当前位置:文档之家› 论地震波的激发与接收

论地震波的激发与接收

论地震波的激发与接收
论地震波的激发与接收

论地震波的激发与接收

提要

随着世界油气勘探的进展,石油工业形势日趋严峻,地质、地理条件姣好的易找油气田愈来愈少,勘探难度日益增大,世界剩余石油可采储量及总可采资源量均呈下降趋势。在新的形势下,我国石油工业坚持“稳定东部,发展西部,油气并举”的勘探战略。在勘探石油的方法中,地震勘探是通过人工激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,为寻找油气田或其它勘探项目服务的一种物探方法。在新的形势下,担任地震勘探第一个环节的野外资料采集的地震队,更加需要不断创新,利用最新技术采集最优质的资料,为后续的资料处理和解释作好准备。

在地震勘探野外作业中,不同的工区,由于激发条件和接收条件经常发生变化,因而,在勘探的方法和技术上就不可能一成不变,每个工区都需要经过试验来确定。试验工作一般放在正式作业之前作为一个阶段进行,其目的是选取本工区内最合适的野外工作方法和技术。当试验工作完成,取得了本工区最合适的激发条件、接收条件等参数。地震队分陆上、海上、沙漠、山地地震队,由于激发地震波的方式不同,陆地上野外地震队可分为炸药震源队(井炮队)和非炸药震源队(一般为可控震源队)。其主要工作内容是:地震导线部署、地震波的激发和地震波的接收。然后将野外采集的数据进行处理和解释。

正文

一、选择工区

干扰波的调查是试验工作的重要内容,不同的地质条件、工区,干扰波调查的内容和方法都不相同。野外采集工作采取的许多技术、措施,主要是为了压制干扰波,加强有效波,提高地震记录的质量。例如,在苏北盆地泰州—姜堰探区海北次凹三维项目中,工区地形复杂,高压线、民用线、国道、通银河横穿工区,工厂、房屋密集等因素给干扰波的调查带来了很大困难,这就需要用更多的技术来为此服务。因为调查、分析干扰波的类型和特点是保证野外方法技术能使用得当、效果显著的重要条件。

(一)干扰波的观测方式

1、小排列

采用土坑爆炸,连续小排到接收的方法追踪干扰波。

面波和声波是主要干扰,此法可观测到道间距△X=3~5米若震离检波器很近将接收不到折射波△X很小,观则声波和面波,△X拉大观测折射波(折射波有盲区)

2、通过对激发条件及仪器因素的改变,了解干扰波的特点,产生条件频带宽度,视速度、出现规律等。

3、采用直排到查明干扰波在地面的传播方向。

当南北排列所得记录峰值对齐时,说明波是东西方向来的。

当东西排列所得记录峰值对齐时,说明波是南北方向来的。

当波非南也非北排列时如:西南→东北方向

(二)根据干扰波的类型和特点压制干扰波

1. 规则干扰波规则干扰波有低频率的面波,频率较高、速度在340m/s左右的声波,50HZ 的工业电干扰,表层存在高速层引起的浅层折射波,强波阻抗分界面导致的侧面波等。选择适当的激发条件、井中爆炸、屏蔽检波器或仪器上加陷波器等办法加以压制和消除。

2. 不规则干扰波不规则干扰波难以区分和识别。因此,简单的处理不能达到压制目的,利用它与有效波在传播方向、频谱、经动校正剩余时差、出现规律的差别上进行压制。组合法就是利用二者在传播方向上的差别提出压制干扰波的方法。组合法分为野外震源组合,野外检波器组合,室内混波。

总之,采用各种方法,使有效波落入通放带,得到加强;干扰波落入压制带,得到削弱。

二、地震测线布置

(一)原则

1、应尽量为直线:一是反映的构造形态比较真实,二是解释工作方便。

2、一般应垂直走向

(二)不同勘探阶段对测线布置的要求

1、路线普查:了解基底起伏情况及基本地层结构,线距几十~几百公里。(未超过地震地区)

2、面积普查:了解盆地二级构造形态及范围采用丰字型测线,线距几公里~几十里(二级构造是多个小块构造)

3、面积详查:了解已知构造的具体形态及各种参数采用丰字型测线,线距1~3公里。

4、构造细测:详细了解构造的特点,准确地确定井位,线距几百米~1公里,再增加垂直断层走向的测线及连井测线。

三、观测系统及其图示方法

(一)观测系统的概念

为了查明地下构造形态,必须连续地追踪各界面的地震波,因此就要沿测线在许多个激发点上分别激发地震波目进行连续多次观测,即多次覆盖技术,每次观测时,激发点和接收点相对位置应保持一定的关系。

观测系统:描述炮点和检测点相对位置关系的平面图叫观测系统。

测系统的选择定于地震勘探任务,该工区的地震地质条件和采用的方法总的原则是:尽量使记录的地下界面能连续追踪避免发生有效波彼此干涉现象,施工简单。(二)观测系统的图示方法:

1、作用方法:时距平面、普通平面法、综合平面法、现在野外都采用综合平面图法,我们只讲此具体作图该当如下:

①作报直线(测线)将各炮点标在直线上

②过炮点作一个向排到45°直线

③将排投影到45°斜线上得到斜线上的排到1’、2’、…、N’分别是检波点1—N

在炮点组成45°角的直线上的排列的投影。

四、地震波的激发

探的野外工作中,第一步要人工方法激发地震波激发的有效地震波要有足够的能量,良好的频谱性和较高分辩能力,这样才能查明地下几千米深度范围的地层的构造形态。

1、激发岩性的选择

①不能在干燥、疏松低速激发地震波。因为在这种岩石中激发时纵波的传播及分数a

较小,对高频成份有吸收作用,激发频谱中主要频率较低,且爆炸能量大部分被松散的岩层所吸收,转化为有效的弹性能量不大。

②不能在坚硬的岩石中激发地震波

因为大部分能量消耗在坏井壁围的岩石上,转唤为弹性能量的不多。造成激发的地震源能量不强。

③一般在湿的沙土、粘土等可塑性岩石上激发效果好。

因为在这种岩石中激发能获得丰富的频谱深度一般在潜水面以下3~5较好,潜水面是一个强反射界面,爆炸所激发的能量由于潜水面二级反射作用而大部分往传播,从而增加有效激发的能量由于潜水面的强反射作用大部分往下传播,从而增加有效波的能量减少干扰波的能量。

2、炸药量的选择:

炸药是与地震波振幅之间关系:

弹性常数 m=0.2~1.0变化,当值较小时,m≈1,激发产生的弹性波与炸药量成正比地增加,但随着值的不断增加,邻道道增加而加大的速度慢时炸药量增加到一定程度时,增加炸药量不会增加地震波的振幅,新增加的药量全部被岩石破坏了(因为炸药量增大后,岩石的破坏作用急速增大,而激发弹性振动的能量反而相对减少,所以激发产生的地震波振幅也就会再随炸药量的增加而加大)。般的增加药量解决不了记录较时,采用组合炸加强地震波的能量可以相对地减小由爆炸产生的偶然干扰水平提高有效信号的

振幅,提高有效波振幅与其它爆炸无关的干扰水平比值,有利于有效波的方向选择接收。同时引炸两口井,组合经验分式井间距离。

3、合井的选择

当炸药量达到极限药量时,并且最大可能地提高了仪器的灵敏毒,仍不能获得深层有效波时,此时,可采用组合井激发。组合井的炸药要同时激发。一般情况下,组合间距是5米,组合井数小于等于3口时,组合形式以线型为益;大于3口时,组合形式以面积组合为最佳。在伊通盆地万昌三维勘探中,由于地质复杂,机钻不能打到预想的深度,采取了线性组合井激发,得到了较好的资料。

组合井的数目不能过多,井数过多将会因能量的过于分散而使效果减弱。

4、钻井

钻井组必须按照解释组所下的任务书去打井,控制好井的质量。第一质量负责人井监要履行好自己的职责。

激发位置应尽量接近标桩,其平面误差应小于道距的1/10,组合井井底高差应小于0.5米。遇地形起伏、障碍物,激发点平面偏离误差超限或高差变化大于2米时,应实测坐标和高程。

五、地震波的接受

(一)检波器的埋置条件

①组合检波器的中心对准桩号。

②检波器的组合形式和组内距要按规定放开。

③埋置检波器要做到平、稳、正、直、紧。

平─同一道的组合检波器要埋置在同一水平面上。

稳─对检波器要轻拿轻放,平稳操作。

正─埋置检波器的位置要正确。

直─检波器要垂直地面。

紧─检波器要埋紧。

(二)观测系统选择原则

①根据地下地质情况、地质任务和干扰波的特点仪器装备来选择观测系统的形式。

②必须保证有效波处于通放带,干扰波落入压制带。

③在保证地质任务,保证资料质量的前提下,尽可能用低覆盖次数、大道间距、大排列,用较小的工作量就能有效地完成地质任务。

1)频率滤波方法

频率滤波是利用频谱差别来突出有效波和压制干扰波的。地震道的所有环节几乎都有频率滤波作用,如检波器接收、仪器接收时,假设有效波的振幅谱是A1(f),干扰波

的振幅谱是A2(f),实验和理论计算认为在地震道的通频带内,如果满足条件:

则在记录上有效波可被清楚识别。因此,这里利用频谱分析方法最佳选择滤波门限。选择时,应考虑到有效波和干扰波的主频与波的类型、激发条件、传播条件和接收条件关系。一般情况下,同一界面的反射波比折射波、绕射波、某些多次波具有更高的主频,纵波的主频一般高于横波或转换波的主频,面波具有最低主频。2)利用振动方向的方法

按着波的质点振动方向来选择或设,地震观测方位装置地震检波器。(1) 垂直地震检波器和水平地震检波器的选择。众所周知,有效波从地下经过低速带到达地面时,射线方向几乎垂直地表,所以对于纵波勘探来说,选择垂直地震检波器。如果横波勘探来说,则选择水平地震检波器。通常,垂直地震检波器最常见,也是最常用的,但为了采

用垂直检波器既能接收到纵波,又能接收到横波,我们采用方位观测。(2) 方位观测

在地面一个观测点上,用三个以上垂直地震检波器,以等倾角排列在沿锥形面的不同方位上,就构成方位装置。这种装置记录不同方位上的地震波,其振幅与地面质点位移方向及检波器的轴向有关(即检波器与地面倾角φ)。通过改变φ角来识别接收纵波与横波,在复杂地震地质条件下可用来研究干扰波,如果确定研究波的类型,方位装置的最

佳倾角按波的振动方向决定。

六、原始资料的分析评价

1)记录评价

对监视记录评价,是掌握施工质量,评价施工方法最直接、最重要的方法,也是地震队解释组内业人员的主要职责之一。从以下五个方面评价:

①看采集参数。有文件号、磁带盘号、炮点桩号、接收道号、记录因素、回放因素等。

②看记录初至波。看有无反向道、各道工作是否正常、有无地形的影响、检波器的埋置是否正确、爆炸是否完全等。

③看能量。看能量是否均匀变化,是否有高的分辨率和信噪比。

④看爆炸信号和井口时间。信号要完整,井口时间要准确。

⑤看记录面貌。各套目的层反射的信噪比、地震道工作情况、外界干扰波发育情况。2)不正常地震道识别

这项工作包括:不工作道、反向道、被严重干扰造成波形畸变的道,与相邻正常道振幅相比,比值小于1/2或大于一倍的道,称为不正常道。

3)常见干扰波的识别

不规则干扰波在记录上形成杂乱无章的干扰背景。规则干扰波从下面几种波分析:面波:即有纵波分量,又有横波分量。沿地面传播,具有低频、高能量、发散特点。在室内通过高通滤波或分离等方法消除。

声波:速度为340m/s左右,比较稳定,频率较高,延续时间短,呈窄带出现。

浅层折射波:是地震记录上最常见的一种干扰波。它在求取低降速带静校正量是有用的一种波。

工业电干扰:为50HZ干扰。

多次波:当地下深部存在强波阻抗面时能产生多次反射波。多次波的频率和一次反射波相近,较一次波的反射速度底。利用多次覆盖方法可压制多次波。

鸣震:如果海底比较平,反射系数比较稳定的界面,进入水层内的能量产生多次反射造成水层共振现象,即为鸣震。地表为“橡皮地”的地区(如二连沼泽区域)有时也产生鸣震。

环境和随机噪声:有时当环境噪声很大时,很难看出有效波的反射。

其它干扰波:除以上的干扰波外,机械震动、人为干扰、检波器漏电、低降速带的非一致性等均以干扰波的形式出现在地震记录上。有时微屈多次波、多初至也会出现。4)干扰波分析

①环境噪声评价

在做单炮资料分析之前,首先要进行环境噪声评价。分析的内容主要包括:噪声类型、影响范围、强度、频谱特征等。噪声的评价可以按强、中、弱或采用定量分级来评价。

②按照炮间距顺序显示干扰波记录。

③分析计算干扰波的各项参数,波的性质、类型、在记录上出现时间和影响范围。

④分析干扰波强度随炮间距、时间的衰弱情况及与激发因素的关系。

虽然工区实际情况多变,干扰波的类型各有特点,但是分析的思路和方法是相同的。5)有效波分析

①分析不同采集因素各目的层反射波有效频率范围;对原始单炮做频谱分析,再结

合分频扫描分析就可以较好地确定有效频率范围。

②分析不同采集因素单炮记录上反射波可见范围;

③分析不同采集因素情况下反射波的能量变化情况;

④对比不同采集因素情况下浅、中、深层相应部位反射波与干扰波能量变化规律;

⑤估算不同采集因素情况下记录的浅、中、深层的信噪比。

6)静校正的工作流程

资料的收集和分析

静校正技术设计

表层调查工作

静校正方法试验

表层模型的建立

静校正计算和质量监控

资料整理与上交

技术报告的编写

七、总结

资料的野外采集是一项技术含量高,采集困难,任务艰巨的工程。我们不仅要获得优质的资料,而且还要遵守《HSE》的相关规定,注重安全、环境和质量。采集资料的各个环节要严格按照相关技术指标执行,努力为石油、天然气的开发尽到我们物探人的职责,“精诚伙伴,找油先锋”。

参考文献:

《地震勘探原理(上)》

《地震勘探原理(下)》

《延迟爆炸法的理论分析》

《地震信号分析》

《走向精确勘探的道路》

《高分辨率地震勘探》

在 ansys 中如何 施加 地震波

三向输入简化后的单向输入 首先,将三个方向的地震加速度放到一个文本文件里,如accexyz.txt,在这个数据文件里共放三列数据,每列为一个方向的地震加速度值,这里仅给出数据文件中前几行的数据: -0.227109E-02 -0.209046E+00 0.467072E+01 -0.413893E-02 -0.168195E+00 0.261523E+01 -0.574753E-02 -0.157890E+00 0.809014E-01 -0.731227E-02 -0.152996E+00 0.119975E+01 -0.876865E-02 -0.138102E+00 0.130902E+01 -0.101067E-01 -0.131582E+00 0.143611E+00 ....................... 然后,再建一个文本文件用来存放三个方向的地震加速度时间点,如time.txt,在这个数据文件里仅一列数据,对应于加速度数据文件里每一行的时间点,这里给出数据文件中前几行数据: 0.100000E-01 0.200000E-01 0.300000E-01 0.400000E-01 0.500000E-01 0.600000E-01 ....................... 编写如下的命令流文件,并命名为acce.inp *dim,ACCEXYZ,TABLE,2000,3 !01行 *vread,ACCEXYZ(1,1),accexyz,txt,,JIK,3,2000 !02行(3e16.6) !03行 *vread,ACCEXYZ(1,0),time,txt !04行 (e16.6) !05行 ACCEXYZ(0,1)=1 !06行 ACCEXYZ(0,2)=2 !07行,同上 ACCEXYZ(0,3)=3 !08行,同上 finish /SOLU ANTYPE,trans btime=0.01 !定义计算起始时间 etime=15.00 !定义计算结束时间 dtime=0.01 !定义计算时间步长 *DO,itime,btime,etime,dtime time,itime AUTOTS,0 NSUBST,1, , ,1 KBC,1 acel,ACCEXYZ(itime,1),ACCEXYZ(itime,2),ACCEXYZ(itime,3) !施加三个方向的地震加速度 SOLVE

具有不同频谱特性的地震波(精)

具有不同频谱特性的地震波 对单塔悬索桥响应的影响分析 林瑞良(福州市建设委员会 350005) [提要]根据空间有限元计算模型,采用混合结构形式,以某市单塔悬索桥为研究对 象,运用时程分析法,探讨了具有不同频谱特性的地震波对单塔悬索桥响应的影响 问题。 [关键词]单塔悬索桥时程分析地震波 现行公路桥梁工程抗震设计规范《公路工程抗震设计规范》 (JTJ-004-89)是以反 应谱理论为基础的,针对这些问题,本文以某市悬索桥为工程实例,采用动力时程分 析法,探讨了不同频谱特性的地震波对单塔悬索桥横向、纵向和竖向地震响应的影响。 一、动力计算模型的基本假设 (1) 缆索在纵向分析中取水平位移和竖向位移两个自由度,横向分析中取水平位移 一个自由度,竖向分析中取竖向位移一个自由度;(2)吊杆为柔性索,考虑变形; (3) 主塔在纵向和横向分析中均取水平位移和转动两个自由度;(4)加劲桁架在纵向分析 中取水平位移、竖向位移和转动三个自由度,横向分析中取水平位移和转动两个自由 度,竖向分析中取竖向位移和转动两个自由度;(5)作用于全桥纵向、横向上的地震 输入波,均取与基础相垂直的水平方向;作用于全桥竖直方向上的输入波取水平向输

入波的65%加速度值[1]。 二、刚度矩阵与质量矩阵 由于悬索桥结构是由不同类型的构件组成,本文在有限元计算中采用混合结构 形式的三维有限元计算模型[2],将结构划分为如下三类单元:(1)空间梁单元,用 于加劲梁及塔架。(2)空间索单元,用于主缆。(3)杆面单元,由两根吊杆和一个虚 拟刚片组成,用来反映加劲梁与主缆之间的相互作用。单元质量矩阵采用集中(堆聚) 质量矩阵[2]。将单元刚度矩阵和单元质量矩阵经座标变换,组成总刚度矩阵和总质 量矩阵,再利用子空间迭代法计算出结构的特征值和特征向量,即可得到所需的各 阶频率和振型。 三、动力方程的建立和求解 当结构在地面运动加速度X¨g作用下,结构动力方程为 [M]*{U 1}+[C]*{U 1 }+[K]*{U 1 }=-[M]+*{I}X¨g(1) 式中:[M]*和[K]*分别为缩聚后的等效质量矩阵和等效刚度矩阵; U 1 有惯性力的位移;X¨g为输入地震加速度;[C]为阻尼矩阵,按瑞雷阻尼确定。 对于微分方程式(1),可采用逐步积分的数值解法,即求得各节点的位移量,本 文采用的是威尔逊θ法,用SAP5软件进行计算。 四、具有不同频谱特性的地震波对单塔悬索桥地震响应分析实例 某市悬索桥是福建省已建成跨径最大的钢筋砼加劲桁架单塔悬索桥(见图1所示),

地震波使用说明

地震波使用说明 此目录下提供了四类场地土的地震波时程曲线和上海人工波。 按照场地土类型(1,2,3或4),选择时程曲线。在定义时程工况时,对于多遇或罕遇地震,按比例调整时程曲线的最大值。中国抗震规范规定,作为抗震计算中底部剪力法和振型分解反应谱法的补充方法,对于特别不规则,特别重要的和较高的结构应采用时程分析法进行多遇地震下的补充计算。 可取多条时程曲线的计算结果的平均值与振型分解反应谱法计算结果的较大值。 采用时程分析法时,应咱建筑场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。 其加速度时程最大值可按规范中对于多遇和罕遇地震在不同烈度下的值。 弹性时程分析时,每条时程曲线计算所得结构底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计算结果的80% 。 可使用弹塑性时程分析法计算罕遇地震下结构的变形。 时程分析是一个承受随时间变化的指定荷载结构的逐步动态反应分析,可以是线性或非线性的。 此章对时程分析进行一般的描述,特别是线性时程分析。 定义时程函数 用户可使用“从文件中添加函数”,导入已定义的文本文件,即实测的时程曲线;也可使用程序内置的时程函数。

时程函数定义对话框 时程函数定义对话框中的条目解释如下: ?函数名 通过在编辑框中直接键入以指定或修改时程函数的名称。 ?函数文件 1.在函数文件域点击浏览按钮以调出一个对话框,在此可找出包含时程函数的 文本文件名。注意文件名显示在文件名框中 2.在 "要跳过的标题行" 编辑框中输入一个希望ETABS在文本文件中跳过的 行数。 3.在 "每行要跳过的前缀字符" 编辑框中输入一个希望ETABS在文本文件中 每行要跳过的字符数。 4.在 "每行的点数" 编辑框中输入一个数告诉ETABS文本文件每行的绘图点 数。

时程分析中地震波输入位置的讨论

时程分析中地震波输入位置的讨论 摘要:时程分析法通过直接动力分析可得到结构相应随时间的变化关系,能真实地反应结构地震相应随时间变化的全过程,是抗震分析的一种重要方法[1]。目前有限元软件可以实现结构的时程分析,但是在不同的软件中,其实现方式不同,主要区别在地震波的输入位置不同。本文通过有限元软件ABAQUS采用不同的地震波输入位置对同一结构进行时程分析分析,对比结构相同位置的时程位移曲线,结果表明结构在采用不同地震波输入位置的时程分析中,结构的地震响应基本一致。 关键词:时程分析、有限元软件、钢筋混凝土剪力墙 Abstract: The time history analysis method to analyze the available structure through direct power to the relationship between the corresponding changes over time, truly reflect the structure of earthquake corresponding to the whole process of change over time, is an important method of seismic analysis [1]. Finite element software can be time-history analysis of the structure, but in different software in different ways, the main difference between the different positions in the seismic wave input. In this paper the finite element software ABAQUS using different seismic wave input location on the same structure, process analysis analysis, contrast structure the same location of when the process displacement curve, the results show that the structure using different seismic waves enter the position time history analysis, the seismic response basically the same. Keywords: time history analysis, finite element software, reinforced concrete shear walls 一、引言 在时程分析等动力学问题中,地震力以加速度形式从基础固定处输入。由于结构的刚度不是无限大,在结构上的加速度反应与基础输入的加速度并不相同。在很多时候,结构的加速度比基础输入的加速度更大,即对输入的加速度有一个动力放大效应。在单自由度弹性体系中,体系最大绝对加速度与地面运动最大加速度的比值,即称为动力系数[2] (1) 动力系数与结构的动力学特性和输入的地震波的频率特性有关。它与地震系数k的乘积即为单自由度体系的地震影响系数。 因此,从原理上讲,时程分析是将地震波的加速度时程曲线作用到结构的基础约束处,得到上部结构的各种地震反应。但是在不同的软件中,其实现方

地震波运动学理论

第二章地震波运动学理论 一、名词解释 1. 地震波运动学:研究在地震波传播过程中的地震波波前的空间位置与其传播时间的关系,即研究波的传播规律,以及这种时空关系与地下地质构造的关系。 2. 地震波动力学:研究地震波在传播过程中波形、振幅、频率、相位等特征的及其变化规律,以及这些变化规律与地下的地层结构,岩石性质及流体性质之间存在的联系。 3. 地震波:是一种在岩层中传播的,频率较低(与天然地震的频率相近)的波,弹性波在 岩层中传播的一种通俗说法。地震波由一个震源激发。 4. 地震子波:爆炸产生的是一个延续时间很短的尖脉冲,这一尖脉冲造成破坏圈、塑性带,最后使离震源较远的介质产生弹性形变,形成地震波,地震波向外传播一定距离后,波形逐渐稳定,成为一个具有2-3个相位(极值)、延续时间60-100毫秒的地震波,称为地震子波。地震子波看作组成一道地震记录的基本元素。 5.波前:振动刚开始与静止时的分界面,即刚要开始振动的那一时刻。 6.射线:是用来描述波的传播路线的一种表示。在一定条件下,认为波及其能量是沿着一条“路径”从波源传到所观测的一点P。这是一条假想的路径,也叫波线。射线总是与波阵面垂直,波动经过每一点都可以设想有这么一条波线。 7. 振动图和波剖面:某点振动随时间的变化的曲线称为振动曲线,也称振动图。地震勘探中,沿测线画出的波形曲线,也称波剖面。 8. 折射波:当入射波大于临界角时,出现滑行波和全反射。在分界面上的滑行波有另一种特性,即会影响第一界面,并激发新的波。在地震勘探中,由滑行波引起的波叫折射波,也叫做首波。入射波以临界角或大于临界角入射高速介质所产生的波 9.滑行波:由透射定律可知,如果V2>V1 ,即sinθ2 > sinθ1 ,θ2 > θ1。当θ1还没到90o时,θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。 10.同相轴和等相位面:同向轴是一组地震道上整齐排列的相位,表示一个新的地震波的到达,由地震记录上系统的相位或振幅变化表示。 11.地震视速度:当波的传播方向与观测方向不一致(夹角θ)时,观测到的速度并不是波前的真速度V,而是视速度Va。即波沿测线方向传播速度。 12 波阻抗:指的是介质(地层)的密度和波的速度的乘积(Zi=ρiVi,i为地层),在声学中称为声阻抗,在地震学中称波阻抗。波的反射和透射与分界面两边介质的波阻抗有关。只有在Z1≠Z2的条件下,地震波才会发生反射,差别越大,反射也越强。 13.纵波:质点振动方向与波的传播方向一致,传播速度最快。又称压缩波、膨胀波、纵波或P-波。 14.横波:质点振动方向与波的传播方向垂直,速度比纵波慢,也称剪切波、旋转波、横波或S-波,速度小于纵波约0.7倍。横波分为SV和SH波两种形式。 15.体波:波在无穷大均匀介质(固体)中传播时有两种类型的波(纵波和横波),它们在介质的整个立体空间中传播,合称体波。 16共炮点反射道集:在同一炮点激发,不同接收点上接收的反射波记录,称为共炮点道集。在野外的数据采集原始记录中,常以这种记录形式。可分单边放炮和中间放炮。 17.面波:波在自由表面或岩体分界面上传播的一种类型的波。 18.纵测线和非纵测线:激发点与接收点在同一条直线上,这样的测线称为纵测线。用纵测线进行观测得到的时距曲线称为纵时距曲线。激发点不在测线上,用非纵测线进行观测得到的时距曲线称为非纵时距曲线。

时程分析中地震波选取浅析

时程分析中地震波选取浅析 通过介绍时程分析法中输入地震波的选择原则、地震动幅值和频率特性等一系列问题,使初学者对输入地震波的选择有初步认识和了解,为以后更深层次的研究打下基础。 标签:时程分析法;地震波选择 1、引言 随着社会、经济和科技的不断发展以及人口数量的迅速膨胀,高层、超高层以及复杂形状的建筑的数量定会快速增长。抗震设计规范规定,对于此类重要、复杂并超过规定高度的建筑,其抗震设计中的地震作用计算都要通过时程分析法进行补充验证。而在时程分析法的计算过程中最重要,最影响地震作用计算结果的莫过于地震波的选取。所以,本文将从地震波选取原则、地震动幅值、频谱特性、持续时间、地震波数量、地震波转动分量等多个方面对地震波的选取进行浅析。 2、地震波的选取原则 时程分析中的地震波如何选取的问题,一直是时程分析法中的一个难点。在选择地震波输入时,要满足两点要求: 1)首先要使选择输入的地震波的某些参数和建筑物所在地的条件相一致。参数主要包括:场地的土壤类别、地震烈度、地震强度参数、卓越周期和反应谱等。 2)其次还要满足地震活动三要素的要求。即频谱特性、地震加速度时程曲线持续时间和幅值,选取的地震波中的这三者,要满足相关规定。相关规定要求:选用数字化的地震波应按照建筑场地类别和设计地震分组进行选取,选用不少于两组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱分析法所采用的地震影响系数曲线在统计意义上相符。在统计意义上相符是指:其平均地震影响曲线与振型分解反应谱法所用到的地震影响系数曲线相比,在各个周期点上相差不大于20%。弹性时程分析时,每条时程曲线计算所得的结构底部剪力不应小于阵型分解反应谱法计算结果的65%。多条时程曲线计算结果的结构底部剪力平均值不应小于振型分解反应谱计算结果的80%[1]。 3、地震动幅值 地震动幅值有两种意义,即可以指地震加速度、位移和速度中的任何一种的最大值,又可以指在某种意义下的等代值。在一定程度上,地震波的峰值能够反应并代表地震波的强度,所以,建筑物所在地的设防烈度所要求的多遇地震或罕

论地震勘探中几种主要地震波

论地震勘探中的几种主要地震波 论文提要 地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其它勘探目的服务的一种方法。也可以理解为就是利用地震子波从地下地层界面反射回地面时带回来的旅行时间和形状变化的信息,用以推断地下的底层构造和岩性。地震勘探在勘探已有的各种物探方法中,是最有效地方法。在地震勘探中用炸药激发时,一声炮响之后会产生各种各样的地震波。按波在传播过程中质点震动的方向来区分,可以纵波和横波;根据波动所能传播的空间范围而言,地震波又可以分为体波和面波;按照波在传播过程中的传播路径的特点,又可以把地震波分为直达波、反射波、透射波、折射波,等等。地震勘探在石油勘探中除了能产生来自地层界面有用的反射波外,还会产生各种各样的干扰波。因此,我们要更好的了解各种波的产生、特点、用途,等等。下面简单介绍几种地震勘探中产生的地震波。 正文 一、反射波 (一)反射波的形成 1、几何地震学的观点 当炸药在井中爆炸激发地震波时,在雷管引爆几百微妙之内爆炸便完成了,在接近爆炸点的压强是一个延续时间很短的尖脉冲,爆炸脉冲向外传播,压强逐渐减少,地层开始产生弹性形变,形成地震波。地震波继续传播,由于介质对高频的吸收,地震波信号减小。当波入射到两种介质的分界面时(当上层介质波阻抗与下层介质波阻抗不等时,弹性地震波才会发生反射;上层介质波阻抗与下层介质波阻抗差别越大,反射波越强——反射波条件),一部分波回到第一种介质中,这就是所谓的反射波。如图所示 2、物理地震学观点 地震波从震源出发以球面波的方式向下传播,到达反射界面S,S可以就看成有许多

汶川地震波加速度时程

FILTER POINTS: NPTS= 25000, DT= .0200 SEC 单位cm/s2 -85.18660303 -26.81310797 29.69681739 17.66375925 10.74725598 5.89307633 10.53329077 8.38328838 -6.60304626 -7.29547636 11.29502428 13.67286273 -5.92602216 -23.83117937 -24.01378573 -10.41018086 -1.73061627 -1.68681541 -0.25120385 5.69817713 22.27844984 29.26687041 14.37719476 -0.78176094 14.85243403 43.59400018 29.38438838 3.43393402 5.49481755 6.23200112 -21.87622974 -52.48408787 -47.05050653 -6.35843868 26.04376039 16.94997018 8.10590549 14.56990612 8.61432565 -0.67444454 1.37721874 -3.94592499

14.4976265 15.78556387 8.14483834 -6.35078639 -12.80601727 -7.48203698 -38.05952669 -47.252601 -22.58282251 4.85801197 24.94937343 15.78910797 -7.89294083 -27.34878362 -7.67345164 21.73423697 33.04934899 5.07072495 5.38605227 29.29248964 32.47681472 63.38543891 78.60146871 41.15192422 16.98456088 24.67915562 29.25445807 -12.85852194 -52.13522708 -27.93999245 9.73808504 20.14985389 -1.49063292 -17.18407036 -9.30291165 -0.51966159 7.96338525 -7.54802444 -11.34591285 19.42029186 0.6700927 -5.71160065 -26.02061476

地震波传播原理

菲涅尔体和透射波 摘要 在地震成像实验中,通常使用基于波动方程高频渐进解的几何射线理论,因此,通常假设地震波沿着空间中一条连接激发点和接受点的无限窄的线传播,称为射线。事实上,地震记录有非常多的频率成分。地震波频率的带限性就表明波的传播应该扩展到几何射线周围的有限空间。这一空间范围就成为菲涅尔体。在这片教案中,我们讲介绍关于菲涅尔体的物理理论,展示适用于带限地震波的波动方程的解。波动方程的有限频理论通过敏感核函数精确地描述了带限透射波和反射波的旅行时与振幅和地球介质中慢度扰动之间的线性关系。菲涅尔体和有限频敏感核函数可以通过地震波相长干涉的概念联系起来。波动方程的有限频理论引出了一个反直觉的结论-在三维几何射线上的点状速度扰动不会不会造成波长的相位扰动。因此,这说明在射线理论下的菲涅尔体理论是波动方程有限频理论在有限频下的一个特例。最后,我们还澄清了关于菲涅尔体宽度限制成像实验分辨率的误解。 引言 在地震成像技术中,射线理论通常在正演和反演中被用有构建正反演波长算子。射线理论之所以收到欢迎部分是由于计算机速度和内存的限制,因为射线理论具有较高的计算效率并且对于各种地震成像方法的应用也比较容易。而另一方面,地震成像实验清晰的表明,射线理论,由于他对波场传播的近似描述,对于散射效应严重的波场的成像是不完备的。Cerveny 给出了对于地震波射线理论的一个全面的理解。 在地震成像实验中,记录到的透射波和反射波信号都是由一个主要由低频信号组成的宽带震源激发产生的,因为地震波的高频信号在地层中很容易衰减。但是射线理论是基于高频近似的,这表明基于射线理论的成像技术和和测量波场这件之能会存在方法上的冲突。这个围绕射线且对带限地震波的传播起主要影响的空间范围就被叫做菲涅尔体。射线理论在地下构造尺度大于记录波场的第一菲涅尔带的介质中能够取得较好的效果。对于低频反射波(频率成分在10-70Hz之间)和透射波(频率成分在300-800Hz之间),第一菲涅尔体的宽度可以分别达到500m和50m的量级。这个宽度要大于我们在陆地和海洋的反射波地震勘探以及井间和垂直地震剖面中想要成像的地下地质特征。 在这篇教案中,我们将看到如何将地震分辨率扩展到识别体积小于第一菲涅尔带的不均匀体。我们将展示如把射线理论下的旅行时和振幅公式扩展到更精确的、可以应用与带限反射和透射地震信号波场近似理论。波动方程的有限频理论提出了反射和透射地震波的敏感核函数(也称作Frechet核函数)。这些有限频Frechet核函数将速度扰动和旅行时与振幅的扰动线性的联系起来。有限频波长近似被直接应用到各种地震成

结构抗震设计时程分地震波的选择

(1)设计用地震记录的选择和调整 用规范的确定性方法和地震危险性分析方法所确定的设计地震动参数,是选择天然地震加速度记录的依据。 (一)实际地震记录的选择方法 选择地震记录应考虑地震动三要素,即强度(峰值)、频谱和持续时间。对某一建筑的抗震设计,最好是选用该建筑所在场地曾经记录 到的地震加速度时间过程。但是,这种机会极少。为此,人们只能从现有的国内外常用的地震记录中去选择,尽可能挑选那些在震级、震中距和场地条件等方面都比较接近设计地震动参数的记录。他的文章给出了相应的地震数据的记录目录。 (二)实际地震记录的调整 1.强度调整。将地震记录的加速度值按适当的比例放大或缩小,使其峰值加速度等于事先所确定的设计地震加速度峰值。即令 其中a(为记录的加速度值为调整后的加速度值;A众为设计地震加速度峰值;。为记录的加速度峰值。这种调整只是针对原记录的强度进行的,基本上保留了实际地震记录的特征。也就是所说的(强度修正。将地震波的加速度峰值及所有的离散点都按比例放大或缩小以满足场地的烈度要求)

2.频率调整考虑到场地条件对地震地面运动的影响,原则上所选择的实际地震记录的富氏谱或功率谱的卓越周期乃至形状,应尽量与场地土相应的谱的特性一致。如果不一致,可以调整实际地震记录的时间步长,即将记录的时间轴“拉长”或“缩短”,以改变其卓越周期而加速度值不变也可以用数字滤波的方法滤去某些频率成分,改变谱的形状。另外,为了在计算中得到结构的最大反应,也可以根据建筑结构基本自振周期,调整实际地震记录的卓越周期,使二者接近。这种调整的结果,改变了实际地震记录的频率结构,从物理意义上分析是不合理的。 另外,在测定场地土和建筑结构的卓越周期时,运用不同的测试仪器和测试技术,往往得到不同的结果。即使是对同一个测试结果,在频谱上确定卓越周期时,不同的分析方法也会导致不同的结果。有的选取谱的第一个峰值所对应的周期作为卓越周期,有的选最大峰值时的,也有的取某一段周期等,很不一致。对如何确定地震加速度记录的卓越周期,也是各行其是,有的利用加速度反应谱,有的用伪速度谱,有的用富氏谱,结果当然是不一样的。上述各种作法在工程中引起了一些混乱。 王亚勇认为,用脉动测试方法测定场地土和结构的卓越周期及自振周期时,应采用速度摆型或加速度摆型的地震仪测定地运动和结构振动,然后计算其富氏谱或功率谱,以谱的最大峰值所对应的周期作为卓越周期和自振周期比较合适。反应而相应地根据记录的位移谱或速度谱。 这也就是所谓的滤波修正。可按要求设计滤波器,对地震波进行时域或频域的滤波修正。这样修正的地震资料不仅卓越周期满足要求,功率谱的形状和面积也可控制。卓越周期修正。将地震波的离散步长按人为比例改变,

时程分析时地震波的选取及地震波的反应谱化

时程分析时地震波的选取及地震波的反应谱化 摘要:目前我国规范要求结构计算中地震作用的计算方法一般为振型分解反应 谱法。时程分析法作为补充计算方法,在不规则、重要或较高建筑中采用。进行 时程分析时,首先面临正确选择输入的地震加速度时程曲线的问题。时程曲线的 选择是否满足规范的要求,则需要首先将时程曲线进行单自由度反应计算,得到 其反应谱曲线,并按规范要求和规范反应谱进行对比和取舍。本文通过介绍常用 的数值计算方法及计算步骤,实现将地震加速度时程曲线计算转化成反应谱曲线,从而为特定工程在时程分析时地震波的选取提供帮助。 关键词:时程分析,地震波,反应谱,动力计算 1 地震反应分析方法的发展过程 结构的地震反应取决于地震动和结构特性。因此,地震反应分析的水平也是随着人们对 这两个方面认识的深入而提高的。结构地震反应分析的发展可以分为静力法、反应谱法、动 力分析法这三个阶段。在动力分析法阶段中又可分为弹性和非弹性(或非线性)两个阶段。[1] 目前,在我国和其他许多国家的抗震设计规范中,广泛采用反应谱法确定地震作用,其 中以加速度反应谱应用得最多。反应谱是指:单自由度弹性体系在给定的地震作用下,某个 最大反应量(如加速度、速度、位移等)与体系自振周期的关系曲线。反应谱理论是指:结 构物可以简化为多自由度体系,多自由度体系的地震反应可以按振型分解为多个单自由度体 系反应的组合,每个单自由度体系的最大反应可以从反应谱求得。其优点是物理概念清晰, 计算方法较为简单,参数易于确定。 反应谱理论包括如下三个基本假定:1、结构物的地震反应是弹性的,可以采用叠加原理 来进行振型组合;2、现有反应谱假定结构的所有支座处地震动完全相同;3、结构物最不利 的地震反应为其最大地震反应,而与其他动力反应参数,如最大值附近的次数、概率、持时 等无关。[1] 时程分析法是对结构物的运动微分方程直接进行逐步积分求解的一种动力分析方法。由 于此法是对运动方程直接求解,又称直接动力分析法。可直接计算地震期间结构的位移、速 度和加速度时程反应,从而描述结构在强地震作用下弹性和非弹性阶段的内力变化,以及结 构构件逐步开裂、屈服、破坏甚至倒塌全过程。 根据我国《建筑抗震设计规范》(GB5011-2010)(以下简称《抗规》)第5.1.2-3条要求,特 别不规则的建筑、甲类建筑和表5.1.2-1所列高度范围的高层建筑,应采用时程分析法进行多 遇地震下的补充计算。此外《高层建筑混凝土结构技术规程》(JGJ3-2010) (以下简称《高规》)第4.3.4条也有相关要求。 2 时程分析时地震波的选取要求 在进行时程分析时,首先面临地震波选取的问题。所选的地震波需要符合场地条件、设 防类别、震中距远近等因素。《抗规》对于地震波的选取主要有以下几点要求: 1、当取三组加速度时程曲线输入时,计算结果宜取时程法的包络值和振型分解反应谱法 的较大值;当取七组及七组以上的时程曲线时,计算结果可取时程法的平均值和振型分解反 应谱法的较大值(其中实际强震记录的数量不应少于总数的2/3)。 2、弹性时程分析时,每条时程曲线计算所得结构底部剪力不应小于振型分解反应谱法计 算结果的65%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计 算结果的80%。 3、多组时程曲线的平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数 曲线在统计意义上相符。根据规范条文说明,所谓“统计意义上相符”指的是,多组时程波的 平均地震影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在对应于结构主 要振型的周期点上相差不大于20%。但计算结果也不能太大,每条地震波输入计算不大于135%,平均不大于120%。 4、时程曲线要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间均要符合规

地震波的频率和振幅

地震波的频率和振幅 时间:2010-06-05 20:18 来源:unknown 作者:wowglad 点击:$ 7 次2008年12月19日地震波的频率和振幅 1、地震波的频谱及其分析 频谱:谐和振动的振幅和初相位则随频率的改变而改变的关系 ,统称为地震波的频 频谱分 2008年12月19日 地震波的频率和振幅 1、地震波的频谱及其分析 频谱:谐和振动的振幅和初相位则随频率的改变而改变的关系,统称为地震波的频谱。 频谱分为: 振幅谱:振幅随频率变化的关系称为振幅谱。 相位谱:初相位随频率的变化关系称为相位谱。 作用:频率分析,根据有效波和干扰波的频段差异 ①指导野外工作方法的选择 ②给数字滤波和资料等工作提供依据。 频谱分析的方法: 为了研究地震波的频谱特征,可用傅立叶变换把波形函数a(t )变换到频率域中,得到振幅随频率的变化函数A(f),这个变换过程称之为频谱分析方法。 假设波形函数a(t)

--傅氏正变换 ------------- ()-- --傅氏反变换 这两式是等价的,即A⑴与a(t)是一一对应的①S脉冲函数A S (t) ②函数: ③函数: 可以看出:不同时间函数具有不同的频谱。

图、地震波的频率特征 地震波是人工激发的振动,具有连续的频谱,如图所示 图主频fO :振幅谱曲线极大值所对应的频率。 频带的宽度:若|A(f)|最大值为1则可找|A(f)|=的两个频率fl和f2,两者之差△ f=f2 -f1为频带宽度。 大量的实际观测和分析,各种不同类型的地震波的能量主要分布频带是不同的。如图所示。

3、地震波的振幅及其衰减规律 影响地震波激发和接收时振幅和波形的因素: ①激发条件。 ②地震波在传播过程中受到影响。 ③接收条件的影响。 ④其它如地下岩层界面的形态和平滑状态。 图大地低通滤波器效应: 地震波在传播过程中随着距离(或深度)的增加,高频成分会很快地损失,而且波的振幅按指数规律衰减。实际地层对波的这种改造,称之为大地低通滤器效应。 ⑴波前扩散 球面扩散:在均匀介质中,点震源的波前为球面,随着传播距离的增大,球面逐渐扩展,但总能量仍保持不变,而使单位面积上的能量减小,振动的振幅将随之减小,这称之为球面扩散(或波前扩散)。 设某一时刻球面的波前面S,总能量为E,单位面积上的能量为e,则有

地震波数据生成器SGSw

地震波数据生成器 除了程序提供的30多条实测地震波,一些复杂超限工程在做时程分析时往往需要利用当地安评报告的地震波数据生成自己的时程函数,具体的转换过程是被经常提到的一个问题。 相关命令 工具〉地震波数据生成器... 问题解答 midas提供地震波数据生成器这个专门的工具用于生成自己的时程函数,具体操作步骤如下: 1)打开已安装midas软件的文件夹,找到Dbase文件夹,用记事本打开其中任何 一个后缀为dbs的文件;

2)将安评报告的实测地震波数据完全按上述dbs文件的格式输入后另存,修改后 缀txt为dbs; 3)打开地震波数据生成器,执行菜单操作Generete-Earthquake Record;

4)点击Import,导入第2)步中生成的dbs文件,同时可修改地震波三要素中的 有效峰值和持时,保存为一个sgs文件; 5)midas软件中添加时程函数时,导入第4)步生成的sgs文件即可。 相关知识 时程分析往往作为多遇地震的补充计算手段,规范中要求每条时程曲线计算底部剪力结

果不应小于振型分解反应谱法相应结果的65% ,多条时程曲线计算所得底部剪力结果平均值不应小于振型分解反应谱法计算结果的80%。所以选择合适的波很重要,地震波数据生成器还提供时程函数到反应谱的转换,可以和反应谱分析中地震影响系数曲线进行大致的比较,对结果的正确性给予一定的保证。 具体操作步骤如下: 1)同上。 2)同上。 3)打开地震波数据生成器,执行菜单操作Generete-Earthquake Response Spectra;

4)点击Import,导入第2)步中生成的dbs文件,可选择生成多种形式的反应谱,如绝对加速度、相对速度、相对位移等,保存为sgs文件; 5)和时程函数一样,也可以在定义反应谱函数的时候导入第4)步生成的sgs文件。

弹塑性时程分析用地震波选取的基本原则(转载)

弹塑性时程分析用地震波选取的基本原则 地震动具有强烈随机性,分析表明,结构的地震反应随输入地震波的不同而差距很大,相差高达几倍甚至十几倍之多。故要保证时程分析结果的合理性,必须合理选择输入地震波。归纳起来,选择输入地震波时应当考虑以下几方面的因素:峰值、频谱特性、地震动持时以及地震波数量,其中,前三个因素称为地震动的三要素。 1、峰值调整 地震波的峰值一定程度上反映了地震波的强度,因此要求输入结构的地震波峰值应与设防烈度要求的多遇地震或罕遇地震的峰值相当,否则应按下式对该地震波的峰值进行调整。 A′(t) = (A′max/Amax) A (t) 其中,A′(t) 和A′max分别为地震波时程曲线与峰值,A′max取设防烈度要求的多遇或罕遇地震的地面运动峰值; A (t) 和Amax分别为原地震波时程曲线与峰值。 2、频谱特性 频谱即地面运动的频率成分及各频率的影响程度。它与地震传播距离、传播区域、传播介质及结构所在地的场地土性质有密切关系。地面运动的特性测定表明,不同性质的土层对地震波中各种频率成分的吸收和过滤的效果是不同的。一般来说,同一地震,震中距近,则振幅大,高频成分丰富;震中距远,则振幅小,低频成分丰富。因此,在震中附近或岩石等坚硬场地土中,地震波中的短周期成分较多,在震中距很远或当冲积土层很厚而土质又较软时,由于地震波中的短周期成分被吸收而导致长周期成分为主。合理的地震波选择应从两个方面着手:1) 所输入地震波的卓越周期应尽可能与拟建场地的特征周期一致。2) 所输入地震波的震中距应尽可能与拟建场地的震中距一致。 3、地震动持时 地震动持时也是结构破坏、倒塌的重要因素。结构在开始受到地震波的作用时,只引起微小的裂缝,在后续的地震波作用下,破坏加大,变形积累,导致大的破坏甚至倒塌。有的结构在主震时已经破坏但没有倒塌,但在余震时倒塌,就是因为震动时间长,破坏过程在多次地震反复作用下完成,即所谓低周疲劳破坏。总之,地震动的持续时间不同,地震能量损耗不同,结构地震反应也不同。工程实践中确定地震动持续时间的原则是:1) 地震记录最强烈部分应包含在所选持续时间内。2) 若仅对结构进行弹性最大地震反应分析,持续时间可取短些;若对结构进行弹塑性最大地震反应分析或耗能过程分析,持续时间可取长些。3) 一般可考虑取持续时间为结构基本周期的5 倍~10 倍。 4、地震波数量 输入地震波数量太少,不足以保证时程分析结果的合理性;输入地震波数量太多,则工作量较大。研究表明,在充分考虑以上三个因素的情况下,采用3 条~5 条

第五章 地震波的激发和震源机制3

2.利用S波偏振确定断层面
?1 = ε tg 1) S波的偏振角ε的定义:
SH SV
由直接的记录计算出真入射的SV、SH。 ?1 SH ε = tg SV 2)用地震记录实测ε,并画在Wolf 网上 将Wolf 网上过台站,以 ε为切向的大园弧BC画 出。
2013-5-22
《地震学原理与应用》第五章
99

3)由位错源理论求出偏振方向,并画在Wolf网上 *剪切位错源的震源坐标系 (与断层面法向n 一致)
(与X1,X3组成右手直角坐标系) (与断层面滑动方向λ一致) 则剪切位错源 的辐射波谱为:
*辐射图形因子
2013-5-22
《地震学原理与应用》第五章
100

震源坐标中,eθ方向与偏 振方向(BC)夹角为: ?? du ?1 ε ' = tg ( ) ?θ du
(注意:它虽能确定偏振方向 ,却不是偏振角的定义)
cos θ sin ? ε ' = tg ( ? ) cos 2 θ cos ?
?1
当震源是剪切位错源时 ,位于(θ,?)的台站上 有:
因此,设定一{Xi}便可计算出任意指定点(θ,?)上的偏振方向。
2013-5-22
《地震学原理与应用》第五章
101

4) 穷举对比
2013-5-22
《地震学原理与应用》第五章
102

三、破裂过程和震源参数
断层面上各点同时破裂不太合乎实际,比较合理的模型应是一 个破裂过程(有限时段)。
2013-5-22
《地震学原理与应用》第五章
103

地震波的频率和振幅

地震波的频率和振幅 时间:2010-06-05 20:18来源:unknown 作者:wowglad 点击:7次 2008年12月19日 地震波的频率和振幅 1、地震波的频谱及其分析 频谱:谐和振动的振幅和初相位则随频率的改变而改变的关系,统称为地震波的频谱。 频谱分 2008年12月19日 地震波的频率和振幅 1、地震波的频谱及其分析 频谱:谐和振动的振幅和初相位则随频率的改变而改变的关系,统称为地震波的频谱。 频谱分为: 振幅谱:振幅随频率变化的关系称为振幅谱。 相位谱:初相位随频率的变化关系称为相位谱。 作用:频率分析,根据有效波和干扰波的频段差异 ①指导野外工作方法的选择 ②给数字滤波和资料等工作提供依据。 频谱分析的方法: 为了研究地震波的频谱特征,可用傅立叶变换把波形函数a(t)变换到频率域中,得到振幅随频率的变化函数A(f),这个变换过程称之为频谱分析方法。 假设波形函数a(t) ------------------(1.3.1)--

--傅氏正变换 --------------------(1.3.2)-- --傅氏反变换 这两式是等价的,即A(f)与a(t)是一一对应的。 ① δ脉冲函数Aδ(t) ② 函数: ③ 函数: 可以看出:不同时间函数具有不同的频谱。 图1.3.52、地震波的频率特征 地震波是人工激发的振动,具有连续的频谱,如图1.3.6所示。

图1.3.6主频f0:振幅谱曲线极大值所对应的频率。 频带的宽度:若|A(f)|最大值为1,则可找|A(f)|=0.707的两个频率f1和f2,两者之差△f=f2-f1为频带宽度。 大量的实际观测和分析,各种不同类型的地震波的能量主要分布频带是不同的。如图1.3.7所示。 图1.3.7 3、地震波的振幅及其衰减规律 影响地震波激发和接收时振幅和波形的因素: ① 激发条件。 ② 地震波在传播过程中受到影响。 ③ 接收条件的影响。 ④ 其它如地下岩层界面的形态和平滑状态。

地震波应用

建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。 持续时间的概念不是指地震波数据中总的时间长度。持时Td的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*amax之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度 EPA=Sa/2.5 (1) 有效峰值速度 EPV=Sv/2.5 (2) 特征周期Tg = 2π*EPV/EPA (3) 1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 —1 —

地震波的频率和振幅

地震波的频率和振幅 Prepared on 24 November 2020

地震波的频率和振幅 时间:2010-06-05 20:18来源:unknown 作者:wowglad 点击:7次 2008年12月19日地震波的频率和振幅1、地震波的频谱及其分析频谱: 谐和振动的振幅和初相位则随频率的改变而改变的关系,统称为地震波的频谱。频 谱分 2008年12月19日 地震波的频率和振幅 1、地震波的频谱及其分析 频谱:谐和振动的振幅和初相位则随频率的改变而改变的关系,统称为地震波的频谱。 频谱分为: 振幅谱:振幅随频率变化的关系称为振幅谱。 相位谱:初相位随频率的变化关系称为相位谱。 作用:频率分析,根据有效波和干扰波的频段差异 ①指导野外工作方法的选择 ②给数字滤波和资料等工作提供依据。 频谱分析的方法: 为了研究地震波的频谱特征,可用傅立叶变换把波形函数a(t)变换到频率域中,得到振幅随频率的变化函数A(f),这个变换过程称之为频谱分析方法。 假设波形函数a(t) --傅氏正变换

--傅氏反变换 这两式是等价的,即A(f)与a(t)是一一对应的。 ① δ脉冲函数Aδ(t) ② 函数: ③ 函数: 可以看出:不同时间函数具有不同的频谱。

频带的宽度:若|A(f)|最大值为1,则可找|A(f)|=的两个频率f1和f2,两者之差△f=f2-f1为频带宽度。 图 3、地震波的振幅及其衰减规律 影响地震波激发和接收时振幅和波形的因素: ① 激发条件。 ② 地震波在传播过程中受到影响。 ③ 接收条件的影响。 ④ 其它如地下岩层界面的形态和平滑状态。 地震波在传播过程中随着距离(或深度)的增加,高频成分会很快地损失,而且波的振幅按指数规律衰减。实际地层对波的这种改造,称之为大地低通滤器效应。

相关主题
文本预览
相关文档 最新文档