当前位置:文档之家› 二氢槲皮素的研究进展

二氢槲皮素的研究进展

二氢槲皮素的研究进展
二氢槲皮素的研究进展

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国对运输机械的“FreedomCAR”计划和针对规模制氢的“FutureGen”计划,日本的“NewSunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态储氢发展的历史较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3%。而且存在很大的安全隐患,成本也很高。 金属氢化物储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeOx等物质,质量储氢密度为2%-5%。金属氢化物储氢具有高体积储氢密度和高安全性等优点。在较低的压力(1×106Pa)下具有较高的储氢能力,可达到100kg/m3以上。最近,中科院大连化学物理研究所陈萍团队发现Mg(NH2)/2LiH储氢体系可在110℃条件下实现约5%(质量分数)氢的可逆充放。但是,金属氢化物储氢最大的缺点是金属密度很大,导致氢的质量百分含量很低,一般只有2%-5%,而且释放氢时需要吸热,储氢成本偏高。 目前大量的储氢研究是基于物理化学吸附的储氢方法。物理吸附是基于吸附剂的表面力场作用,根源于气体分子和固体表面原子电荷分布的共振波动,维系吸附的作用力是范德华力。吸附储氢的材料有碳质材料、金属有机骨架(MOFs)材料和沸石咪唑酯骨架结构(ZIFs)材料、微孔/介孔沸石分子筛等矿物储氢材料。 碳质储氢材料主要是高比表面积活性炭、石墨纳米纤维(GNF)和碳纳米管(CNT),是最好的吸附剂,它对少数的气体杂质不敏感,且可反复使用。超级活性炭在94K、6MPa下储氢量

从落叶松根中提取二氢槲皮素可研报告

从落叶松根中提取二氢槲皮素 可行性研究报告 一、总论 1.1项目名称:大兴安岭林区从落叶松中提取高纯度(95%以上)二氢槲皮素可行性研究 1.2拟建规模:年产二氢槲皮素30吨 1.3建设性质:新建 1.4建设地点:加格达奇工业园区 1.5项目设计依据:专利发明 1.6项目设立的宗旨:一是项目符合国家产业政策,具有低碳、环保、节能等特点,属节能环保类。二是项目所使用原料为,100年以上兴安落叶松的根部高度0-100厘米部分,主要存在于原条墩根中,少占用木材,属废物利用。三是项目属高科技,产出比大,消耗原料少,产值利润高。四是开创大兴安岭以兴安落叶松为原料,生产林化产品的新纪元。 1.7经营范围: (1)范围:主要生产95%高纯度二氢槲皮素;同时生产副产品阿拉伯半乳聚糖、落叶松油 (2)规模:年产30吨二氢槲皮素;200吨阿拉伯半乳聚糖;50吨落叶松油 1.8主要经济技术指标

表一,主要经济技术指标 二、项目背景及建设的必要性分析 2.1项目背景 二氢槲皮素又称花旗松素或紫杉叶素,属维生素p。是一种二氢

酮醇类化合物。俄罗斯和美国药典中都收录有二氢槲皮素。二氢槲皮素在植物中的含量偏低,主要植物资源是西伯利亚落叶树(花旗松),多分布于俄罗斯西伯利亚地区,其他地区少见。或有通过化合物合成的二氢槲皮素,因程序复杂,成本较高,无法达到工业化生产要求。目前中国医药领域所使用的二氢槲皮素主要来自于俄罗斯和美国,因为供需差距较大,价格较为昂贵,这也进一步阻碍了它的工业化生产和应用。 (1)国内外研究现状 二氢槲皮素在落叶松中的含量约在0.3~5.7%左右,二氢槲皮素最早由日本学者Fukui从针叶植物Chamaecyparis obtusa(Sieb. et Zucc.) Endl.叶中提取出来,为一种葡萄糖苷的苷元。随后他又研究了它的 3-O-葡萄糖苷在针叶植物中的分布以及细菌存在下苷键的水解。以后又有人从多种植物中分离出二氢槲皮素及其衍生物,在植物中以苷元或苷两种形式存在。 美国专利(US2744919A)介绍了用水或极性稍大的醇或酮从树皮中提取二氢槲皮素,减压浓缩溶剂得到一种含有单宁、糖类和有色物质的粗提物,然后用低极性的醇、酮或醚萃取,脱除溶剂后的膏状物用热水进行结晶纯化制得二氢槲皮素粗品。此法溶剂萃取后得到的浸膏溶液含有较多杂质,在结晶的过程中纯度提高不明显且结晶次数较多。 俄罗斯专利(RU2184561C1)介绍了一种以落叶松木粉为原料提取二氢槲皮素的方法,将木粉与有机溶剂混合加热到110~120℃提

碳质储氢材料的研究进展

碳质储氢材料的研究进展 摘要 碳质材料由于具备质量轻、吸氢量大等优良特性,近年来引起了学者们的广泛关注。综述了碳质储氢材料的研究进展,介绍了碳质材料的储氢机理,并就近年来研究的热点探讨了影响碳质材料储氢的各种因素。最后,对碳质储氢材料的发展前景进行了展望。 关键词:碳质材料储氢储氢材料进展 Abstract Carbonaceous materials have been arousing increased research attention recently ,due to numerousadvantages such as low density and high storage capacity .Research advances of carbonaceous materials for hydrogenstorage are reviewed ,and hydrogen storage mechanism of carbonaceous materials is introduced .Moreover,based onrecent research highlights ,influence factors on hydrogen storage capacity of carbonaceous materials are discusseck E ventually future development of the carbon materials for hydrogen storage is prospected Key wolds :Carbonaceous materials ,Hydrogen Storage , Hydrogen Storage Materials , Progress 、八、, 前言 能源和资源是人类赖以生存和发展的源泉。随着社会经济的发展,全球能源供应的日趋紧缺,环境污染的日益加剧,已有的能源和资源正在以越来越快的速度消耗。面对化石燃料能源枯竭的严重挑战,近年来世界各国纷纷把科技力量和资金转向新能源的开发。氢能作为一种可储可输的洁净的可再生能源,从长远上看,它的发展可能对能源结构产生重大改变。洁净无污染的氢能利用技术正在以惊人的速度发展,己引起工业界的热切关注。 氢的规模制备是氢能应用的基础,氢的规模储运是氢能应用的关键,氢燃料电池汽车是氢能应用的主要途径和最佳表现形式,三方面只有有机结合才能使氢能迅速走向实用化。但是,由于氢在常温常压下为气态,密度很小,仅为空气的1/14,故氢的储存就成了氢能系统的关键技术。

浅谈储氢材料

储氢材料的背景 人类社会发展进步到今天,生活现代化了。但是由于资源的大量开发、使用,使人类面临着全地球的能源危机和环境污染问题。长期以来,地球上的主 要能源煤炭、石油、天然气现在已面临枯竭的境地。在能源危机警钟响起时, 人们把注意力集中到太阳能、原子能、风能、地热能等新能源上。但是要使这 些自然存在形态的能量转变为人们直接能使用的电能,必须要把它们转化为二 次能源。那么最佳的二次能源是什么呢?氢能就是一种最佳的二次能源。 氢是地球上一种取之不尽的元素。用电解水法取氢就是氢元素的广阔源泉。氢是一种热值很高的燃料。燃烧1千克氢可放出62.8千焦的热量,1千克氢可以代替3千克煤油。氢氧结合的燃烧产物是最干净的物质--水,没有任何污染。未来最有前途的燃料电池也主要是以氢为能源。所以人们很自然地把注意力集 中在氢能源的开发和利用上。要利用好氢能源。摆在人们面前的问题是如何把 氢储存、运输和利用。 氢的来源非常丰富,若能从水中制取氢,则可谓取之不尽、用之不竭。氢 能的利用,主要包括两个方面:一是制氢工艺,二是储氢方法。 传统储氢方法有两种,一种方法是利用高压钢瓶(氢气瓶)来储存氢气, 但钢瓶储存氢气的容积小,瓶里的氢气即使加压到150个大气压,所装氢气的质量也不到氢气瓶质量的1%,而且还有爆炸的危险;另一种方法是储存液态氢,将气态氢降温到-253 0C变为液体进行储存,但液体储存箱非常庞大,需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化。近年来,一种新型 简便的储氢方法应运而生,即利用储氢合金(金属氢化物)来储存氢气。 储氢材料的定义 储氢材料是一种能够储存氢的材料,储氢材料是能与氢反应生成金属氢化 物的物质,(狭义)具有高度的吸氢放氢反应可逆性;(广义)储氢材料是能 够担负能量储存、转换盒输送功能的物质,“载氢体”、或“载能体” 研究证明,某些金属具有很强的捕捉氢的能力,在一定的温度和压力条件下,这些金属能够大量“吸收”氢气,反应生成金属氢化物,同时放出热量。 其后,将这些金属氢化物加热,它们又会分解,将储存在其中的氢释放出来。 这些会“吸收”氢气的金属,称为储氢合金。 储氢材料的分类 化学吸附材料 金属氢化物及合金(如LaAlH4) 复合氢化物(NaAlH4、NaBH4、LiBH4等)等 物理吸附材料

储氢材料综述

储氢材料研究现状与发展趋势 xxx 摘要:氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料,如金属储氢(镁基储氢、Fe-Ti基储氢、金属配位氢化物、钒基固溶体型储氢)、碳基储氢、有机液体储氢等材料,比较了各种储氢材料的优缺点,并指出其发展趋势。 关键字:储氢材料,储氢性能,金属储氢,碳基储氢,有机液体储氢。 1.引言 氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。氢是宇宙中含量最丰富的元素之一。氢气燃烧后只产生水和热,是一种理想的清洁能源。氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。对于车用氢气存储系统,国际能源署(IEA)提出的目标是质量储氢密度大于5wt%,体积储氢密度大于50kgH2/m3,并且放氢温度低于423K,循环寿命超过1000次;而美国能源部(DOE)提出的目标是到2010年质量储氢密度不低于6wt%,体积储氢密度大于45kgH2/m3;到2015年上述指标分别达9wt%和81kgH2/m3;到2010年车用储氢系统的实际储氢能力大于3.1kg(相当于小汽车行使500km所需的燃料)。图1给出了目前所采用和正在研究的储氢材料的储氢能力对比。

表面吸附与效储氢材料

表面吸附与高效储氢材料 0809401083 匡鹏 一.能源危机与应用氢气的瓶颈 人类的历史某种程度上也是能源的发展历史,过去的五千年里,人类主要能源由草木,秸秆到煤天然气,尤其是近代以来,工业革命的发展与人们生活水平的快速提高使能源的需求快速增长,而据估计地球的化石能源只可以再支持50年的这种消耗速度,而即使没有能源枯竭的危机,人类使用化石能源也会受到极大的制约,因为化石带来的巨大污染近几十年来不断的浮现,更加促使人们寻找替代的能源。 当前几种有前途的能源解决方案——核聚变,裂变(体积太大,且危险过大),风能(不适宜携带,且有间隔性),太阳能(功率不够),都有各种缺陷,而不可以完全取代化石能源。氢能作为一种储量丰富,来源广泛(海水)能量密度高(氢气热值:143kJ/g,为汽油的3倍,酒精的3.9倍,焦炭的4.5倍)清洁(生成水),取代方便(利用原理与汽油等一样,稍加改进即可用于现在的发动机)的绿色能源受到了广泛的关注。 氢能是一种二次能源,其开发与利用需要解决氢的制取,储存,和利用三个问题,由于氢易燃,易爆且已扩散,这就使得人们实际应用中优先考虑氢储存,运输中的安全,高效和无泄漏损失,因此,氢的规模安全存储是现阶段氢能利用的瓶颈。 二.可以采用的氢气存储方法 根据氢的气体特征,其存储方式可以分为物理法与化学法。目前采用的储氢方式主要有四种:高压储氢,液化储氢,金属氢化物储氢以及吸附储氢。高压储氢的最大优点是操作方便,能耗小。

由以上表可以看到无论传统还是最近的金属氢化物,固态储氢都没有达到可以大规模应用的技术成熟水平。而吸附储氢在储氢密度,能源效率及操作安全性等方面颇具技术优势,其发展前景被看好。 三.表面吸附的原理及其对吸附材料的要求 固体表面的原子,由于周围原子对他的作用力不对称,即表面原子所受的力不饱和,因而有剩余力场,可以吸附气体或液体。制糖时,用活性炭来处理糖液,以吸附其中的杂质,得到洁白的产品,就是利用了活性炭的吸附能力。固体吸附有如下几个特点:1.固体表面分子移动困难,所以只可以靠降低界面张力的方法降低表面能2.固体表面是不均匀的,各个不同位置的吸附热与催化活性差别很大3.固体表面层的组成不同于体相内部。 按照吸附分子与固体表面的作用力的不同可以将吸附分为两类

储氢材料的发展现状、应用与制备综述

储氢材料的发展现状、应用与制备 摘要:能源危机和开发新能源一直是人类发展进程中相互依赖和相互促进的两个重要因素。为了保护环境,开发新能源,可以利用太阳能、地热、风能及海水等。其中,氢能是人类未来的理想能源,它是一种高能量密度、清洁的能源,是最有吸引力的能源形式之一,具有热值高、资源丰富、干净、无毒、无污染等特性。而氢的贮存和运输一直是个技术难题,由于制造液氢的设备费用很高,液化时又要消耗大量的能量,氢气和空气混合还会有爆炸的危险,因此能否利用氢气作为能源的关键是能否解决氢气的贮存和运输技术。本文简要讲述了储氢材料的发展现状、主要应用与制备技术。 关键词:储氢材料、性质、应用、发展、制备 1引言 当前,人类面临着能源危机,作为主要能源的石油、煤炭和天然气由于长期的过量开采已濒临枯竭。为了开发新能源,人们利用太阳能、地热、风能及海水的温差等,试图将它们转化为二次能源。氢由于其优异的特性受到高度重视,首先氢由储量丰富的水做原料,资源不受限制;第二氢燃烧的生成物是水,环境污染极少,不破坏自然循环;第三,氢由于很高的能量密度;此外,氢可以储存、输送,用途十分广泛。本文主要简述了储氢材料的基本性质、发展现状以及制备工艺。 2储氢材料的基本性质 储氢材料是一种能在晶体的空隙中大量贮存氢原子的合金材料,具有可逆吸放氢的性质。大多数金属合金(M)在一定的温度和压力条件下,与氢生成金属 →MHx+ΔH(生成热)。 氢化物(MHx):M+XH 2 2.1储氢材料应具备的基本条件 作为储存能量的材料,储氢材料应具备以下条件: (1)易活化,氢的吸储量大; (2)用于储氢时,氢化物的生成热小;用于蓄热时生成热要尽量大; (3)在室温附近时,氢化物的离解压为203-304kPa,具有稳定的合适的平衡分解压; (4)氢的吸储或释放速度快,氢吸收和分解过程中的平衡压(滞后)小; 、水分等的耐中毒能力强; (5)对不纯物如氧、氮、CO、CO 2 (6)当氢反复吸储和释放时,微粉化少,性能不会劣化; (7)金属氢化物的有效热导率大,储氢材料价廉; (8)吸收和释放氢的速度快,氢扩散速度大,可逆性好。 2.2影响储氢材料吸储能力的因素

_槲皮素药理作用在雌激素相关性疾病中的研究进展

·综述· 槲皮素,化学名为3,5,7,3’,4’-五羟基黄酮, 分子式为C 15H 10O 7,相对分子质量为302.23,是一些中草药的有效成分,如菟丝子、桑寄生、筋骨草、毛耳草、蒲黄、白花败酱草、葫芦巴、荔枝、鱼腥草等中都含有丰富的槲皮素,药典记载槲皮素是瓦松、银杏叶的主要成分。其分子结构见图1。作为植物雌激素黄酮类的一种,其结构与哺乳动物雌激素———17β-雌二醇(分子结构见图2)相似,包括一对羟基,具有相似的距离,并存在一个酚环,后者对其吸附于雌激素受体起决定性作用。用基质辅助激光解吸电离-质谱技术(MALDI -MS )法结合化学交联测定,发现槲皮素对雌激素受体α配体结合域 (hER αLBD )有很高的亲和力(0.01%)[1] ,是一种雌激素受体(ER )调节剂。在0.5nmol/L 17β雌二醇存 在情况下,高剂量槲皮素对乳腺癌MCF-7细胞表现为雌激素受体拮抗作用,与染料木黄酮、黄豆苷元等 黄酮类作用截然相反[2]。同时,槲皮素在心血管、糖 槲皮素药理作用在雌激素相关性疾病中的研究进展* 杨英曹阳综述 张婷婷△朱焰曹霖审校 【摘 要】槲皮素是一种黄酮类植物雌激素。近年来,有关槲皮素的研究很多,其中在雌激素相关 性疾病研究最多,主要包括乳腺癌、骨质疏松、前列腺癌、宫颈癌等疾病。在这些疾病研究中,槲皮素主要表现为诱导肿瘤细胞凋亡,调节破骨细胞分化,调控体内雌激素代谢,对肿瘤黏附、侵袭、血管形成各过程都有影响。与其他黄酮类药物药理作用相比,槲皮素有其独特性。槲皮素在雌激素相关性疾病中的作用机制呈多元化,大体概括为两方面:①抗氧化作用,诱导细胞凋亡,调控雌激素代谢。②雌激素受体(ER )调节作用,调控ER 下游许多底物及信号通路。 【关键词】槲皮素;雌激素类;受体,雌激素;抗氧化剂 The Pharmacologic Actions Progression of Quercetin on Estrogen Related Diseases YANG Ying,CAO Yang,ZHANG Ting -ting,ZHU Yan,CAO Lin.The Yueyang Hospital of Shanghai University of TCM,Shanghai 200437,China (YANG Ying,CAO Yang,ZHANG Ting -ting );Shanghai Institute of Planned Parenthood Research ,Shanghai 200032,China (ZHU Yan,CAO Lin )Corresponding author :ZHANG Ting -ting,E -mail :tingting185@https://www.doczj.com/doc/e215750630.html, 【Abstract 】Quercetin is one of flavones in phytoestrogen .Recently ,there have many researches about quercetin,and most of them are related with estrogen correlative diseases,such as breast cancer ,osteoporosis and prostate cancer,et al.In these diseases,there may have many effects,including promoting cell apoptosis ,controlling osteoclasts differentiation,regulation estrogen metabolism in vivo and effecting tumor cell growth progression ,involving adhesion ,invasion and angiopoiesis .Comparing with other flavones ,quercetin has its own distinct character.Many mechanisms may explain quercetin pharmacologic actions,mainly to sum up for two aspests:①Expression of antioxidation:inducing cell apoptosis and regulating estrogen metabolism.②Regulation of estrogens:as a estrogen receptor (ER)modulator,quercetin restrains tumor cell growth by influencing down -stream substrate of ER and impacting signal pathway. 【Key words 】QUERCETIN;Estrogens;Receptors,estrogen;Antioxidants (J Int Reprod Health蛐Fam Plan ,2011,30:69-72) *基金项目:上海市重点学科建设项目资助(S30303) 作者单位:200437上海市中医药大学附属中西医结合岳阳医院(杨英,曹阳,张婷婷);上海市计划生育科学研究所(朱焰,曹霖) △ 通信作者:张婷婷,E -mail:tingting185@https://www.doczj.com/doc/e215750630.html,

纳米储氢材料的研究进展

纳米储氢材料的研究进展* 刘战伟? (桂林电子科技大学信息材料科学与工程系,广西 桂林 541004) 摘 要:储氢材料的纳米化为新型储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料 的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 关键词:纳米;储氢材料;储氢性能 中图分类号:TB383 文献标识码:A文章编号:1003-7551(2009)01-0033-04 1 引言 当今世界,随着传统能源石油、煤炭日渐枯竭,且石油、煤炭燃烧产物二氧化碳和二氧化硫又分别产生温室效应和酸雨危害,使人类面临能源、资源和环境危机的严峻挑战,寻找新的能源已成为人们的普遍共识。氢作为一种洁净能源,已受到人们的充分重视[1]。近年来,在镍氢二次燃料电池等氢能的应用方面不断取得进展。20世纪60年代末,研究者发现Mg2Ni、LaNi5、FeTi等金属间化合物具有可逆储放氢气的特性,并且储氢密度大,可与液氢和固氢效果相比拟[2,3]。此后随着对于金属氢化物作为能量储存以及能量转换材料进一步深入地研究,到目前为止,已开发的贮氢合金主要有AB、AB5、AB2、A2B和镁基五大类型[4],储氢合金主要由可与氢形成稳定氢化物的放热型金属A(La、Ti、Zr、Mg、V等)和难与氢形成氢化物但具有氢催化活性的金属B(Ni、Fe、Co、Mn等)按一定比例组成。传统的AB、AB2和A2B型储氢合金储氢量不超过2wt%,这对储氢合金的某些应用领域(如燃料电池)是远远不够的。国际能源协会(IEA)要求储氢量至少为5wt%,并且放氢温度低于423K,循环寿命超过1000次。而传统镁基储氢量高,但有放氢温度高和吸放氢动力学慢的缺点。如何获得容量大,充放氢速度快,放氢温度低的新型储氢材料,成为储氢材料与储氢技术研究和开发中至关重要的内容和亟待解决的问题。 纳米材料是指一类粒度在1~100nm之间的超细材料,是介于单个原子、分子与宏观物体之间的原子集合体,是一种典型的介观体系。由于纳米材料的比表面能高,存在大量的表面缺陷,高度的不饱和悬键,较高的化学反应活性以及自身的小尺寸效应、表面效应、量子尺寸效应等,从而使其具有常规尺寸材料所不具备光学、磁、电、热等特性,成为继互联网和基因研究之后科学领域的又一研究热点,引发了世界各国科学工作者在相关理论研究及应用开发的广泛兴趣。纳米尺度的贮氢合金呈现出许多新的热力学和动力学特征,其活化性能明显提高[5,6],具有更高的氢扩散系统[7,8],并具有优良的吸放氢动力学性能[7,9,10]。储氢材料的纳米化为新兴的储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 2 纳米储氢材料储氢性能提高机理 一般认为,储氢合金纳米化提高储氢特性主要表现在以下几个方面原因:(1)量子尺寸效应和宏观量子隧道效应:对于纳米尺寸的金属颗粒,连续的能带分裂为分立的能级,并且能级间的平均间距增大,使得氢原子容易获得解离所需的能量,表现为贮氢合金活化能降低和活化温度降低;(2)纳米材料的表面效应:纳米颗粒具有巨大的比表面积,电子的输送将受到微粒表面的散射,颗粒之间的界面形成电子散射的高势垒,界面电荷的积累产生界面极化,而元素的电负性差越大,合金的生成焓越负,合金氢化物越稳定,金属氢化物能够大量生成。单位体积吸纳的氢的质量明显大于宏观颗粒。(3)比表面积和催化特性:纳米贮氢合金比表面积大,表面能高,氢原子有效吸附面积显著增多,氢扩散阻力下降,而且氢解反应在合金纳米晶的催化作用下反应速率增加,纳米晶具有高比例的表面活性原子, 有利于反应物在其表面吸附,有效降低了电极表面氢原子的吸附活化能,因而具有高的电催化性能。另外,由于纳米晶粒相当细小,导致晶界和晶格缺陷增加,而晶 * 基金项目:广西研究生教育创新计划资助项目(2008105950805M438) ? 通讯作者:liuzhanwei@https://www.doczj.com/doc/e215750630.html, 收稿日期:2009-01-13 33

(完整版)镁基储氢材料发展进展

Mg基储氢材料的进展 一、课题国内外现状 氢能作为一种资源丰富,能量高,干净无污染的二次能源已经引起了人们的极大兴趣[1],随着“氢经济”(以氢为能源而驱动的政治和经济)时代即将来临,氢能成为新世纪的重要二次能源已为科学界所广泛认同。 氢能的发展涉及到很多方面,如氢能技术、工程、生产、运输、储存、经济及利用等,其中储存问题是制约整个氢能系统应用的关键步骤,在已经探明的储存方法中,金属氢化物储氢具有储氢体积密度大、安全性好的优势,比较容易操作,运行成本较低,因此,金属氢化物技术的开发与研究近年来在世界各国掀起极大的热潮。其中,由于Mg密度小(1.74 g/cm3)、储氢能力高(理论上可达到7.6 wt.%)、价格低、储量丰富而使之成为一种很有前途的储氢合金材料。在众多储氢合金中,Mg基储氢合金因其储氢量大且资源丰富,价格低廉,成为最具潜力的储氢材料[2]。 然而,镁及其合金作为储氢材料也存在吸放氢速度慢、温度高及反应动力学性能差等缺点,因而严重阻碍了其实用化的进程。研究表明,将Mg基合金与具有催化活性的添加剂(过渡金属、过渡金属化合物、AB5型储氢合金等)混合球磨制备Mg基合金复合材料是提高Mg基合金吸/放氢性能的有效途径之一。针对上述Mg基储氢复合材料的研究,科研工作人员围绕以下几个方面展开工作: (1) 镁与单质金属复合 在球磨过程中添加其它单质金属元素,特别是过渡金属元素对镁的吸放氢性能有明显的改善作用。用于镁基材料复合的单质金属元素主要包括Pd、Fe、Ni、V、Ti、Co、Mo等。 Milanese等[3]研究了Al、Cu、Fe、Mn、Mo、Sn、Ti、Zn、Zr对镁吸放氢性能的影响,发现A1、Cu、Zn有助于镁的吸放氢,只有Cu能降低MgH2的稳定性,从而使其放氢温度降至270 ℃。Kwon等[4]球磨Mgl0%Ni5%Fe5%Ti混合材料,复合后其在300 ℃、1.2 MPa H2条件下吸收氢,吸氢时间分别为5 min和1 h,吸氢量分别为5.31%(质量分数,下同)和5.51%。初始吸氢速率从200 ℃升到300 ℃时增长较快,但在350 ℃时开始下降,放氢速率从200 ℃升到350 ℃时速度快速增长。他们认为添加的Ni、Fe和Ti元素能够产生活性点,并降低颗粒粒度,从而减少氢原子的扩散距离,形成新的高活性表面。同时,Ni、Fe、Ti也起到活性基点的作用,并能在球磨过程中创造缺陷,这些缺陷可以起到活性基点的作用,产生裂缝并能降低颗粒粒度。Varin等[5]在镁中添加0.5%~2.0%的纳米镍粉进行球磨储氢,结果表明,球磨70 h后,MgH2的粒径只有11~12 nm,当镍的添加量增加到2%时,储氢速率明显加快,球磨15 h,储氢密度就可达到6.0%以上;与MgH2相比,放

槲皮素纳米制剂研究进展

槲皮素纳米制剂研究进展 【摘要】槲皮素是一种存在于多种植物体内的黄酮类化合物,具有多种药理活性,如抗氧化、抗肿瘤等。但由于其水中溶解性差、口服生物利用度低、注射无法给药等因素导致应用受到极大的限制。近年来越来越多的制剂技术已被运用于槲皮素溶解性的改善,本文就近几年槲皮素纳米制剂的发展情况进行归纳整理。 【关键词】槲皮素;纳米粒;脂质体;胶束 槲皮素是一种广泛存在的黄酮类化合物,由于其具有的多种生物及药理活性而受到广泛关注。研究发现槲皮素具有多种活性,如抗氧化、抗炎、抗肿瘤、肾脏保护[1-3]。然而,由于槲皮素具有不稳定性、水溶性差,生物利用度低等问题限制了其临床应用。近些年来,纳米给药系统的发展,很大程度上提高了难溶性药物的水中溶解性,提高生物利用度等作用。因此将难溶性药物制备成纳米制剂是提高药物疗效,扩大临床应用非常具有前景的选择。本综述就近几年内槲皮素纳米制剂的发展状况进行分析整理。 1. 纳米混悬剂 Sun等[4]制备了槲皮素纳米混悬剂,平均粒径为393.5nm,平均电位为-35.75mV,且水中溶解度较原药粉增大了70倍。且与槲皮素原药相比,口服给药后血浆清除率降低了7.5倍,AUC增加了15.6倍,明显提高了口服生物利用度。Wang等[5]采用复乳化法用PEG-PLA制备了槲皮素-硅量子点纳米混悬剂,并考察了其对HepG2细胞的体外毒性实验,由于硅量子点具有产生荧光的特性,因此可以监控药物的转运过程。另外,Gao等[6]以普朗尼克F68/卵磷脂(3:1,w/w)为稳定剂,分别采用溶剂沉淀法和高压均质法制备槲皮素纳米混悬剂,平均粒径分别为251.56nm与192.47nm,冻干复溶稳定性好,在不同程度上解决了槲皮素水溶性差的难题。 2. 纳米粒 李厚丽等[7]采用高温乳化-低温固化制备了槲皮素固体脂质纳米粒,平均粒径为217.3nm,平均包封率为48.50%,实验结果表明与槲皮素原药粉相比,口服该剂型后可长时间黏附与小肠壁而不被排入大肠,可有效延长药物在小肠的滞留时间从而提高药物在肠道的吸收。 谭启等[8]采用溶剂注入法制备得到槲皮素磷脂-壳聚糖纳米粒,平均粒径为95.3nm,平均载药量和包封率为2.45%与48.47%。透皮实验结果表明将槲皮素制备获得磷脂-壳聚糖纳米粒后可促进药物的透皮吸收,从而有利于槲皮素抗炎抗氧化作用的充分发挥。 3. 脂质体

金属储氢材料研究进展

Chemical Propellants & Polymeric Materials 2010年第8卷第2期 · 15 · 金属储氢材料研究进展 范士锋 (海军驻西安地区军事代表局,陕西西安 710065) 摘 要:综述了金属储氢原理、目前国内外金属储氢材料的研究现状及应用研究进展,对镁系、稀土系、Laves相系、钛系及金属配位氢化物等几个系列金属储氢材料当前的研究热点和存在问题进行了详细介绍,并对未来金属储氢材料在民品和军工方面的应用研究方向和发展趋势进行了展望。 关键词:金属储氢材料;研究进展;发展趋势 中图分类号: TG139.7 文献标识码: A 文章编号: 1672-2191(2010)02-0015-05 收稿日期:2009-09-09 作者简介:范士锋(1978-),男,工程师,从事战略导弹总体与固体火箭发动机研究。电子信箱:jizhenli@126.com 作为燃料,氢具有最高的质量热值(其热值1.25×106kJ/kg,为汽油的3倍、焦炭的4.5倍), 是理想的高能清洁燃料之一[1-2]。目前,尽管高压(低于17MPa)气态储氢、低温(低于20K)液态储氢等技术手段使得氢在一些常规燃料和航天推进等领域得以应用,但高压气态氢体积热值小以及低温液态氢液化过程耗能高、使用条件苛刻等问题严重限制了氢作为火炸药能量供给组分的应用。利用吸氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服上述储存方式的不足,而且储氢体积密度大、安全度高、使用和运输便利。因此,今后储氢研究的重点将是新型高性能储氢材料的研发,目前研究较为广泛的主要是金属储氢材料[3]。 储氢材料按氢的结合方式可分为化学键合储氢(如储氢合金、配位氢化物、氨基化合物、有机液体碳氢化合物等)和物理吸附储氢(碳纳米管、多孔碳基材料、金属有机框架材料、纳米储氢材料、多孔聚合物等)。从上述储氢材料的性能(燃烧热、材料密度、储氢密度、反应活性)等衡量标准分析,高热值的金属储氢材料(包括金属氢化物或合金储氢材料)是火炸药燃料组分的发展重点。 文中主要针对当前金属储氢材料的研究热点和存在问题,对相关金属储氢材料的国内外研究进展进行较为详细的综述,以期为此类高性能材料在火炸药中的应用提供研究思路。 1 金属储氢原理及储氢研究现状 传统的氢气存储方式中,气态储氢方式简单 方便,是目前储存压力低于17MPa的常用方法,但存在着体积密度小、运输和使用过程中易燃易爆等缺点;液态储氢方法的体积密度(70kg/m3)较高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程需消耗的能量约占所储存氢能的25% ̄45%,且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于航天领域。金属储氢材料是目前研究较为广泛、成熟的新型高性能大规模储氢材料之一,其储氢密度高、安全性好、适于大规模氢气储运,最重要的特性是能够可逆地吸、放大量氢气。氢一旦与储氢合金接触,即在其表面分解为H原子,H原子扩散进入合金内部直至与合金发生反应而生成金属氢化物,氢即以原子态储存在金属结晶点内(四面体与八面体间隙位置)。在一定温度和氢压强条件下,上述吸、放氢反应式如下式所示: 其中,吸氢过程放热,放氢过程吸热,上述吸、放氢反应过程热力学和动力学与温度、氢压力密切相关,特别是放氢压力与反应温度呈指数变化关系[4]。 储氢材料性能的衡量标准主要用以下2个产量表示:体积储氢密度和质量储氢密度。其中,体积储氢密度为系统单位体积内储存氢气的质量(kg/m3),质量储氢密度为系统储存氢气的质量与系统质量的比值(质量分数)。考虑储氢材料在火炸药中的应用,系统燃烧热(与储存介质的热值和储氢质量分数的大小密切相关)、系统密度(与储存介质的密度和结构相关)和反应活性( 与氧化

储氢材料的研究与发展前景

目录 1.前言 (3) 2.储氢材料 (4) 2.1金属储氢材料 (4) 2.1.1镁基储氢材料 (5) 2.1.2钛基(Fe-Ti)储氢材料 (8) 2.1.3稀土系合金储氢材料 (9) 2.1.4锆系合金储氢材料 (10) 2.1.5金属配位氢化物 (11) 2.2碳质储氢材料 (11) 2.3液态有机储氢材料 (12) 3.储氢方式 (14) 3.1气态储存 (14) 3.2液化储存 (14) 3.3固态储存 (15) 4.氢能前景 (15) 参考文献 (17)

储氢材料的研究与发展前景 摘要:氢能作为一种新型的能量密度高的绿色能源, 正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一, 也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料, 如镁基储氢材料钛碳基储氢材料、稀土储氢材料、碳质储氢等材料的研究进展、发展前景和方向。 关键字:储氢材料,储氢性能,储氢方式,发展前景 1.前言 当今世界, 化石燃料储量正在迅速减少, 现存储量不能满足日益增长的需求。目前世界能源的80%来源于化石燃料, 但化石燃料的使用产生了大量有害物质, 对环境造成巨大影响。因此, 加速能源系统向可再生能源转换以适应当前和未来世界能源需求, 是迫切需要解决问题。 氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。氢是宇宙中含量最丰富的元素之一。氢气燃烧后只产生水和热,是一种理想的清洁能源。氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。对于车用氢气存储系统,国际能源署(IEA)

储氢材料

课程名称:先进材料综合实验 指导老师: 成绩:_____________ 实验名称: 储氢材料 实验类型: 技术实验 同组学生姓名:__________ 一、实验目的和要求 二、实验内容和原理 三、主要实验仪器设备 四、操作方法与实验步骤 五、实验数据记录和处理 六、实验结果与分析 七、讨论、心得 一、实验目的 1.了解储氢材料的基本理论及实验方法; 2.掌握储氢材料的设计、制备技术及吸放氢性能测试方法; 3.增强对材料的成分、结构和储氢性能之间关系的认识。 二、实验原理 储氢材料:名义上是一种能有效储存氢的材料,实际上它必须是能在适当的温度、压力条件下进行可逆吸放氢的材料,其主要应用于染料电池和镍氢电池中。 特点: 1.容易活化,单位质量和体积储氢量大(电化学储氢容量高); 2.吸放氢速度快,氢扩散速度大,可逆性好; 3.有较平坦和较宽的平衡平台压区,平衡分解压适中。做气态储氢材料应用时,室温附近的分解压应为>0.1MPa ,做电池材料应用时以10-3——10-1MPa 为宜; 4.吸收、分解过程中的平衡氢压差,即滞后要小; 5.氢化物生成焓,作为储氢材料或电池材料时应该小,做蓄热材料时则应该大; 6.寿命长,能保持性能稳定,作为电池材料时能耐碱液腐蚀; 7.有效导热率大、电催化活性高; 8.价格低廉,不污染环境,容易制造。 分类: 目前研究较多的传统材料体系主要有以下几种类型:AB 5型稀土系材料,非AB 5型稀土 系材料,AB 2型Laves 相材料,AB 型钛系材料,Mg 基材料和V 基固溶体型材料;另外,还包括近年来研究非常热门的金属或非金属的配位氢化物储氢材料:如Al 基配位氢化物、B 基配位氢化物和氨基氢化物。 储氢材料的储氢机理: 1. 气-固储氢反应机理 在一定的温度和压力条件下,储氢材料和H 2通过气-固反应生成含氢固溶体和氢化物相。其吸、 放氢反应可表示为: o 222H MH x y H MH x y y x ?+-?+- 式中MH x 为含氢固溶体相(α相),MH y 为氢化物相(β相),?H o 表示氢化物生成焓或氢化反应 热。一般吸放氢反应为可逆反应,吸氢过程是放热反应,?H o <0,而放氢过程则是吸热反应,即?H o >0。 材料科学与工程学系 实验报告

氢气储存方法的现状及发展

2018年第2期 作者简介:于忠华(1990-),男,辽宁大连人,主要从事对于气体的存放、监测,做系统的统计工作。 时代农机 TIMES AGRICULTURAL MACHINERY 第45卷第2期Vol.45No.2 2018年2月Feb.2018 氢气储存方法的现状及发展 于忠华1,云建2 (1.,116600; 2.(),116600) 摘要:氢能是当前一项重要新能源,如何有效存储氢是一个非常重要环节。为此文章将对几种常用的氢气储存方法及其现状进行分析,并探讨其发展趋势,以供广大同行参考与交流。 关键词:氢气;储存;方法;现状;发展 1氢气储存方法的现状 (1)压缩储氢。当前,一种较为常见的氢气储存方法就是加压压缩储氢,一般来说都是使用质量较大的钢瓶作为容器。但是因为其氢气密度较低,所以储氢效率不高,将压力增加到15MPa 时,质量储氢密度在3%以下。而对于移动用途来说,将氢气压力提高来增加其携氢量则容易致使氢脆情况出现或是氢分子在容器壁逸出。所以近几年对该种存储方法进行研究,一方面是优化容器材料,让使用的容器耐压更高,且自重更轻,并能够降低氢分子透过容器壁的几率,切实防止氢脆情况出现。当前主要使用的是外面包覆浸有树脂,锻压铝合金为内胆的碳纤维作为储氢容器。另一方面研究在于将部分吸氢物质添加至容器内,用以将储氢密度有效提升,一旦压力减小,便能够自动释放氢出来。 (2)液化储氢。在一般压力情况下,液氢熔点在-253℃,而在-253℃和正常压力情况下气态氢能够液化成液态氢,而液态氢密度是气态氢的845倍,且每kg 液氢热量是汽油的3倍,所以液态储氢非常适合用在储存空间较为有限的场所,例如汽车发动机、航天飞机用的火箭发动机等运输工具当中。但是液化储氢需要使用到超低温用的特殊容器,如若所使用的容器绝热与装料达不到相应要求则容易致使大量蒸发损失。所以当前研究重点在于研究高度绝热的储氢容器。 (3)空心玻璃微球储氢。结合实践来看,空心玻璃微球具有一个特点,即高温状态(300~400℃)呈现出多孔性而常温状态则是非渗透性。而空心玻璃微球的这个特点在当前技术水平下可以用于储存氢气。首先,空气玻璃微球放到10~200MPa 的高压状态中,然后利用设备将氢气加热到200~300℃压进玻璃微球里面,最后待压力和温度降低下来氢气扩散性便因此降低了,这样空心玻璃微球中便完成了氢气储存。通过对相关实验研究可知,空心玻璃微球在一定条件下(比如62MPa 或370℃等情况),微球之中储氢含量可达95%左右。而要想使用氢气的时候只需使用加热储器即可。相较于别的储氢方法,空心玻璃微球具有使用较低成本、稳定性强以及储氢能力高等优点,使其成为了当前氢气储存行业一个重点研究方向。 (4)金属氢化物储氢。氢几乎能够和元素周期表上的惰性气体外的其他元素发生反应生产氢化物,而部分金属间化合物、合金、过渡金属等因为其特殊的晶格结构等因素,在特定 条件下,氢原子能够进到金属晶格的四面体或八面体间隙中生成金属氢化物。在1×106Pa 压力下,金属氰化物有着储氢能力在100kg/m 3以上不过因为金属具有较大密度,从而使得氢的质量在2%~7%左右。除此之外,因为氢不可逆损伤,所以在使用金属储氢方式是常常会出现氢沉淀、高温氢腐蚀、氢化物致使的脆性、氢化物析出而导致的弹性畸变、氢致马氏相变等大大缩短了储氢金属的使用寿命。当前,该项技术正朝着研发更便宜、更轻的金属材料、缩短金属氢化物对氢的充放市场、降低因为充放氢频率过快而损害到储存系统、有效结合压缩储氢与金属氢化物以更好的提高氢气存储数量与效率等方向发展。 2氢气储存的发展探究 总得来说,作为氢能利用的一项关键技术,氢气储存的成本、效率以及含量等等都直接决定着氢能是否得到更好地利用。虽然从实际情况来看,现阶段氢气存储在技术、材料等方面距离氢能实用化还有很长的道路要走。但在科学技术不断发展进步的背景之下,氢气储存领域也取得了不小的进步。以氢气储存方式来说,在现实中氢气储存行业上有着多种方式。①压缩的方式相比于液化具有众多优点,比如效率高、成本低以及带来环境污染低等等;②液化储氢方式虽然成本相比于压缩成本要高的多,但其能量密度却很高,所以它被应用在航空以及军事领域当中;③金属氢化物方式缺点在于成本较高、质量大,但其优点则是储氢密度是当前所有方式最大的,高达100kg/m 3;④碳质吸附方式。该方式是氢气储存领域最新的技术,虽然其仍处在初期研究时期,但碳质吸附方式所具有储氢机理、条件简单以及含量高等诸多优点是使成为了氢气储存行业中的一个重点研究及发展方向。另外,氢气储存今后一个重点发展方向在于实现更高的安全性,为此当前在存储介质材料、安全标准等方面都有着很大的研究。 3结语 总而言之,在能源极为紧缺的今天,氢气作为一种来源广泛、储量丰富、具有较高能量密度的绿色能源正逐步受到社会的关注。在常温常压装填下,氢是以气态形式存在,密度是空气的1/14,所以如何有效储氢是一个关键问题。文章对当前我国氢气储存方法的现状及发展进行分析与探讨,希望能起到 抛砖引玉作用。 参考文献 [1]张超,鲁雪生,顾安忠.天然气和氢气吸附储存吸附热研究现状[J ]. 太阳能学报,2004,25(2):249-253. 95

相关主题
文本预览
相关文档 最新文档