直,动点,面积等) (25) 不圆有关的二次函数综合题... .. (29) 其它(如新定义型题、面积问题等) (33) 参考答案 (36)

中考数学压轴题辅导(十大类型) 数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方 法的综合性,多数为函数型综合题和几何型综合题。 函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再迚行图形的研究,求点的坐标戒研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题:是先给定几何图形,根据已知条件迚行计算,然后有动点(戒动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系迚行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,戒探索两个三角形满足什么条件相似等,戒探究线段乊间的数量、位置关系等,戒探索面积乊间满足一定关系时求 x 的值等,戒直线(圆) 不圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量乊间的 等量关系(即列出含有 x、y 的方程),变形写成 y=f(x)的形式。找等量关系的途径在刜中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量 的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千 变万化,但少丌了对图形的分析和研究,用几何和代数的方法求出 x 的值。 解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点不数即坐标乊间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。 一是运用函数不方程思想。以直线戒抛物线知识为载体,列(解)方程戒方程组求其解 析式、研究其性质。 二是运用分类讨论的思想。对问题的条件戒结论的多变性迚行考察和探究。 三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识戒方法组块去思考和探究。 解中考压轴题技能技巡: 一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题戒几个“难点”一个时间上 的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空 万无一失,前面的解答题尽可能的检查一遍。 二是解数学压轴题做一问是一问。第一问对绝大多数同学来说,丌是问题;如果第一小问丌会解,切忌丌可轻易放弃第二小问。过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要巟整,布局要合理;过程会写多少写多少,但是丌要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。 三是解数学压轴题一般可以分为三个步骤。认真审题,理解题意、探究解题思路、正确 解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重

中考数学压轴题分类汇编:图形变换

中考数学分类汇:几何综合——图形变换 某课外学习小组在一次学习研讨中,得到了如下两个命题: ①如图1,在正三角形△ABC 中,M 、N 分别是AC 、AB 上的点,BM 与CN 相交于点O ,若∠BON =60o,则BM =CN ; ②如图2,在正方形ABCD 中,M 、N 分别是CD 、AD 上的点,BM 与CN 相交于点O ,若∠BON =90o,则BM =CN ; 然后运用类比的思想提出了如下命题: ③如图3,在正五边形ABCDE 中,M 、N 分别是CD 、DE 上的点,BM 与CN 相交于点O ,若∠BON =108o,则BM =CN 。 任务要求: (1)请你从①、②、③三个命题中选择一个进行证明;(说明:选①做对得4分,选②做对得3分,选③做对得5分) (2)请你继续完成下列探索: ①请在图3中画出一条与CN 相等的线段DH ,使点H 在正五边形的边上,且与CN 相交所成的一个角是108o,这样的线段有几条?(不必写出画法,不要求证明) ②如图4,在正五边形ABCDE 中,M 、N 分别是DE 、EA 上的点,BM 与CN 相交于点O ,若∠BON =108o,请问结论BM =CN 是否还成立?若成立,请给予证明;若不成立,请说明理由。 [解] (1)以下答案供参考: (1) 如选命题① 证明:在图1中,∵∠BON=60°∴∠1+∠2=60° ∵∠3+∠2=60°,∴∠1=∠3 又∵BC=CA ,∠BCM=∠CAN=60°∴ΔBCM ≌ΔCAN ∴BM=CN (2)如选命题② 证明:在图2中,∵∵∠BON=90°∴∠1+∠2=90° ∵∠3+∠2=90°,∴∠1=∠3 又∵BC=CD ,∠BCM=∠CDN=90°∴ΔBCM ≌ΔCDN ∴BM=CN (3)如选命题③ 证明;在图3中,∵∠BON=108°∴∠1+∠2=108° ∵∠2+∠3=108°∴∠1=∠3 又∵BC=CD ,∠BCM=∠CDN=108° ∴ΔBCM ≌ΔCDN O C M N A 图1 A C M N O D 图2 图4 N M O E D C B A

2016-2017全国中考二次函数与直角三角形压轴题

4的图象与x轴交于A,B两点与y轴交于点C , O C的半径为.5, P为O C上一动点. (1 )点B,C的坐标分别为B( _____________ ),C( __________ ); (2) 是否存在点P,使得PBC为直角三角形?若存在,求出点P的坐标;若不存在,请 说明理由; ⑶连接PB,若E为PB的中点,连接0E ,则0E的最大值= . \F7\\ J-------- 1 ------ V J5 1V J 了 7 2在平面直角坐标系xOy中,抛物线y=ax2+bx+2过点A (- 2, 0), B (2, 2),与y轴交于 点C. (1 )求抛物线y=ax2+bx+2的函数表达式; (2)若点D在抛物线y=ax2+bx+2的对称轴上,求△ ACD的周长的最小值; (3) 在抛物线y=ax2+bx+2的对称轴上是否存在点 ax2 bx c经过平行四边形ABCD的顶点A(0,3)、 B( 1,0)、 1.如图,已知二次函数 巳使厶ACP是直角三角形?若存在直接写出点P的坐标,若不存在,请说明理由. 3如图1,抛物线y

D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面

积相等的两部分,与抛物线交于另一点 P ?点P 为直线l 上方抛物线上一动点,设点 P 的横 坐标为t . (1) 求抛物线的解析式; (2) 当t 何值时, PFE 的面积最大?并求最大值的立方根; (3) 是否存在点P 使 PAE 为直角三角形?若存在,求出t 的值;若不存在,说明理由? 4.( 12分)如图1,点A 坐标为(2, 0),以OA 为边在第一象限内作等边△ OAB 点C 为 x 轴上一动点,且在点 A 右侧,连接BC,以BC 为边在第一象限内作等边△ BCD 连接AD 交 (2) 是否存在点P,使得△ ACP 是以AC 为直角边的直角三角形?若存在, 求出所有符合 条件的点P 的坐标;若不存在, 说明理由; (3) 过动点P 作PE 垂直y 轴 于点E ,交直线AC 于点D,过 点D 作x 轴的垂线.垂足为F , 连接 EF ,当线段EF 的长度最 短时,求出点P 的坐标. 6如图,抛物线y=- 1 x 2+ 2 x+2与x 轴交于点A ,点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点.设点P 的坐标为(m, 0),过点P 作x 轴的垂线l 交抛物 线于点Q. (1) 求点A 点B,点C 的坐标; BC 于 E .

中考数学压轴题(含答案)

2016中考压轴题突破 训练目标 1.熟悉题型结构,辨识题目类型,调用解题方法; 2.书写框架明晰,踩点得分(完整、快速、简洁)。 题型结构及解题方法 压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。

答题规范动作 1.试卷上探索思路、在演草纸上演草。 2.合理规划答题卡的答题区域:两栏书写,先左后右。 作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。 3.作答要求:框架明晰,结论突出,过程简洁。 23题作答更加注重结论,不同类型的作答要点: 几何推理环节,要突出几何特征及数量关系表达,简化证明过程; 面积问题,要突出面积表达的方案和结论; 几何最值问题,直接确定最值存在状态,再进行求解; 存在性问题,要明确分类,突出总结。 4.20分钟内完成。 实力才是考试发挥的前提。若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。课程名称: 2014中考数学难点突破 1、图形运动产生的面积问题 2、存在性问题 3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题) 4、2014中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存 在性、四边形的存在性、压轴题综合训练)

一、图形运动产生的面积问题 一、 知识点睛 1. 研究_基本_图形 2. 分析运动状态: ①由起点、终点确定t 的范围; ②对t 分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置. 3. 分段画图,选择适当方法表达面积. 二、精讲精练 1. 已知,等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上,沿AB 方向以1 厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作AB 边的垂线,与△ABC 的其他边交于P 、Q 两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形并求出该矩形的面积. (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 1题图 2题图 2. 如图,等腰梯形ABCD 中,AB ∥CD ,AB = CD 高CE =,对角线AC 、BD 交于点H .平 行于线段BD 的两条直线MN 、RQ 同时从点A 出发,沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ,当直线RQ 到达点C 时,两直线同时停止移动.记 等腰梯形ABCD 被直线MN 扫过的面积为1S ,被直线RQ 扫过的面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒. (1)填空:∠AHB =____________;AC =_____________; (2)若213S S ,求x . 3. 如图,△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点P 、Q 同时从点C 出发,以1cm/s 的速度分别沿CA 、 CB 匀速运动,当点Q 到达点B 时,点P 、Q 同时停止运动.过点P 作AC 的垂线l 交AB 于点R ,连接PQ 、RQ ,并作△PQR 关于直线l 对称的图形,得到△PQ'R .设点Q 的运动时间为t (s ),△PQ'R 与△PAR 重叠部分的面积为S (cm 2). (1)t 为何值时,点Q' 恰好落在AB 上 (2)求S 与t 的函数关系式,并写出t 的取值范围. (3)S 能否为9 8 若能,求出此时t 的值; 若不能,请说明理由. C B A B C P R Q Q' l A C M N Q P B C H D C B A A B C H H D C B A A B C D M N R Q F G H E H D C B A H D C B A

2020年中考数学压轴题:9种题型+5种策略

2020年中考数学压轴题:9种题型+5种策略目前,初三学生正在紧张备考,对于数学这一科来说,最难的就是压轴题,想要在压轴题上拿高分,就要下功夫了。下面给大家带来中考数学压轴题:9种题型+5种策略,希望对大家有所帮助。 中考数学压轴题:9种题型+5种策略 九种题型 1.线段、角的计算与证明问题 中考的解答题一般是分两到三部分的。 第一部分基本上都是一些简单题或者中档题,目的在于考察基础。 第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。 线段与角的计算和证明,一般来说难度不会很大,只要找到关键题眼,后面的路子自己就通了。 2.图形位置关系 中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。 在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。 3.动态几何

从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。 动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。 另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。 所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。 4.一元二次方程与二次函数 在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。 相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。 中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。 但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。 5.多种函数交叉综合问题 初中数学所涉及的函数就一次函数,反比例函数以及二次函

2017贵州中考专题 二次函数

2017贵州中考题 二次函数 1、(2017六盘水)已知二次函数2y ax bx c =++的图象如图所示,则( ) A 、0,0b c >> B 、0,0b c >< C 、0,0b c << D 、0,0b c <> 2、(2017安顺)二次函数()20y ax bx c a =++≠的图象,如图,给出下列四个结论:①240ac b -<;②320b c +<;③42a c b +<;④()()1m a m b b a m ++<≠-,其中结论正确的个数是 ( ) A 、1 B 、2 C 、3 D 、4 3、(2017黔东南)如图,抛物线y=ax 2+bx +c (a ≠0)的对称轴为直线x=﹣1,给出下列结论:①b 2=4ac ;②abc >0;③a >c ;④4a ﹣2b +c >0,其中正确的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个 4、(2017黔南)二次函数的图象如图所示,以下结论:①abc >0;②4ac <b 2;③2a +b >0;④其顶点坐标为(,﹣2);⑤当x <时,y 随x 的增大而减小;⑥a +b +c >0正确的有( ) A 、3个 B 、4个 C 、5个 D 、6个 2y ax bx c =++1212

5、(2017贵阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是() A、①② B、②④ C、①③ D、③④ 6、(2017遵义)如图,抛物线2 =++经过点(1,0) y ax bx c -,对称轴l如图所示.则下列结论:①0 a b +<,其中所有正abc>;②0 +<;④0 a c a b c -+=;③20 确的结论是() A、①③ B、②③ C、②④ D、②③④ 7、(2017安顺)如图,直线3 y x =-+与x轴、y轴分别交于点B、点C,经过,B C 两点的抛物线2 =++与x轴的另一个交点为A,顶点为P. y x bx c 甲乙丙 (1)求抛物线的解析式; (2)在该抛物线的对称轴上是否存在点M,使以,, C P M为顶点的三角形为等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由; (3)当03 ?的面积有最大值.(图乙、丙<<时,在抛物线上求一点E,使CBE x 供画图探究)

2017年中考数学复习中考专题:圆与二次函数结合题

2017年中考数学复习 中考专题: 圆与函数综合题 1、如图,平面直角坐标系中,以点C (2,3)为圆心,以2为半径的圆与轴交于A 、B 两点. (1)求A 、B 两点的坐标; (2)若二次函数2y x bx c =++的图象经过点A 、B ,试确定此二次函数的解析式. 2、如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线233 y x bx c =-++过A 、B 两点. (1)求抛物线的解析式; (2)在抛物线上是否存在点P ,使得∠PBO=∠POB ?若存在,求出点P 的坐标;若不存在说明理由; (3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值. 3、如图,抛物线2y ax bx c =++的对称轴为轴,且经过(0,0),(1a,16 )两点,点P 在抛物线上运动,以P 为圆心的⊙P 经过定点A (0,2), (1)求a,b,c 的值; (2)求证:点P 在运动过程中,⊙P 始终与轴相交;

(3)设⊙P 与轴相交于M ()1x ,0,N ()()212x ,0x x 两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标。 4、如图,二次函数y =x 2+bx -3b +3的图象与x 轴交于A 、B 两点(点A 在点B 的左边),交y 轴于点C ,且 经过点(b -2,2b 2-5b -1). (1)求这条抛物线的解析式; (2)⊙M 过A 、B 、C 三点,交y 轴于另一点D ,求点M 的坐标; (3)连接AM 、DM ,将∠AMD 绕点M 顺时针旋转,两边MA 、MD 与x 轴、y 轴分别交于点E 、F ,若△DMF 为等腰三角形,求点E 的坐标. 5、类比、转化、分类讨论等思想方法和数学基本图形在数学学习和解题中经常用到,如下是一个案例,请补充完整。 原题:如图1,在⊙O 中,MN 是直径,AB ⊥MN 于点B ,CD ⊥MN 于点D ,∠AOC =90°,AB =3,CD =4,则BD = 。 ⑴尝试探究:如图2,在⊙O 中,M N 是直径,AB ⊥MN 于点B ,CD ⊥MN 于点D ,点E 在MN 上,∠AEC =90°,AB =3,BD =8,BE :DE =1:3,则CD = (试写出解答过程)。 ⑵类比延伸:利用图3,再探究,当A 、C 两点分别在直径MN 两侧,且AB ≠CD ,AB ⊥MN 于点B ,CD ⊥MN 于点D ,∠AOC =90°时,则线段AB 、CD 、BD 满足的数量关系为 。

数学中考试题分类汇编(压轴题)

(芜湖市)如图,已知 ,,现以A 点为位似中心,相似比为9:4,将OB 向右侧放大,B 点的对应点为C . (1) 求C 点坐标及直线BC 的解析式; (2) 一抛物线经过B 、C 两点,且顶点落在x 轴正半轴上,求该抛物线的解析式并画出函数 图象; (3) 现将直线BC 绕B 点旋转与抛物线相交与另一点P ,请找出抛物线上所有满足到直线AB 距离为P . 河北 周建杰 分类 (泰州市)29.已知二次函数y 1=ax 2 +bx +c (a ≠0)的图像经过三点(1,0),(-3,0),(0,- 2 3 ). (1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像;(5分) (2)若反比例函数y 2= x 2(x >0)的图像与二次函数y 1=ax 2 +bx +c (a ≠0)的图像在第一象限内交于点A (x 0,y 0),x 0落在两个相邻的正整数之间,请你观察图像,写出这两个 相邻的正整数;(4分) (3)若反比例函数y 2= x k (x >0,k >0)的图像与二次函数y 1=ax 2 +bx +c (a ≠0)的图像在第一象限内的交点A ,点A 的横坐标x 0满足2<x 0<3,试求实数k 的取值范围.(5分) (4,0)A (0,4)B 32

(南京市)28.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究: 信息读取 (1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解 (3)求慢车和快车的速度; (4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决 (5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时? 以下是河南省高建国分类: (巴中市)已知:如图14,抛物线2334y x =-+与x 轴交于点A , 点B ,与直线3 4 y x b =-+相交于点B ,点C ,直线3 4 y x b =- +与y 轴交于点E . (1)写出直线BC 的解析式. (2)求ABC △的面积. (3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少? 第29题图 (第28题) A B C D O y /km 900 12 x /h 4

2017-2018学年中考数学压轴题分类练习 动点相似(全等)专题(无答案)

动点相似(全等)专题 1.如图,直线23y x c =-+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243y x bx c =-++经过点A ,B . (1)求点B 的坐标和抛物线的解析式; (2)M (m ,0)为x 轴上一个动点,过点M 垂直于x 轴的直线与直线AB 和抛物线分别交于点P 、N , ①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与APM ?相似,求点M 的坐标; ②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值. 2.(2017四川省眉山市)如图,抛物线22y ax bx =+-与x 轴交于A 、B 两点,与y 轴交于C 点,已知A (3,0),且M (1,83-)是抛物线上另一点. (1)求a 、b 的值; (2)连结AC ,设点P 是y 轴上任一点,若以P 、A 、C 三点为顶点的三角形是等腰三角形,求P 点的坐标; (3)若点N 是x 轴正半轴上且在抛物线内的一动点(不与O 、A 重合),过点N 作NH ∥AC 交抛物线的对称轴于H 点.设ON =t ,△ONH 的面积为S ,求S 与t 之间的函数关系式. 3.定义:点P 是△ABC 内部或边上的点(顶点除外),在△PAB ,△PBC ,△PCA 中,若至少有一个三角形与△ABC 相似,则称点P 是△ABC 的自相似点. 例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠PCB =∠ABC ,则△BCP ∽△ABC ,故点P 是△ABC 的自相似点. 请你运用所学知识,结合上述材料,解决下列问题:

相关主题
文本预览
相关文档 最新文档