当前位置:文档之家› 材料力学 第五版 i 截面的几何性质+习题答案

材料力学 第五版 i 截面的几何性质+习题答案

材料力学 第五版 i 截面的几何性质+习题答案
材料力学 第五版 i 截面的几何性质+习题答案

附录I 截面的几何性质 习题解

[习题I-1] 试求图示各截面的阴影线面积对x 轴的静积。

(a )

解:)(24000)1020()2040(3

mm y A S c x =+??=?=

(b )

解:)(422502

65

)6520(3mm y A S c x =??=?= (c )

解:)(280000)10150()20100(3

mm y A S c x =-??=?=

(d )

解:)(520000)20150()40100(3

mm y A S c x =-??=?=

[习题I-2] 试积分方法求图示半圆形截面对x 轴的静矩,并确定其形心的坐标。

解:用两条半径线和两个同心圆截出一微分面积如图所示。

dx xd dA ?=)(θ;微分面积的纵坐标:θsin x y =;微分面积对x 轴的静矩为: θθθθθdxd x x dx xd y dx xd y dA dS x ?=??=??=?=sin sin )(2

半圆对x 轴的静矩为:

3

2)]0cos (cos [3]cos []3[sin 3300300

2

r r x d dx x S r r

x =--?=-?=?=??

πθθθπ

π

因为c x y A S ?=,所以c y r r ??=232132π π

34r

y c = [习题I-3] 试确定图示各图形的形心位置。

(a )

习题I-3(a): 求门形截面的形心位置

矩形 L

i B

i

Ai

Y ci AiYci

Yc

离顶边

上 400 2

8000 160 1280000

左 150 2

3000

7

5 225000

150

2

0 3000

7

5 225000

14000

1730000

Ai=Li*Bi

Yc=∑AiYci/∑Ai

(b) 解: 习题I-3(b): 求L 形截面的形心位置

矩形 L i B i

Ai Y ci AiYc i Y c

X ci AiX ci X c

1

1

160

5

8000

8

128

60 0

0 000

9

10 900

5

5

4950

5

4500

250

5750

0 2

3

132

500

53

Ai=Li*Bi Yc=∑AiYci/∑Ai Xc=∑AiXci/∑Ai

解:

习题I-3(c): 求槽形与L 形组合截面的形心位置

型钢号 Ai (cm2)

Yc i(cm)

AiYci (cm3) Y c(cm)

Xc i(cm)

AiXci (cm3) X c(cm)

槽钢20 10 等边角钢80*10

Yc=∑AiYci/∑Ai

Xc=∑AiXci/∑Ai

[习题I-4] 试求图示四分之一圆形截面对于x 轴和y 轴的惯性矩x I 、y I 和惯性积xy I 。 解:用两条半径线和两个同心圆截出一微分面积如图所示。

dx xd dA ?=)(θ;微分面积的纵坐标:θsin x y =;微分面积对x 轴的惯性矩为: θθθθθdxd x dx xd x dx xd y dA y dI x ?=??=?==232222sin sin )(

四分之一圆对x 轴的惯性矩为: ??

?

-?==

2/0042

/0

2

3

2

2cos 1]4[sin ππθθ

θθd x d dx x I r r

x

)]2(2cos 21[2142/

02/0

4θθθππd d r ??-?= }]2[sin 2

12{82

/04πθπ-=r 16

4

r ?=

π

由圆的对称性可知,四分之一圆对y 轴的惯性矩为:

16

4

r I I x y ?=

微分面积对x 轴、y 轴的惯性积为:

xydA dI xy =

8

)42(21]42[21)(2144404222

20

2

2r r r x x r dx x r x ydx xdx I r r

x r r

xy =-=-=-==??

?

- [习题I-5] 图示直径为mm d 200=的圆形截面,在其上、下对称地切去两个高为

mm 20=δ

的弓形,试用积分法求余下阴影部分对其对称轴x 的惯性矩。

解:圆的方程为:

222r y x =+

如图,作两条平行x 轴的、相距为dy 线段,截圆构成微分面积,微分面积为:

dy y r dA 222-=

切去δ2之后,剩下部分对x 轴的惯性矩为:

dy y r y I r r x 22sin sin 22-=?

α

α

α

sin sin 42

222arcsin 8)2(82r r r y r y r r y y -??????+--=

)4sin 41

(24αα-=r )4sin 4(84αα-=r 222

1100)20100(=-+x

360021=x )(601mm x =

34

6020100tan =-=

α )(927.013.533

4arctan 0

rad ===α

)(10963.3)52.212sin 927.04(8

1004704

mm I x ?=-?=

[习题I-6] 试求图示正方形对其对角线的惯性矩。

解:正方形四条边的直线方程如图所示(设水平坐标轴为z ,竖坐标轴为y )。

dy y dz dy y dz dA y I a a z a

z a z a

z a A

z ?

?

?

?

?+

--+

---+==2

20

2

22

2222222

2

2

2

][22

20

2

20

22

20

2

2

2dy y dz dy y dz a a z a z a ?

?

?

?

+

-+

-+?=

[]

[]

][322

20

2

20

3

222

20

3

?

?+

--+

+?=a a z a

a z dz y dz y

])2

2()22()22()22([3222

030223??+-+--++?=-a a a z d a z a z d a z

a

a

a

z

a

z

2

2

4

2

2

4

4

)

2

2

(

3

2

4

)

2

2

(

3

2

?

?

?

?

?

?

?

?

?

?

?

?

+

-

-

?

?

?

?

?

?

?

?

?

?

?

?

+

?

=

-

=??

?

?

?

?

+

16

16

3

24

4a

a

12

4

a

=

故正方形对其的对角线的惯性矩为:

12

4

a

I

z

=。

[习题I-7]试分别求图示环形和箱形截面对其对称轴x的惯性矩。

(a)

解:)

(

21177368

]

)

175

150

(

1[

175

14

.3

64

1

)

1(

64

1

4

4

4

2

4mm

D

I

x

=

-

?

?

=

-

π

(b)

)

(

90449999

150

90

12

1

210

150

12

1

4

3

3mm

I

x

=

?

?

-

?

?

=

[习题I-8] 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。

解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得截面对

形心轴的惯性矩

所以

再次应用平行轴定理,得

[习题I-9]试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形的底边平行,相距1 m。

解:已知半圆形截面对其底边的惯性矩是,用平行轴定理得截面对形

心轴的惯性矩

再用平行轴定理,得截面对轴的惯性矩

[习题I-10] 试求图示组合截面对于形心轴x的惯性矩。

解:由于三圆直径相等,并两两相切。它们的圆心构成一个边长为 的等边三角形。该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴 的距离是

上面一个圆的圆心到 轴的距离是d 6

32。

利用平行轴定理,得组合截面对 轴的惯性矩如下:

[习题I-11] 试求图示各组合截面对其对称轴 的惯性矩。

解:(a )22a 号工字钢对其对称轴的惯性矩是 。

利用平行轴定理得组合截面对轴 的惯性矩 )(657600002)101201151012012

1

(

104.34237

mm I z =???+??+?= (b )等边角钢 的截面积是

,其形心距外边缘的距离是 mm ,

求得组合截面对轴 的惯性矩如下:

习题I-11(b )图

图形 b h Ixc a A Ix

中间矩形

1

6

00

0 0 6

000

上矩形

2

50

1

20833 3

05

2

500

3

下矩形

2

50

1

20833 3

05

2

500

3

左上L形

179510

1

926

5

右上L形

179510

1

926

5

左下L形

179510

1

926

5

右下L形

179510

1

926

5

A

a

I

I

xc

x

2

+

=45

[习题I-12]试求习题I-3a图所示截面对其水平形心轴的惯性矩。关于形心位置,可利

用该题的结果。

解:形心轴位置及几何尺寸如图所示。惯性矩计算如下:

[习题I-12]试求图示各截面对其形心轴x的惯性矩。

习题I-13(a)

图形

b

i

h

i

Ai Y

ci

AiYci Y

c

a

i

Ixc Ix(mm4)

上矩形

1

000

1

00

10

0000

6

50

2

25

33

下矩形

3

00

6

00

18

0000

3

00

1

25

00 00

全图

28

0000

0 4

25

习题I-13(c)

b

i

h

i

r Ai

Y

ci

AiYci

Y

c

Ixc(mm

4)

a

i

Ix(mm4) 矩

2

140

1

150

2461

000

5

75

00 8333

1

59

8275 半

7

90

-980

333

3

35

-7 791

3

99

习题I-13( b)

b

i

h

i

A

i

Y

ci

AiY

ci

Y

c

a

i

Ixc Ix(mm4

)

图(3)

2

5

1

50

3

750

2

75

103

1250

1

48

7031

250

中图(2)

2

00

1

50

3

0000

1

25

375

0000

2

下图(1)

1

00

5

5

000

2

5

125

000

1

02

1041

667

全图

3

8750

490

6250

1

27

全图

1480667

33

734

半圆:

π3/4r y c =

半圆:π

π9/88/44r r I xc

-=

习题I-13(d)

图形

b i

h i

A i

Y ci

AiY ci

Y c

a

i

Ixci

Ix(mm 4)

从下往上

220

1

6

3520

8

28160

3

74

75093

3

180

14 2520

23

57960

3

59 41160

16

674

10784

367

3957728

9

9

220

14

3080

711

2189880

3

29 50307

7

445

9

4005

2893613

3

41

27034

5

2

3909

9127341

382

14

[习题I-14] 在直径a D 8=圆截面中,开了一个a a 42?的矩形孔,如图所示。试求截面对其水平形心轴和竖直轴形心的惯性矩x I 和y I 。

解:先求形心主轴 的位置

截面图形对形心轴的静矩(面积矩)等于零:

(y 轴向下为正)

(组合图形对过圆心轴x1的惯性矩)

(组合图形对形心轴x 的惯性矩)

习题I-14

b (a) h (a) r (a) Ai (a2) Y

c i(a) A iYci Y c(a)

I xc

a i

Ix (a4)

矩形

4 2 1 -8 圆 4 0 0

-8

[习题I-15] 正方形截面中开了一个直径为mm d 100=的半圆形孔,如图所示。试确定截面的形心位置,并计算对水平形心轴和竖直形心轴的惯性矩。

解:

习题I-15

图形

b i

h

i

r A

i

Y ci

AiYc

i

Y

c

Ixci a i

Ix 正方形

200

200

40000 100 4000000

3 2

1 半圆

5

-

3927 79 -309365 685977 24 286034

6

全图

36073

3690635

102

5 π

34100r y c -= π

π9884

4r r I xc -?=

A a I I xc x 2+=

形心位置:X (0,102)。对水平形心轴的惯性矩:4

130686455mm I x =。对竖直形

心轴的惯性矩:

)(1308789668

5014159.31220081244

444mm r a I y =?-=?-=π

习题I-15

图形 a r Iy (mm 4

) 正方形

2

00

半圆

5

0 2454367

全图

6 8

124

4r a I y ?-=π

[习题I-16] 图示由两个a 20号槽钢组成的组合截面,若欲使截面对两对称轴的惯性矩

x I 和y I 相等,则两槽钢的间距a 应为多少

解:20a 号槽钢截面对其自身的形心轴

、 的惯性矩是

;横截面积为

;槽钢背到其形心轴

的距离是

根据惯性矩定义

和平行轴定理,组合截面对 , 轴的惯性矩分别是

等式两边同除以2,然后代入数据,得

于是

所以,两槽钢相距

[习题I-17] 试求图示截面的惯性积xy I

解:设矩形的宽为b 高为h ,形心主惯性轴为c c y x 0,则 由平行移轴公式得:

224

1

)2()2(0h b bh b h abA I I C C y x xy =??+=+=

故,矩形截面对其底边与左边所构成的坐标系的惯性积为: 2

24

1h b I xy =

习题I-17

图形 b h Ixy 左矩形 10 100 250000 下矩形: 100 10 250000 重复加的矩形

10

10

2500 全图

上图+下图-重复

497500

[习题I-18] 图示截面由两个mm mm mm 10125125??的等边角钢及缀板(图中虚线)组合而成。试求该截面的最大惯性矩m ax I 和最小惯性矩

m ax I 。

解:从图中可知,该截面的形心C 位于两缀板共同的形心上。过C 点作水平线,向右为c x 轴正向;过C 点,垂直于c x 轴的直线为c y 轴向上为正。把c c cy x 坐标绕C 点逆时针转0

45

后所得到的坐标系是截面的的两条对称轴,也就是该截面的形心主惯性轴00,y x 。主惯性矩max 0I I x =,min 0I I y =

查型钢表得:号等边角钢的参数如下:

2373.24cm A = ,4'46.14900cm I I x y ==,4'89.5730

0cm I I y x ==,cm z 45.30= 角钢形心主惯性轴与截面形心主惯性轴之间的距离:

cm z a 295.3)5.045.3(212

2

20=+=?+

= )(1820]373.24)295.3(46.149[242max 0cm I I x =?+?==

)(114889.57324min 0cm I I y =?==

(注:缀板用虚线画出,表示其面积可忽略不计)

[习题I-19] 试求图示正方形截面的惯性积11y x I 和惯性矩1x I ,1y I 并作出比较。

图=

解:124

a I x =

12

4

a I y =

0=xy I (y x ,为形心主惯性轴)

1200212122sin 2cos 2244

41a a a I I I I I I xy y x y x x =-++=--++=αα

1200212122sin 2cos 2244

41

a a a I I I I I I xy y x y x y =--+=+--+=αα

0002cos 2sin 2

11=-=+-=

ααxy y

x y x I I I I

结论:

1、过正方形形心的一对相互垂直的轴,它们的惯性矩相等,它们的惯性积为零;

2、过正方形形心的一对相互垂直的轴,绕形心转动之后,惯性矩、惯性积保持不变。

[习题I-20] 确定图示截面的形心主惯性轴的位置,并求形心主惯性矩。

(a )

解: 截面的形心主惯性轴与竖直矩形的形心主惯性轴重合。

)

(5.575146666)402400(201212]40200)2402400(40200121[4323mm I x =?-??+???-+??=)

(6.183146666203201212]40200)2202200(20040121[4323mm I y =??+???-+??=)(2592000002]40200)220

2200()2402400([4mm I xy -=???-?--=

3164.16

.1813466665.575146666)

259200000()2(22tan 0=--?-=

--=

y

x xy I I I α

'47523164.1arctan 200==α

'242600=α

Ix Iy Ixy

-0

I

x0=

7

-0

I

y0=

2

24)(2

12

0xy

y x y

x y x I I I I I I I +-±

+=

(b)

解:以20号槽钢(图I )的下边缘为x 轴,左边缘为y 轴,建立坐标系。8号槽钢编号为图II 习题I-20(b) 长度单位:cm

A X Y Ai Ai X Y

i

ci

ci

Xci

Yci

c

c

I

10 64 I I

1

6 -15 全图

习题I-20(b )

图形

A

i

i a

bi

I xci'

I yci'

I

xci

I yci Ixc iyci'

Ix ciyci

ta n2a0

a 0

Ix 0

I y0

I

1

981 1

65

I I

2

296

2

49

[习题21] 试用近似法求习题I-4所示截面的x I ,并与该题得出的精确值相比较。已矩该截面的半径mm r 100=。

解:圆的方程为:

222100=+y x

把y 轴的半径10等分,即mm 10=δ。过等分点,作x 轴的平行线。从下往上,每个分块 的中点的y 坐标与x 坐标如下表所示。

习题I-21

i y

i x

i a

δ

i i x a δ2

5 5 10 24969 15 15 10 222454 25 25 10 605154 35 35 10 1147518 45 45 10 1808383 55 55 10 2526373 65 65 10 3210722 75 75 10 3720588 85 85 10 3806005 95

95

10

2818055 近似解i

i i

x x a I δ∑==

10

1

2

精确解16

10014159.3164

4

?=

?=r I x π 误差(%)

[习题I-22] 试证明:直角边长度为a 的等腰三角形,对于平行于直角边的一对形心轴之惯性积绝对值为72

4a I xy

=(提示:最简单的证法是利用惯性积的平行移轴公式,并利用一对相互垂直的坐标轴中有一为截面的对称轴时,其惯性积为零的特征。)

解: b

y b h z )

(-=

24

)(22

220220

0h b ydy y b b h ydy zdz dA yz I b b z A

yz =-=??????==??

??

72

23324)3)(3(2

222h b bh h b h b A h b I I yz

z y C C -=??-=-= 令a h b ==得:72

||4

a I C

C z y =.

材料力学性能课后题参考答案(DOC)

《工程材料力学性能》课后题参考答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 一、解释下列名词 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 1、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 2、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 3、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 4、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 6、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τ max 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σ b 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度 【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承受

工程材料力学性能课后习题答案

《工程材料力学性能》(第二版)课后答案 第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料 能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限 (σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服 强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包申格效应,如何解释,它有什么实际意义? 答案:包申格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。

材料力学性能考试题及答案

07 秋材料力学性能 一、填空:(每空1分,总分25分) 1.材料硬度的测定方法有、和。 2.在材料力学行为的研究中,经常采用三种典型的试样进行研究,即、和。 3.平均应力越高,疲劳寿命。 4.材料在扭转作用下,在圆杆横截面上无正应力而只有,中心处切 应力为,表面处。 5.脆性断裂的两种方式为和。 6.脆性材料切口根部裂纹形成准则遵循断裂准则;塑性材料切口根 部裂纹形成准则遵循断裂准则; 7.外力与裂纹面的取向关系不同,断裂模式不同,张开型中外加拉 应力与断裂面,而在滑开型中两者的取向关系则为。 8.蠕变断裂全过程大致由、和 三个阶段组成。 9.磨损目前比较常用的分类方法是按磨损的失效机制分为、和腐蚀磨损等。 10.深层剥落一般发生在表面强化材料的区域。

11.诱发材料脆断的三大因素分别是、和 。 二、选择:(每题1分,总分15分) ()1. 下列哪项不是陶瓷材料的优点 a)耐高温 b) 耐腐蚀 c) 耐磨损 d)塑性好 ()2. 对于脆性材料,其抗压强度一般比抗拉强度 a)高b)低c) 相等d) 不确定 ()3.用10mm直径淬火钢球,加压3000kg,保持30s,测得的布氏硬度值为150的正确表示应为 a) 150HBW10/3000/30 b) 150HRA3000/l0/ 30 c) 150HRC30/3000/10 d) 150HBSl0/3000/30 ()4.对同一种材料,δ5比δ10 a) 大 b) 小 c) 相同 d) 不确定 ()5.下列哪种材料用显微硬度方法测定其硬度。 a) 淬火钢件 b) 灰铸铁铸件 c) 退货态下的软钢 d) 陶瓷 ()6.下列哪种材料适合作为机床床身材料 a) 45钢 b) 40Cr钢 c) 35CrMo钢 d) 灰铸铁()7.下列哪种断裂模式的外加应力与裂纹面垂直,因而 它是最危险的一种断裂方式。

工程材料力学性能答案

工程材料力学性能答案1111111111111111111111111111111111111 1111111111111111111111111111111111111 111111 决定金属屈服强度的因素有哪 些?12 内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。试举出几种能显著强化金属而又不降低其塑性的方法。固溶强化、形变硬化、细晶强化试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?21韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。何谓拉伸断口三要素?影响宏观拉伸断口性态的

因素有哪些?答:宏观断口呈杯锥形,纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化?断裂强度与抗拉强度有何区别?抗拉强度是试样断裂前所承受的最大工程应力,记为σb;拉伸断裂时的真应力称为断裂强度记为σf; 两者之间有经验关系:σf = σb (1+ψ);脆性材料的抗拉强度就是断裂强度;对于塑性材料,于出现颈缩两者并不相等。裂纹扩展受哪些因素支配?答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。2222222222222222222222222222222222 2222222222222222222222222222222222 2222 试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。答:单向拉伸试验的特点及应用:单向拉伸的应力状态较硬,一般用于塑性变形

midas截面几何性质计算

下面我们来讲一下预制梁的横向力分布系数计算 从上面我能看出常见的预制梁包括板梁、小箱梁、T梁 跨中横向力分布系数: 对于板梁和小箱梁由于横向联系比较薄弱,所以采用铰接板梁法 对于T梁有横隔板比较多,认为是刚接,所以采用刚接板梁法 梁端横向力分布系数: 通常采用杠杆法 下面就讲一下30米简支转连续T梁横向力分布系数计算: 主梁横断面见附件 桥博计算横向力分布系数计算需要输入的数据见附件 包括主梁宽、抗弯、抗扭、左板长、左板惯矩、右板长、右板惯矩、主梁跨度 G/E等 首先计算主梁的抗弯抗扭惯矩(中梁、边梁断面尺寸见附件,梁高200cm) 中梁: ==================================================== = MIDAS SPC TEXT OUTPUT FILE = = (Tue Jun 17 20:45:16 2008) = = - - = ==================================================== ==================================================== UNIT: KN . M ==================================================== ==================================================== * Section-P1 (PLANE) ==================================================== * A : * Asx : * Asy : * Ixx : 抗弯惯矩 * Iyy : 0. * Ixy : * J : 抗扭惯矩---------------------------------------------------- * (+)Cx : * (-)Cx : * (+)Cy :

材料力学性能课后答案(时海芳任鑫)

第一章 1.解释下列名词①滞弹性:金属材料在弹性围快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力 ⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。 2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b (抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率) 4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。

5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。 6.今有45、40Cr、35CrMo 钢和灰铸铁几种材料,应选择哪种材料作为机床机身?为什么?答:应选择灰铸铁。因为灰铸铁循环韧性大,也是很好的消振材料,所以常用它做机床和动力机器的底座、支架,以达到机器稳定运转的目的。刚性好不容易变形加工工艺朱造型好易成型抗压性好耐磨损好成本低 7.什么是包申格效应?如何解释?它有什么实际意义?答:(1)金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包申格效应。(2)理论解释:首先,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,背应力反作用于位错源,当背应力足够大时,可使位错源停止开动。预变形时位错运动的方向和背应力方向相反,而当反向加载时位错运动方向和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。(3)实际意义:在工程应用上,首先,材料加工成型工艺需要考虑包申格效应。例如,大型精油输气管道管线的UOE 制造工艺:U 阶段是将原始板材冲压弯曲成U 形,O 阶段是将U 形板材径向压缩成O 形,再进行周边焊接,最后将管子径进行扩展,达到给定大小,

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

材料力学性能课后习题答案

1弹性比功: 金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性: 金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性: 金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.xx效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面: 这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性: 金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性: 指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶: 当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样: 解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。 9.解理面: 是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂: 穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂: 裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变: 具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性: 理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答: 主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。 1、试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?

材料力学大作业-组合截面几何性质计算

Harbin Institute of Technology 材料力学电算大作业 课程名称:材料力学 设计题目:组合截面几何性质计算 作者院系: 作者班级: 作者姓名: 作者学号: 指导教师: 完成时间:

一、软件主要功能 X4,X5,X6分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面的形心位置X与面积的乘积 Y4,Y5,Y6分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面的形心位置Y与面积的乘积 Xc,Yc是总截面的形心坐标 Ix1,Ix2,Ix3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与x轴平行的轴的惯性矩 Iy1,Iy2,Iy3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与y轴平行的轴的惯性矩 Ixy1,Ixy2,Ixy3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与x,y轴平行的两轴的惯性积 a是通过形心的主轴与x轴的夹角 Imax,Imin分别是截面对形心主轴的主惯性矩 软件截图: 二、程序源代码 Dim n1 As Double Dim d1(10) As Double Dim X1(10) As Double Dim Y1(10) As Double Dim n2 As Double Dim d2(10) As Double

Dim d3(10) As Double Dim X2(10) As Double Dim Y2(10) As Double Dim n3 As Double Dim h(10) As Double Dim d(10) As Double Dim X3(10) As Double Dim Y3(10) As Double Dim S1 As Double, S2 As Double, S3 As Double Dim X4 As Double, Y4 As Double, X5 As Double, Y5 As Double, X6 As Double, Y6 As Double Dim Xc As Double, Yc As Double Dim Ix1 As Double, Iy1 As Double, Ix2 As Double, Iy2 As Double, Ix3 As Double, Iy3 As Double, Imax As Double, Imin As Double Dim Ixy1 As Double, Ixy2 As Double, Ixy3 As Double Dim a As Double Private Sub Text1_Change() n1 = Val(Text1.Text) For i = 1 To n1 d1(i) = Val(InputBox("输入第" & (i) & "个圆的直径")) X1(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的x坐标值")) Y1(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的y坐标值")) Next i For i = 1 To n1 S1 = S1 + 3.14159 * d1(i) * d1(i) / 4 X4 = X4 + X1(i) * 3.14159 * d1(i) * d1(i) / 4 Y4 = Y4 + Y1(i) * 3.14159 * d1(i) * d1(i) / 4 Next i End Sub Private Sub Text2_Change() n2 = Val(Text2.Text) For i = 1 To n2 d2(i) = Val(InputBox("输入第" & (i) & "个圆环的外径")) d3(i) = Val(InputBox("输入第" & (i) & "个圆环的内径")) X2(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的x坐标值")) Y2(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的y坐标值")) Next i For i = 1 To n2 S2 = S2 + 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 X5 = X5 + X2(i) * 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 Y5 = Y5 + Y2(i) * 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 Next i End Sub Private Sub Text3_Change()

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 9、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。【P32】 答: 2 12?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。

材料力学性能习题及解答库

第一章习题答案 一、解释下列名词 1、弹性比功:又称为弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。 2、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。 3、循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性。 4、包申格效应:先加载致少量塑变,卸载,然后在再次加载时,出现ζ e 升高或降低的现 象。 5、解理刻面:大致以晶粒大小为单位的解理面称为解理刻面。 6、塑性、脆性和韧性:塑性是指材料在断裂前发生不可逆永久(塑性)变形的能力。韧性:指材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力 7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶; 8、河流花样:当一些小的台阶汇聚为在的台阶时,其表现为河流状花样。 9、解理面:晶体在外力作用下严格沿着一定晶体学平面破裂,这些平面称为解理面。 10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,一定是脆断,且较为严重,为最低级。穿晶断裂裂纹穿过晶内,可以是韧性断裂,也可能是脆性断裂。 11、韧脆转变:指金属材料的脆性和韧性是金属材料在不同条件下表现的力学行为或力学状态,在一定条件下,它们是可以互相转化的,这样的转化称为韧脆转变。 二、说明下列力学指标的意义 1、E(G): E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100%弹性变形所需的应力。 2、Z r 、Z 0.2、Z s: Z r :表示规定残余伸长应力,试样卸除拉伸力后,其标距部分的 残余伸长达到规定的原始标距百分比时的应力。ζ 0.2:表示规定残余伸长率为0.2%时的应力。 Z S:表征材料的屈服点。 3、Z b韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。 4、n:应变硬化指数,它反映了金属材料抵抗继续塑性变形的能力,是表征金属材料应变硬 化行为的性能指标。 5、3、δ gt、ψ : δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。 Δgt 是最大试验力的总伸长率,指试样拉伸至最大试验力时标距的总伸长与原始标距的百

材料的力学性能

材料的力学性能 mechanical properties of materials 主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。它们是设计各种工程结构时选用材料的主要依据。各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。材料的各种力学性能分述如下: 弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。材料的这种性能称为弹性。外力卸除后即可消失的变形,称为弹性变形。表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。 拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截 面试样,按照面积换算规定或者。试样两端的粗大部分用以和材料试验 机的夹头相连接。试验结果通常绘制成拉伸图或应力-应变图。图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力σ=P/A)。图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。 比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以σp表示。在应力低于σp的情况下,应力和应变保持正比例关系的规律叫胡克定律。载荷超过点p对应的值后,拉伸曲线开始偏离直线。 弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以σe表示。若在应力超出σe后卸载,试样中将出现残余变形。比例极限和弹性极限的测试值敏感地受测试精度的影响,并不易测准,所以在有关标准中规定,对于拉伸曲线的直线部分产生规定偏离量(用切线斜率的偏差表示)的应力作为"规定比例极限"。对于弹性

材料力学截面的几何性质答案

~ 15-1(I-8) 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。 解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得截面对形心轴的惯性矩 所以 再次应用平行轴定理,得 返回 ) 15-2(I-9) 试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形的底边平行,相距1 m。

解:知半圆形截面对其底边的惯性矩是,用 平行轴定理得截面对形心轴的惯性矩 再用平行轴定理,得截面对轴的惯性矩 / 返回 15-3(I-10) 试求图示组合截面对于形心轴的惯性矩。 解:由于三圆直径相等,并两两相切。它们的圆心构成一个边长为的等边三角形。该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴的距离是 上面一个圆的圆心到轴的距离是。 利用平行轴定理,得组合截面对轴的惯性矩如下: {

返回 15-4(I-11) 试求图示各组合截面对其对称轴的惯性矩。 解:(a)22a号工字钢对其对称轴的惯性矩是。 利用平行轴定理得组合截面对轴的惯性矩 (b)等边角钢的截面积是,其形心距外边缘的距离是 mm,求得组合截面对轴的惯性矩如下: : 返回 15-5(I-12) 试求习题I-3a图所示截面对其水平形心轴的惯性矩。关于形心位置,可利用该题的结果。 解:形心轴位置及几何尺寸如图 所示。惯性矩计算如下:

返回 15-6(I-14) 在直径的圆截面中,开了一个的矩形孔,如图所 示,试求截面对其水平形心轴和竖直形心轴的惯性矩 和。 解:先求形心主轴的位置 ! 即 返回 15-7(I-16) 图示由两个20a号槽钢组成的组合截面,若欲使截面对两对称轴的惯性矩和相等,则两槽钢的间距应为多少 ( 解:20a号槽钢截面对其自身的形心轴、的惯性矩是,;横截面积为;槽钢背到其形心轴的距离是。

材料力学性能课后习题答案

材料力学性能课后答案(整理版) 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 3、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同? 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。5、论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论 的局限性。

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

midas截面几何性质计算2

看大家对横向力分布系数计算疑惑颇多,特在这里做一期横向力分布系数计算教程(本教程讲的比较粗浅,适用于新手)。 总的来说,横向力分布系数计算归结为两大类(对于新手能够遇到的): 1、预制梁(板梁、T梁、箱梁) 这一类也可分为简支梁和简支转连续 2、现浇梁(主要是箱梁) 首先我们来讲一下现浇箱梁(上次lee_2007兄弟问了,所以先讲这个吧) 在计算之前,请大家先看一下截面 这是一个单箱三室跨径27+34+27米的连续梁,梁高1.55米,桥宽12.95米!! 支点采用计算方法为为偏压法(刚性横梁法) mi=P/n±P×e×ai/(∑ai x ai) 跨中采用计算方法为修正偏压法(大家注意两者的公式,只不过多了一个β) mi=P/n±P×e×ai×β/(∑ai x ai) β---抗扭修正系数β=1/(1+L^2×G×∑It/(12×E×∑ai^2 Ii) 其中:∑It---全截面抗扭惯距 Ii ---主梁抗弯惯距Ii=K Ii` K为抗弯刚度修正系数,见后 L---计算跨径 G---剪切模量G=0.4E 旧规范为0.43E P---外荷载之合力 e---P对桥轴线的偏心距 ai--主梁I至桥轴线的距离 在计算β值的时候,用到了上次课程https://www.doczj.com/doc/e214602578.html,/thread-54712-1-1.html 我们讲到的计算截面几何性质中的抗弯惯矩和抗扭惯矩,可以采用midas计算抗弯和抗扭,也可以采用桥博计算抗弯, 或者采用简化截面计算界面的抗扭,下面就介绍一下这种大箱梁是如何简化截面的: 简化后箱梁高度按边肋中线处截面高度(1.55m)计算,悬臂比拟为等厚度板。 ①矩形部分(不计中肋): 计算公式:It1=4×b^2×h1^2/(2×h/t+b/t1+b/t2) 其中:t,t1,t2为各板厚度

相关主题
文本预览
相关文档 最新文档