当前位置:文档之家› 基于小波变换的边缘检测

基于小波变换的边缘检测

基于小波变换的边缘检测
基于小波变换的边缘检测

基于小波变换的图像边缘检测算法

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

基于小波变换的边缘检测技术(完整)

第一章图像边缘的定义 引言 在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。 由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。根据这一特点,人们提出了多种边缘检测算子:Roberts算子Prewitt算子Laplace算子等。 经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。这些算子毫无例外地对噪声较为敏感。由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。于是发展了多尺度分析的边缘检测方法。小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。 小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。常用的小波算子有Marr 算子Canny算子和Mallat算子等。

§1.1信号边缘特征 人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。从以上这几点,可以总结出待识别的图像边缘点应具有下列特征即要素:具有较强的灰度突变,也就是与背景的对比度鲜明;边缘点之间可以形成有意义的线形关系,即相邻边缘点之间存在一种有序性;具有方向特征;在图像中的空间相对位置;边缘的类型,即边缘是脉冲型、阶跃型、斜坡型、屋脊型中哪一种。 §1.2图像边缘的定义 边缘检测是图像处理中的重要内容。而边缘是图像中最基本的特征,也是指周围像素灰度有变化的那些像素的集合。主要表现为图像局部特征的不连续性,也就是通常说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常分为阶跃边缘和屋顶边缘两种类型。阶跃边缘在阶跃的两边的灰度值有明显的变化;屋顶边缘则位于灰度增加与减少的交界处。我们可以利用灰度的导数来刻画边缘点的变化,分别求阶跃边缘和屋顶边缘的一阶,二阶导数。如图可见,对于边缘点A,阶跃边缘的一阶导数在A点到最大值,二阶导数在A点过零点;屋顶边缘的一阶导数在A点过零点,二阶导数在A点有最大值。

数字图像处理中的边缘检测技术

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

《小波分析及其应用》word版

现代数字信号处理作业 小波分析及其应用 电研111 梁帅

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反演公示,但当时该理论未能得到数学家的认可。1986年法国数学家YMcyer偶尔构造出一个真正的小波基,并与

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率

的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。 因此需要一种如下的数学工具:可以将信号的时域和频域结合起来构成信号的时频谱,描述和分析其时频联合特征,这就是所谓的时频局部化分析方法,即时频分析法。1964年,Gabor 等人在傅立叶变换的基础上引入了一个时间局部化“窗函数”g(t),改进了傅立叶变换的不足,形成窗口化傅立叶变换,又称“Gabor 变换”。 定义“窗函数”(t)g 在有限的区间外恒等于零或很快地趋于零,用函数(t )g -τ乘以(t)f ,其效果等同于在t =τ附近打开一个窗口,即: ()()()dt e t g t f G t j f ωττω-+∞ ∞--=?, (4-3) 式(4-3)即为函数f(t)关于g(t)的Gabor 变换。由定义可知,信号(t)f 的Gabor 变换可以反映该信号在t =τ附近的频谱特性。其逆变换公式为: ()()()ττωτωπ ωd G t g e d t f f t j ,21 ? ?+∞ ∞ --- = (4-4) 可见()τω,f G 的确包含了信号(t)f 的全部信息,且Gabor 窗口位置可以随着 τ的变化而平移,符合信号时频局部化分析的要求。 虽然Gabor 变换一定程度上克服了傅立叶变换缺乏时频局部分析能力的不

小波变换及其应用_李世雄

现代数学讲座 小波变换及其应用 李世雄 (安徽大学数学系 合肥 230039) 科学技术的迅速发展使人类进入了信息时代。在信息社会中人们在各种领域中都会涉及各种信号(语音,音乐,图像,金融数据,……)的分析、加工、识别、传输和存储等问题。长期以来,傅里叶变换一直是处理这方面问题最重要的工具,并且已经发展了一套内容非常丰富并在许多实际问题中行之有效的方法。但是,用傅里叶变换分析处理信号的方法也存在着一定的局限性与弱点,傅里叶变换提供了信号在频率域上的详细特征,但却把时间域上的特征完全丢失了。小波变换是80年代后期发展起来的新数学分支,它是傅里叶变换的发展与扩充,在一定程度上克服了傅里叶变换的弱点与局限性。本文从信号分析与处理的角度来介绍小波变换的基本理论与应用,使具有微积分基础的读者通过本文能对这一新的数学分支有一初步了解。小波变换在函数论、微分方程、数值计算等方面也有着重要的应用,有兴趣的读者可参看[1][4]。 (一)从傅里叶变换谈起 数学中经常用变换这一技巧将问题由繁难化为简易,初等数学中用对数将较繁难的乘除法化为简易的加减法就是很典型的一个例子。而傅里叶变换(简称FT )则是利用积分将一个函数f (t )(-∞

小波变换在研究工作中的应用前景

小波变换的应用前景 首先介绍下什么是小波变换,小波变换是近年来在图象处理中受到十分重视的新技术,面向图象压缩、特征检测以及纹理分析的许多新方法,如多分辨率分析、时频域分析、金字塔算法等,都最终归于小波变换(wavelet transforms)的范畴中。线性系统理论中的傅立叶变换是以在两个方向上都无限伸展的正弦曲线波作为正交基函数的。对于瞬态信号或高度局部化的信号(例如边缘),由于这些成分并不类似于任何一个傅立叶基函数,它们的变换系数(频谱)不是紧凑的,频谱上呈现出一幅相当混乱的构成。这种情况下,傅立叶变换是通过复杂的安排,以抵消一些正弦波的方式构造出在大部分区间都为零的函数而实现的。为了克服上述缺陷,使用有限宽度基函数的变换方法逐步发展起来了。这些基函数不仅在频率上而且在位置上是变化的,它们是有限宽度的波并被称为小波(wavelet)。基于它们的变换就是小波变换。 传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier变换进行各种改进,小波分析由此产生了。小波分析是一种新兴的数学分支,它是泛函数、Fourier分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier 分析之后的又一有效的时频分析方法。小波变换与Fourier变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题。 并且,小波变换是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。正如1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到认可一样。幸运的是,早在七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J.O.Stromberg还构造了历史上非常类似于现在的小波基;1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的统一方法--多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。与Fourier 变换、视窗Fourier变换(Gabor变换)相比,具有良好的时频局部化特性能,因而能有效的从信号中提取资讯,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,因而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。 与Fourier变换相比,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。数学家认为,小波分析是一个新的数学分支,它是泛函分析、Fourier分析、样调分析、数值分析的完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算

基于Gabor小波变换的人脸表情特征提取

—172 — 基于Gabor 小波变换的人脸表情特征提取 叶敬福,詹永照 (江苏大学计算机科学与通信工程学院,镇江 212013) 摘 要:提出了一种基于Gabor 小波变换的人脸表情特征提取算法。针对包含表情信息的静态灰度图像,首先对其预处理,然后对表情子区域执行Gabor 小波变换,提取表情特征矢量,进而构建表情弹性图。最后分析比较了在不同光照条件下不同测试者做出6种基本表情时所提取的表情特征,结果表明Gabor 小波变换能够有效地提取与表情变化有关的特征,并能有效地屏蔽光照变化及个人特征差异的影响。关键词:模式识别;表情特征提取;Gabor 小波变换 Facial Expression Features Extraction Based on Gabor Wavelet Transformation YE Jingfu, ZHAN Yongzhao (School of Computer Science and Communications Engineering, Jiangsu University, Zhenjiang 212013) 【Abstract 】This paper introduces a facial expression features extraction algorithm. Given a still image containing facial expression information,preprocessors are executed firstly. Secondly, expression feature vectors of the expression sub-regions are extracted by Gabor wavelet transformation to form expression elastic graph. Different expression features are extracted and compared while different subjects display six basic expressions with illumination variety. Experiment shows that expression features can be extracted effectively based on Gabor wavelet transformation, which is insensitive to illumination variety and individual difference. 【Key words 】Pattern recognition; Expression feature extraction; Gabor wavelet transformation 计 算 机 工 程Computer Engineering 第31卷 第15期 Vol.31 № 15 2005年8月 August 2005 ·人工智能及识别技术·文章编号:1000—3428(2005)15—0172—03 文献标识码:A 中图分类号:TP37 人脸表情识别是指从给定的表情图像或者视频序列中分析检测出特定的表情状态,进而确定被识别对象的心理情绪。人脸表情识别技术在许多领域有着潜在的应用价值,这些领域包括心理学研究、图像理解、合成脸部动画、视频检索、机器人技术、虚拟现实技术以及新型人机交互环境等[1]。 典型的人脸表情识别系统包括人脸检测、表情特征提取、表情特征分类识别3个阶段。人脸检测要能够从复杂的背景中检测出人脸的存在并确定其位置,对于图像序列,还要能精确跟踪人脸区域,国内外在人脸检测方面已做了大量的研究,且已有相关的有效方法及成果报道。而对于表情特征的提取和分类识别算法的研究目前还处于探索之中,国外学者已做了一定的研究工作,国内关于这方面的研究则相对较少。 针对处理图像的性质,可将表情特征提取方法分为两类:基于静态图像的表情特征提取和基于视频序列的动态表情特征提取。前者处理的是单帧静态表情图像,一般要求该图像反映的表情处于夸张或极大状态,使得提取的表情特征更为典型,这类方法主要包括主成份分析、奇异值分解以及基于小波变换的方法等。后者处理的是表情图像序列,目标是提取表情特征的变化过程。光流模型(Optical Flow Models)是提取动态表情特征的典型方法。比较而言,静态方法处理的数据量少,方法简单可靠,且提取的特征较为典型,能获得较高的识别率,但待处理的图像所包含的表情信息需处于夸张状态。而动态方法处理视频序列中的每一帧图像,因此计算量较大,难以满足实时性要求。 1表情图像的预处理 表情图像的预处理包括表情图像子区域的分割以及表情图像的归一化处理。前者指从表情图像中分割出与表情最相关的子区域,而后者包括图像的灰度均衡和尺度归一。图像预处理的好坏直接影响表情特征提取的效果和计算量。 (a) (b) 图1 分割人脸表情图像以提取特征区域 人脸表情特征可分为两类:持久性表情特征和瞬态表情特征,前者包括嘴巴、眼睛和眉毛,决定了基本表情状态,后者包括脸颊和额角皱纹的瞬间变化,能在一定程度上揭示表情状态。实验表明[3],嘴角形状对表情的影响最大,其次是眼睛和眉毛,而皱纹变化属于动态特征,且受年龄等因素影响较大,对表情的贡献不大,甚至会对表情识别产生不利影响。因此表情识别应重点提取嘴巴、眼睛和眉毛等局部表情特征,并忽略皱纹的变化。图像分割算法的目标就是要精确定位和分离出持久表情特征子区域。对于样本图像,可以人工框出这些区域,也可以根据眼睛的灰度特征并结合先验知识采用特定的定位算法实现特征区域的自动分割。分割结 基金项目:国家自然科学基金资助项目(60273040);江苏省高校自然科学基金资助项目(02KJB520003) 作者简介:叶敬福(1980—),男,硕士生,研究方向:多媒体技术,CSCW ;詹永照,教授、博导 定稿日期:2004-06-26 E-mail :yejingfu@https://www.doczj.com/doc/e22857971.html,

基于B样条小波的图像边缘检测.

基于B样条小波的图像边缘检测 周何,黄山,盛贤 (四川大学电气信息学院自动化系,成都市610065;) 摘要:研究图像边缘优化检测问题。针对图像边缘信息被噪声污染影响定位精度,经典的边缘检测方法Canny算法中的高斯平滑函数边缘定位精确度较低,导致图像缓变边缘信息丢失和假边缘的现象。在Canny最优边缘检测准则下,引入了渐进最优的B样条小波函数,采用小波变换应用于图像边缘检测中的基于模极大值的方法,并结合基于Kmeans聚类的自适应双阈值方法进行图像边缘检测。实验结果表明,改进的算法改善了噪声干扰情况下图像边缘提取效果,有效提高了边缘检测的准确性,得到较高的边缘检测图像质量。 关键词:边缘检测;小波变换;定位精度; 中图法分类号: TP391.4文献标识码: A Image edge detection based on B-spline wavelet ZHOU He,HUANG Shan,SHENG Xian (School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China;) Abstract:In order to solve the low positioning accuracy of image edge detection by noise, make a research on optimization of image edge detection. The Gaussian smoothing function of Canny edge detection method, the classical algorithm, causes the missing of slowly varying edge and the producing of feigned edge and the edge detection is not accurate enough. So in the Canny criteria of optimum edge detection, the introduction of the asymptotically optimal B-spline wavelet function was put forward. The method of modulus maxima of wavelet transform and Kmeans clustering method determining its duel valves automatically was used in the edge detection experiments.The experiments proved that the new algorithm was in a higher accuracy, and improved the quality of the edge detection image. Keywords : edge detection; wavelet transform; positioning accuracy; 1 引言 传统的边缘检测Canny算法是将图像与高斯滤波器相卷积以获得平滑降噪的效果,其基本思想是在图像中找出具有局部最大梯度幅值的像素点,对边缘提取的大部分工作集中在寻找能够用于实际图像的梯度数学逼近。这种算法会造成原图像的过度光滑,缓变边缘丢失,定位精度较低,且计算量大、复杂、耗时[1]。 小波分析具有多尺度分析的特点,能较好的综合噪声抑制和边缘保持这两个特性。任意一个信号可表示成经伸缩和平移的n次B样条的加权和,即可完全由B样条系数来刻画。该系数中的分辨阶数越小对信号的平滑程度越小,边缘定位越精确,在对不同尺度下的逼近函数取一阶导数或者二阶导数时就获得了多尺度边缘提取。 本文充分利用边缘信息的多尺度特性和B 样条函数是同次样条函数空间中具有最小支撑的基底的这一特点,选取正交三次中心B样条 作为边缘提取时的平滑函数,再采用模极大值和Kmeans聚类的自适应双阈值的方法,提取出最终的边缘图像。此算法的原理与实现简单,且有较好的抗噪性能,并拥有比以Gauss函数为平滑函数的Canny算法更加出色的定位精度,提取出了更加精细的边缘,去除了虚假边缘。 2 B样条小波 在对Canny边缘检测算法的应用和研究中发现,Canny算法用Gauss函数作为滤波器,会使原图像过度光滑,缓变边缘丢失。由于Canny 算子不能直接进行Z变换,即找不到递推公式,从而只有用它进行卷积运算。但对于一个大的图像,计算时间很长。为此,在Canny最优边缘检测准则下,引入了渐进最优的B样条小波函数。 2.1 Canny边缘提取准则 John Canny于1986年在IEEE 上发表了自己的文章《A Computational Approach to Edge 1

小波变换及应用

小波变换及应用 一. 为什么研究小波变换 傅立叶变换(Fourier Transform ,缩写为FT )由下列公式定义: 正变换公式 ?()()i t f f t e dt ωω∞ --∞ =?? (1) 逆变换公式 ? ∞ ∞ -?= dt e f t f t i ωωπ )(?21 )( (2) 分析: 1.对于确定信号和平稳随机过程,傅立叶变换把时间域与频率域联系起来,许多在时域内难以看清的问题,在频域中往往表现得非常清楚。 2.变换积分核t i e ω±的幅值在任何情况下均为1,即1=±t i e ω,因此,频 谱)(?ωf 的任一频率点值是由时间过程)(t f 在整个时间域),(∞-∞上的贡献决定的;反之,过程)(t f 在某一时刻的状态也是由)(?ωf 在整个频率域),(∞-∞上的贡献决定的。)(t f 与)(?ωf 彼此之间是整体刻画,不能够反映各自在局部区域上的特征,因此不能用于局部分析。特别是傅立叶变换的积分作用平滑了非平稳过程的突变成分。要知道所分析的信号在突变时刻的频率成分,傅立叶变换是无能为力的。 3.实际中存在许多信号具有局部时间范围(特别是突变时刻)内的信号特征(一般是频率成分),例如,在音乐和语音信号中,人们所关心的是什么时刻奏什么音符,发出什么样的音节;图像信号中的细节信息,如边缘特征。 4.为了对非平稳信号作较好的分析,可以对信号在时域上加一个窗函数 )(τ-t g ,使其对信号)(t f 进行乘积运算以实现在τ附近的开窗,再对加窗的信 号进行傅立叶分析,这就是短时傅立叶变换(Short Time Fourier Transform, 缩写为STFT ),或者称为加窗傅立叶变换(Windowed Fourier Transform )。STFT 定义如下: (,)()()i t f S f t g t e dt ωωττ∞ --∞ =-? (3)

小波变换在图像边缘检测的运用

小波在图像边缘检测中的应用(比较几种算法) 检测技术与自动化装置 梅峰 0911******** 图像边缘是描述图像最基本、最有意义的特征,故边缘检测是计算机视觉和图像处理领域最经典的研究课题之一,边缘检测的主要目的是对一图像灰度变化进行度量、检测和定位。边缘检测器的工作既要将高频信号从图像中分离出来,又要区分边缘和噪声,准确的标定边缘位置。小波被誉为“数学显微镜”,在时域和频域都有良好的局部特性,以平滑函数的一阶导数作为小波函数对图像进行小波变换,小波系数的模极大值即对应图像的边缘[1-3]。 经典的边缘检测方法有一阶导数极大值点算法(例如Robert 算子、Sobel 算了、Canny 算子),二阶导数零交叉点算法(例如LoG 算子)等等。新的边缘检测方法有数学形态学的方法、模糊算子法、神经网络法、小波分析法、遗传算法、动态规划法、分形理论法等等。 原理 设)(21,x x θ是二维平滑函数]0,[2121??≠x dx x x )(θ。把它沿x 1,x 2两个方向上的一阶导数作为两个基本小波: 1 2121) 1() ,(),(x x x x x ??= θψ (1) 2 2121) 2() ,(),(x x x x x ??= θψ (2) 再令:1 2121) 1(2 21) 1() ,(),( 1),(x x x a x a x a x x a a ??== θψψ (3) 2 2121) 2(2 21) 2(),(),( 1),(x x x a x a x a x x a a ??==θψψ (4) 其中),(),(2 121a x a x x x a θθ=,对任意二维函数f (x 1,x 2)∈L 2(R 2),其小波变 换有两个分量: 沿x1方向:)2 ,1() 1(**)2,1()2,1,()1(x x a x x f x x a f WT ψ = (5) 沿x2方向:)2 ,1() 2(**)2,1()2,1,() 2(x x a x x f x x a f WT ψ = (6) 其中**代表而为卷积,他的具体含义是: 212 211212 ),( ),(1 )2,1() (**)2,1(du du a u x a u x u u f a x x i a x x f --=?? ψψ,i=1或2。 (7) 小波分量可简记成矢量形式:

基于小波变换的语音特征参数提取

基于小波变换的语音特征参数提取 【摘要】将小波变换的多分辨率特性用于改进Mel频率倒谱系数MFCC的前端处理中,给出了一种新的语音特征参数——小波MFCC。其特点在于采用小波变换、分层FFT和频率合成代替原来MFCC中的FFT部分,使频谱分辨率提高了一倍。试验证明,小波MFCC特征参数在较大词汇量情况下,其识别率优于MFCC特征参数的结果。 【关键词】小波分析;语音识别;MFCC Abstract:The multi resolution characteristic of wavelet is used to improve the front end processing of MFCC.So,a new feature parameter wavelet MFCC is presented in this paper.It uses wavelet transform,multi degree FFT and frequency synthesis to replace original FFT of MFCC,and increases spectrum resolution by 2.The experiments demonstrate that robustness and recognition rate of wavelet MFCC feature are better than one of MFCCs in large vocabulary. Key words:wavelet transformation;speech recognition;MFCC 1.引言 在语音识别和说话人识别中,基于Mel频率的倒谱系数MFCC(mel frequency cepstrum cofficient)是将人耳的听觉感知特性和语音的产生机制相结合,与其他特征参数相比较,体现了较优越的性能,在无噪声情况下能得到较高的识别率,因此是目前使用最广泛的特征参数。但是,随着识别词汇量的增大,这种参数的识别性能急剧地下降。说明这种特征不适合大词汇量识别。 近年来,小波变换被广泛应用于语音处理中,主要包括:利用小波变换对听觉感知系统进行模拟,对语音信号去噪,进行清、浊音判断。因为小波变换的局部化性质,可以在很小的分帧长下对语音信号仍具有较高的频谱分辨率,本文将小波变换技术引入到MFCC特征参数中,来进行语音识别系统的特征提取,可以提高对辅音区的识别效果。因此,用WMFCC特征参数作为隐马尔可夫(HMM)识别网络的输入信号,识别效果明显提高。 2.MFCC特征参数 图1所示为MFCC特征参数的计算流程图。 图1 MFCC特征参数的提取 人类听觉系统对声音高低的感知与实际频率是一种非线性映射关系[1],而与Mel频率成线性关系。根据人的听觉机理来进行Mel滤波器组的频带划分,模拟不同频率下人耳对语音的感知特性。实际频率和Mel频率的转换关系用公

小波分析及应用(附常用小波变换滤波器系数)

第八章 小波分析及应用 8.1 引言 把函数分解成一系列简单基函数的表示,无论是在理论上,还是实际应用中都有重要意义。 1822年法国数学家傅里叶(J. Fourier 1768-1830)发表的研究热传导理论的“热的力学分析”,提出并证明了将周期函数展开为正弦级数的原理,奠定了傅里叶级数理论的基础[1]。傅里叶级数理论研究的是把函数在三角函数系下的展开,使得对信号和系统的研究归结为对简单的三角函数的研究。傅里叶级数与傅里叶变换共同组成了平常所说的傅里叶分析[2]。傅里叶级数用于分析周期性的函数或分布,理论分析时经常假定周期是π2,定义如式(8.1-1)、(8.1-2) ()()π2,02 L x f ∈?,()∑∞ -∞ == k ikx k e c x f (8.1-1) 其中 ()dx e x f c ikx k -?=π π20 21 (8.1-2) 然而,被分析函数的性质并不能完整地由傅里叶系数来刻划,这里有一个例子来说明[3]:从任一个平方可和的函数)(x f 出发,为了得到一个连续函数)(x g ,只需或者增大f(x)的傅里叶系数的模,或者保持它不变并适当地改变系数的位相。因此,不可能仅根据傅里叶系数大小的阶就预知函数的性质(如大小、正则性)。 傅里叶变换的定义如式(8.1-3)、(8.1-4) ()()dx e x f F x j ωω? ∞∞ -= (8.1-3) ()()ωωπ ωd e F x f x j -∞∞-?= 21 (8.1-4) 通过引入广义函数或分布的概念,可获得奇异函数(如冲击函数)的傅里叶变换的存在。对于时域的常量函数,在频域将表现为冲击函数,表明具有很好的频域局部化性质。由式(8.1-3)可知,为了得到()ωF ,必须有关于f(x)的过去和未来的所有知识,而且f(x)在时域局部值的变化会扩散到整个频域,也就是()ωF 的任意有限区域的信息都不足以确定任意小区域的f(x)。在时域,哈尔(Haar)基是一组具有最好的时域分辨能力的正交基,它在时域上是完全局部化的,但在频域的局部化却很不好,这是由于哈尔系的两个缺点:缺乏正则性与缺乏振动性。研究者们希望寻找关于空间变量(或时间变量)与频域变量都同时好的希尔伯特(Hilbert)基,R. Balian 认为:“在通讯理论中,人们对于在完全给定的时间内,把一个振动信号表示成由其中每一个都拥有足够确定的位置与有一个频率的小波的叠加这件事感兴趣。事实上,有用的信息常常同时被发射信号的频率与信号的时间结构(如音乐)所传递。当把一个信号表达成时间的函数时,其中的频谱表现并不好;相反地,信号的傅里分析却显示不了信号每一分量发射信号的瞬时与持续时

相关主题
文本预览
相关文档 最新文档