当前位置:文档之家› 新课标人教A版高中数学必修五典题精讲(34基本不等式)

新课标人教A版高中数学必修五典题精讲(34基本不等式)

新课标人教A版高中数学必修五典题精讲(34基本不等式)
新课标人教A版高中数学必修五典题精讲(34基本不等式)

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式)

典题精讲

例1(1)已知0<x <

31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x

1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论.

(1)解法一:∵0<x <

3

1,∴1-3x >0. ∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=6

1时,等号成立.∴x=61时,函数取得最大值12

1. 解法二:∵0<x <31,∴3

1-x >0. ∴y=x(1-3x)=3x(31-x)≤3[2

31x x -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x

x 1?=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x 1=-[(-x)+)

(1x -]. ∵-x >0,∴(-x)+)

(1x -≥2,当且仅当-x=x -1,即x=-1时,等号成立. ∴y=x+x

1≤-2. 综上,可知函数y=x+

x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备.

变式训练1当x >-1时,求f(x)=x+

1

1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与11+x 的积为常数. 解:∵x >-1,∴x+1>0.

∴f(x)=x+11+x =x+1+11+x -1≥2)

1(1)1(+?+x x -1=1. 当且仅当x+1=

11+x ,即x=0时,取得等号. ∴f(x)min =1.

变式训练2求函数y=1

33224+++x x x 的最小值. 思路分析:从函数解析式的结构来看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,事实上,我们可以把分母视作一个整体,用它来表示分子,原式即可展开. 解:令t=x 2+1,则t≥1且x 2=t-1.

∴y=1

33224+++x x x =1113)1(3)1(22++=++=+-+-t t t t t t t t . ∵t≥1,∴t+t 1≥2t

t 1?=2,当且仅当t=t 1,即t=1时,等号成立. ∴当x=0时,函数取得最小值3.

例2已知x >0,y >0,且x 1+y

9=1,求x+y 的最小值. 思路分析:要求x+y 的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会.

解法一:利用“1的代换”, ∵x 1+y

9=1, ∴x+y=(x+y)·(x 1+y 9)=10+y

x x y 9+. ∵x >0,y >0,∴y x x y 9+≥2y

x x y 9?=6. 当且仅当y

x x y 9=,即y=3x 时,取等号. 又x 1+y

9=1,∴x=4,y=12. ∴当x=4,y=12时,x+y 取得最小值16.

解法二:由x 1+y 9=1,得x=9

-y y . ∵x >0,y >0,∴y >9. x+y=9-y y +y=y+999-+-y y =y+99-y +1=(y-9)+9

9-y +10. ∵y >9,∴y-9>0. ∴999-+-y y ≥29

9)9(-?-y y =6. 当且仅当y-9=9

9-y ,即y=12时,取得等号,此时x=4.∴当x=4,y=12时,x+y 取得最小值16.解法三:由x 1+y

9=1,得y+9x=xy, ∴(x-1)(y-9)=9.

∴x+y=10+(x-1)+(y-9)≥10+2)9)(1(--y x =16,

当且仅当x-1=y-9时取得等号.又x 1+y

9=1, ∴x=4,y=12.

∴当x=4,y=12时,x+y 取得最小值16.

绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的范围对另外一个变量的范围的影响.

黑色陷阱:本题容易犯这样的错误:

x 1+y 9≥2xy 9①,即xy

6≤1,∴xy ≥6. ∴x+y≥2xy ≥2×6=12②.∴x+y 的最小值是12. 产生不同结果的原因是不等式①等号成立的条件是x 1=y

9,不等式②等号成立的条件是x=y.在同一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论.

变式训练已知正数a,b,x,y 满足a+b=10,

y b x a +=1,x+y 的最小值为18,求a,b 的值. 思路分析:本题属于“1”的代换问题.

解:x+y=(x+y)(y b x a +)=a+x ay y bx ++b=10+x

ay y bx +. ∵x,y >0,a,b >0,

∴x+y≥10+2ab =18,即ab =4.

又a+b=10,

∴???==8,2b a 或?

??==.2,8b a 例3求f(x)=3+lgx+x

lg 4的最小值(0<x <1). 思路分析:∵0<x <1,

∴lgx <0,x

lg 4<0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法是加上负号变正数.

解:∵0<x <1,∴lgx <0,x lg 4<0.∴-x

lg 4>0. ∴(-lgx)+(-x lg 4)≥2)lg 4)(lg (x

x --=4. ∴lgx+x lg 4≤-4.∴f(x)=3+lgx+x

lg 4≤3-4=-1. 当且仅当lgx=

x lg 4,即x=1001时取得等号. 则有f(x)=3+lgx+x

lg 4 (0<x <1)的最小值为-1. 黑色陷阱:本题容易忽略0<x <1这一个条件. 变式训练1已知x <

45,求函数y=4x-2+5

41-x 的最大值.

思路分析:求和的最值,应凑积为定值.要注意条件x <4

5,则4x-5<0. 解:∵x <

4

5,∴4x-5<0. y=4x-5+541-x +3=-[(5-4x)+x 451-]+3 ≤-2x x 451)45(-?

-+3=-2+3=1. 当且仅当5-4x=x

451-,即x=1时等号成立. 所以当x=1时,函数的最大值是1.

变式训练2当x <

23时,求函数y=x+3

28-x 的最大值. 思路分析:本题是求两个式子和的最大值,但是x·3

28-x 并不是定值,也不能保证是正值,所以,必须使用一些技巧对原式变形.可以变为y=21(2x-3)+328-x +23=-(x x 238223-+-)+23,再求最值.

解:y=

21(2x-3)+328-x +23=-(x x 238223-+-)+2

3, ∵当x <23时,3-2x >0, ∴x x 238223-+-≥x

x 2382232-?-=4,当且仅当x x 238223-=-,即x=-21时取等号. 于是y≤-4+23=25-,故函数有最大值2

5-. 例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.

图3-4-1

(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?

(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?

思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而

(2)则是在xy=24的前提下来求4x+6y 的最小值.

解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18.

设每间虎笼的面积为S ,则S=xy.

方法一:由于2x+3y≥2y x 32?=2xy 6,

∴2xy 6≤18,得xy≤227,即S≤2

27. 当且仅当2x=3y 时等号成立.

由???=+=,1832,22y x y x 解得?

??==.3,5.4y x 故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大.

方法二:由2x+3y=18,得x=9-

23y. ∵x >0,∴0<y <6. S=xy=(9-23y)y=2

3 (6-y)y. ∵0<y <6,∴6-y >0.

∴S≤23[2)6(y y +-]2=2

27. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大.

(2)由条件知S=xy=24.

设钢筋网总长为l,则l=4x+6y.

方法一:∵2x+3y≥2y x 32?=2xy 6=24,

∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成立.

由?

??==,24,32xy y x 解得???==.4,6y x 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小. 方法二:由xy=24,得x=

y 24. ∴l=4x+6y=y 96+6y=6(y 16+y)≥6×2y y

?16=48,当且仅当y 16=y ,即y=4时,等号成立,此时x=6. 故每间虎笼长6 m,宽4 m 时,可使钢筋总长最小.

绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意:

(1)x,y 都是正数;

(2)积xy (或x+y )为定值;

(3)x 与y 必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论.

变式训练某工厂拟建一座平面图为矩形且面积为200 平方米的三级污水处理池(平面图如图3-4-2所示),由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长

和宽,使总造价最低,并求出最低造价

.

图3-4-2

思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,若等号不能成立,通常要用函数的单调性进行求解.

解:设污水处理池的长为x 米,则宽为

x 200米(0<x≤16,0<x

200≤16),∴12.5≤x≤16. 于是总造价Q(x)=400(2x+2×x 200)+248×2×x 200+80×200. =800(x+x 324)+16 000≥800×2x

x 324?+16 000=44 800, 当且仅当x=x

324 (x >0),即x=18时等号成立,而18?[12.5,16],∴Q(x)>44 800. 下面研究Q(x)在[12.5,16]上的单调性.

对任意12.5≤x 1<x 2≤16,则x 2-x 1>0,x 1x 2<162<324.

Q(x 2)-Q(x 1)=800[(x 2-x 1)+324(1

211x x -)] =800×2

12112)324)((x x x x x x --<0, ∴Q(x 2)>Q(x 1).∴Q(x)在[12.5,16]上是减函数.

∴Q(x)≥Q(16)=45 000.

答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元.

问题探究

问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n

8.则此人应选第几楼,会有一个最佳满意度. 导思:本问题实际是求n 为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据基本不等式求解即可.

探究:设此人应选第n 层楼,此时的不满意程度为y.

由题意知y=n+n

8.

∵n+n 8≥2248

=?n n ,

当且仅当n=n 8

,即n=22时取等号.

但考虑到n ∈N *,

∴n≈2×1.414=2.828≈3,

即此人应选3楼,不满意度最低.

高中数学解不等式方法+练习题

不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 (一) 知识容 1.含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式. 一元二次不等式的解集,一元二次方程的根及二次函数图象之间的关系如下表(以0a >为例): 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解. 判别式 24b ac ?=- 0?> 0?= 0?< 二次函数 2y ax bx c =++ (0)a >的图象 一元二次方程 2 0ax bx c ++= (0)a ≠的根 有两相异实根 12,x x = 242b b ac a -±- 12()x x < 有两相等实根 122b x x a ==- 没有实根 一元二次不等式的解集 2 0ax bx c ++> (0)a > {1 x x x < 或}2x x > {R x x ∈,且 2b x a ?≠- ?? 实数集R 20ax bx c ++< (0)a > {}1 2x x x x << ? ? 例题精讲 高考要求 板块一:解一元二次不等式 解不等式

(二)主要方法 1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)典例分析: 1.二次不等式与分式不等式求解 【例1】 不等式 1 12 x x ->+的解集是 . 【变式】 不等式2230x x --+≤的解集为( ) A .{|31}x x x -或≥≤ B .{|13}x x -≤≤ C .{|31}x x -≤≤ D .{|31}x x x -或≤≥ 【变式】 不等式 25 2(1)x x +-≥的解集是( ) A .132? ?-??? ? , B .132??-????, C .(]11132??????U ,, D .(]11132?? -???? U ,, 2.含绝对值的不等式问题 【例2】 已知n *∈N ,则不等式 220.011 n n -<+的解集为( ) A .{}|199n n n *∈N ≥, B .{}|200n n n *∈N ≥, C .{}|201n n n *∈N ≥, D .{}|202n n n *∈N ≥, 【例3】 不等式 1 11 x x +<-的解集为( ) A .{}{}|01|1x x x x <<>U B .{}|01x x << C .{}|10x x -<< D .{}|0x x < 【变式】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值围是 _. 【例4】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例5】 若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值围为 . 3.含参数不等式问题 【例6】 若关于x 的不等式22840x x a --->在14x <<有解,则实数a 的取值围是( ) A .4a <- B .4a >- C .12a >- D .12a <- 【变式】 ⑴已知0a <,则不等式22230x ax a -->的解集为 . ⑵若不等式897x +<和不等式220ax bx +->的解集相同,则a b -=______.

高中数学不等式练习题

1、设恒成立的c的取值范围是 A.B.C.D. 2、设,且(其中),则M的取值范围是A.B.C.D. 3、若实数、满足,则的取值范围是 A.B.C.D. 4、已知,,,则的最小值是() (A)(B)4(C)(D) 5、若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是 (A)(B)(C)(D) 6、已知,若在上恒成立,则实数的取值范围是()

A.B.C.D. 7、已知正实数满足,则的最小值为。 8、如图,目标函数可行域为四边形(含边界),若是该目标函数的最优解,则的取值范围是() (A)(B)(C)(D) 的最大值与最小值之和为 9、函数,当时,恒成立,则 D. 10、已知正数满足,则的最小值为 A.3B.C.4D. 11、二次函数轴两个交点的横坐标分别为。(1)证明:;(2)证明:; (3)若满足不等式的取值范围。 12、设满足约束条件,若目标函数的最大值为10,则的最小值为.

13、已知对任意实数x,二次函数f(x)=ax2+bx+c恒非负,且a

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

(新)高一数学不等式测试题

高一数学不等式测试题 一、选择题(本大题共10小题,每小题5分,共50分) 1.若a <b <0,则 ( )A . b 11 2.若|a +c|<b ,则 ( )A . |a |<|b|-|c| B . |a |>|c| -|b| C . |a |>|b|-|c| D . |a |<|c|-|b| 3.设a =26c ,37b ,2-=-=,则a ,b,c 的大小顺序是 ( ) A . a >b >c B . a >c >b C . c >a >b D . b >c >a 4. 设b <0<a ,d <c <0,则下列各不等式中必成立的是 ( )A . a c >bd B . d b >c a C . a +c >b +d D . a -c >b -d 5.下列命题中正确的一个是 ( ) A .b a a b +≥2成立当且仅当a ,b 均为正数 B .222 2b a b a +≥+成立当且仅当a ,b 均为正数 C .log a b +log a b ≥2成立当且仅当a ,b ∈(1,+∞) D .|a +a 1 |≥2成立当且仅当a ≠0 6.函数y =log ??? ? ?-+?+-2134223x x x x 的定义域是 ( ) A .x ≤1或x ≥3 B .x <-2或x >1 C .x <-2或x ≥3 D .x <-2或x >3 7.已知x,y ∈R ,命题甲: |x -1|<5,命题乙: ||x |-1|<5,那么 ( ) A .甲是乙的充分条件,但不是乙的必要条件 B .甲是乙的必要条件,但不是乙的充要条件 C .甲是乙的充要条件 D .甲不是乙的充分条件,也不是乙的必要条件 8.已知实数x ,y 满足x 2+y 2=1,则代数式(1-x y)(1+x y)有 ( ) A .最小值21 和最大值1 B .最小值43 和最大值1 C .最小值21和最大值43 D .最小值1 9.关于x 的方程ax 2+2x -1=0至少有一个正的实根的充要条件是 ( ) A .a ≥0 B .-1≤a <0 C .a >0或-1<a <0 D .a ≥-1 10.函数y =x x x +++132 (x >0)的最小值是 ( ) A .23 B .-1+23 C .1+23 D .-2+23 二、填空题(本大题共4小题,每小题6分,共24分) 11.关于x 的不等式a x 2+b x +2>0的解集是}3 121|{<<-x x ,则a +b=_____________。 12.实数=+=+>x y x y x y x ,此时的最大值是,那么,且,______log log 42022_________,y=_________。 13.方程()02lg 222=-+-a a x x 又一正根一负根,则实数a 的取值范围是 。

高中数学必修五-不等式知识点精炼总结

高中数学必修五-不等式知识点精炼总结 4.公式: 3.解不等式 (1)一元一次不等式 3.基 本不等式定理 ? ?? ? ? ??????? ? ?????????????????-≤+?<≥+?>≥+ ??? ????+≤+≥+?? ?? ???????? ?+≤??? ??+≤+≥+≥+2a 1a 0a 2a 1a 0a b ,a (2b a a b )b a (2b a ab 2 b a 2b a ab 2b a ab )b a (2 1b a ab 2b a 2 22222 2 222倒数形式同号)分式形式根式形式整式形 式11 22a b a b --+≤≤≤+???? ? <<>> ≠>)0a (a b x )0a (a b x )0a (b ax 2.不等式的性质:8条性质.

(2)一元二次不等式: +bx+c x 1 x 2 x y O y x O x 1 y x O

一元二次不等式的求 解流程: 一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集. (3)解分式不等式: 高次不等式: (4)解含参数的不等式:(1) (x – 2)(ax – 2)>0 (2)x 2 – (a +a 2)x +a 3>0; (3)2x 2 +ax +2 > 0; 注:解形如ax 2+bx+c>0的不等式时分类讨 论的标准有: 1、讨论a 与0的大小; 2、讨论⊿与0的大小; 3、讨论两根的大小; 二、运用的数学思想: 1、分类讨论的思想; 2、数形结合的思想; 3、等与不等的化归思想 (4)含参不等式恒成立的问题: ??????????≠≤??≤>??>0)x (g 0)x (g )x (f 0) x (g )x (f 0)x (g )x (f 0)x (g ) x (f 0 )())((21>---n a x a x a x Λ

高中数学不等式训练习题

不等式训练1 A 一、选择题(六个小题,每题5分,共30分) 1.若02522 >-+-x x ,则221442-++-x x x 等于( ) A .54-x B .3- C .3 D .x 45- 2.函数y =log 2 1(x +11+x +1) (x > 1)的最大值是 ( ) A .-2 B .2 C .-3 D .3 3.不等式x x --213≥1的解集是 ( ) A .{x| 43≤x ≤2} B .{x|4 3≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( ) A .b a 11< B . b a 11> C .a >b 2 D .a 2>2b 5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( ) A .最小值 21和最大值1 B .最大值1和最小值4 3 C .最小值43而无最大值 D .最大值1而无最小值 6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小, 则a 的取值范围是 ( ) A .-3<a <1 B .-2<a <0 C .-1<a <0 D .0<a <2 二、填空题(五个小题,每题6分,共30分) 1.不等式组? ??->-≥32x x 的负整数解是____________________。 2.一个两位数的个位数字比十位数字大2,若这个两位数小于30, 则这个两位数为____________________。 3.不等式0212<-+x x 的解集是__________________。 4.当=x ___________时,函数)2(22x x y -=有最_______值,其值是_________。 5.若f(n)=)(21)(,1)(,122N n n n n n n g n n ∈= --=-+?,用不等号 连结起来为____________.

高中数学基本不等式知识点归纳及练习题00294

高中数学基本不等式的巧用 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)a 2+b 22≥? ?? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个 正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22 ?? ??a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥? ?? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽

视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+ 的单调性。例:求函数224y x =+的值域。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=>(2)12,33 y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈ 2.已知01x <<,求函数(1)y x x = -.;3.203 x <<,求函数(23)y x x =-. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是. 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且191x y +=,求x y +的最小值。

人教版高中数学必修5不等式练习题及答案

第三章 不等式 一、选择题 1.若a =20.5,b =log π3,c =log πsin 5 2π ,则( ). A .a >b >c B .b >a >c C .c >a >b D .b >c >a 2.设a ,b 是非零实数,且a <b ,则下列不等式成立的是( ). A .a 2<b 2 B .ab 2<a 2b C . 21ab <b a 21 D . a b <b a 3.若对任意实数x ∈R ,不等式|x |≥ax 恒成立,则实数a 的取值范围是( ). A .a <-1 B .|a |≤1 C .|a |<1 D .a ≥1 4.不等式x 3-x ≥0的解集为( ). A .(1,+∞) B .[1,+∞) C .[0,1)∪(1,+∞) D .[-1,0]∪[1,+∞) 5.已知f (x )在R 上是减函数,则满足f (11 -x )>f (1)的实数取值范围是( ). A .(-∞,1) B .(2,+∞) C .(-∞,1)∪(2,+∞) D .(1,2) 6.已知不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为图中( ). A B C D 7.设变量x ,y 满足约束条件?? ? ??y x y x y x 2++- 则目标函数z =5x +y 的最大值是( ). A .2 B .3 C .4 D .5 8.设变量x ,y 满足?? ? ??5 --31+-3-+y x y x y x 设y =kx ,则k 的取值范围是( ). A .[ 21,3 4 ] B .[ 3 4 ,2] C .[ 2 1 ,2] D .[ 2 1 ,+∞) ≥0 ≤1 ≥1 ≥0 ≥1 ≤ 1 (第6题)

高中数学不等式练习题(供参考)

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B )a b <1 (C )lg(a -b)>0 (D )(21)a <(2 1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B ) a 1+a ≥2 (a ≠0) (C )a 1<b 1(a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11)(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )= n 21, g (n ) = n 12--n , n ∈N ,则 ( ) (A ) f (n )

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编) 变 2.下列结论正确的是 ( ) A .若a b >,则ac bc > B .若a b >,则22a b > C .若a c b c +<+,0c <,则a b > D >a b > 3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是 例2、解下列不等式 (1)2230x x --≥ (2)2280x x -++> (3) 405x x ->- (4)405 x x -≥- (5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .

变、若不等式02<--b ax x 的解集为{} 32<

例5、 1. 积为定值 (1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12 p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4) 变、 (1 )2y = 的最小值是 . (2) . 2. 和为定值 (1) ,y=x(4-x) 的最大值是 . (2), 的最大值是 . 例6、“1”的妙用 1. 2.已知正数,x y 满足21x y +=,则 y x 11+的最小值为______

(完整)高中数学一元二次不等式练习题

一元二次不等式及其解法 1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式. 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3 <0 x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x ≠5}. (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2 -4 -5 2 2 1 1 3 1

高中数学必修5(人教A版)第三章不等式3.3知识点总结含同步练习及答案

描述:例题:高中数学必修5(人教A版)知识点总结含同步练习题及答案 第三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题 一、学习任务 1. 能从实际情景中抽象出二元一次不等式组;了解二元一次不等式组的集合意义,能用平面区 域表示二元一次不等式组. 2. 能从实际情景中抽象出一些简单的二元线性规划问题,并能加以解决. 二、知识清单 平面区域的表示 线性规划 非线性规划 三、知识讲解 1.平面区域的表示 二元一次不等式表示的平面区域 已知直线 :,它把坐标平面分为两部分,每个部分叫做开半平面,开半平面 与 的并集叫做闭半平面.以不等式解 为坐标的所有点构成的集合,叫做不等式表示的 区域或不等式的图象. 对于直线 : 同一侧的所有点 ,代数式 的符号相同,所 以只需在直线某一侧任取一点 代入 ,由 符号即可判断 出 (或)表示的是直线哪一侧的点集.直线 叫做这 两个区域的边界(boundary). 二元一次不等式组表示的平面区域 二元一次不等式组所表示区域的确定方法:①直线定界②由几个不等式组成的不等式组所表示的 平面区域,是各个不等式所表示的平面区域的公共部分. l Ax +By +C =0l (x ,y )l Ax +By +C =0(x ,y )Ax +By +C (,)x 0y 0Ax +By +C A +B +C x 0y 0A +B +C >0x 0y 0<0Ax +By +C =0画出下列二元一次不等式表示的平面区域. (1) ;(2). 解:(1)① 画出直线 ,因为这条直线上的点不满足 ,所以画 成虚线. ② 取原点 ,代入 ,所以原点在不等式 所表示的平 面区域内,不等式表示的区域如图. 3x +2y +6>0y ?3x 3x +2y +6=03x +2y +6>0(0,0)3x +2y +6=6>03x +2y +6>0

高中数学必修五教案-基本不等式

第一课时 3.4基本不等式 2a b +≤(一) 教学要求:通推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 教学重点: 2 a b +≤的证明过程; 教学难点:理解“当且仅当a=b 时取等号”的数学内涵 教学过程: 一、复习准备: 1. 回顾:二元一次不等式(组)与简单的线形规划问题。 2. 提问:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 二、讲授新课: 1. 教学:基本不等式 2a b +≤ ①探究:图形中的不等关系,将图中的“风车”抽象成如图,在 正方形ABCD 中右个全等的直角三角形。设直角三角形的两条直角边长为a,b 那么正方形的 4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。(教师提问→学生思考→师生总结) ②思考:证明一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a ③基本不等式:如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥, (a>0,b>0)2a b +≤ 2 a b +≤ : 用分析法证明:要证 2a b +≥, 只要证 a+b ≥ (2), 要证(2),只要证 a+b- ≥0(3)要证(3), 只要证( - )2(4), 显然,(4)是成立的。当且仅当a=b 时,(4)中的等号成立。 ⑤练习:已知x 、y 都是正数,求证:(1)y x x y +≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8 x 3y 3.

高中数学不等式单元测试题(含有详细答案--

高中数学不等式综合测试题 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.共60分) 1.(文)设a b <,c d <,则下列不等式中一定成立的是( ) A .d b c a ->- B .bd ac > C .d b c a +>+ D .c b d a +>+ (理)已知a <0,-1> B .2ab ab a >> C .2ab ab a >> D .2 ab a ab >> 2.“0>>b a ”是“2 2 2b a ab +<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.(文)关于x 的不等式(1)ax b a ><-的解集为( ) A .R B .φ C .),(+∞a b D .(,)b a -∞ (理)不等式b ax >的解集不可能...是( ) A .φ B .R C .),(+∞a b D .),(a b --∞ 4.不等式022>++bx ax 的解集是)3 1,21(-,则b a -的值等于( ) A .-14 B .14 C .-10 D .10 5.(文)不等式|1|2x -<的解集是( ) A .{|03}x x ≤< B .{|22}x x -<< C .{|13}x x -<< D .{|1,3}x x x <-> (理)不等式||x x x <的解集是( ) A .{|01}x x << B .{|11}x x -<< C .{|01x x <<或1}x <- D .{|10,1}x x x -<<> 6.(文)若0b a <<,则下列结论不正确... 的是( ) A . 11a b < B .2b ab < C .2>+b a a b D .||||||b a b a +>+ (理)若011<+b a a b D .||||||b a b a +>+ 7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为( ) A .)()(x g x f > B .)()(x g x f = C .)()(x g x f < D .随x 值变化而变化 8.下列各式中最小值是2的是( ) A .y x +x y B .4 5 22++x x C .tan x +cot x D .x x -+22 9.下列各组不等式中,同解的一组是( ) A .02>x 与0>x B .01 )2)(1(<-+-x x x 与02<+x C .0)23(log 2 1>+x 与123<+x D .112≤--x x 与112≤--x x 10.(文)如果a x x >+++|9||1|对任意实数x 总成立,那么a 的取值范围是( ) A .}8|{a a C .}8|{≥a a D .}8|{≤a a

必修五不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2 112a b a b ++(当a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结:

必修5数学不等式典型例题解析(整理)

不等式 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a bc d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-), 但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >> 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 11,0<<<则若; ⑤b a a b b a ><<则 若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c ->->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______ (答:12,2??-- ??? ) 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。如 (1)设0,10>≠>t a a 且,比较 2 1log log 21+t t a a 和的大小 (答:当1a >时,11log log 22a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,12 p a a =+-,2 422-+-=a a q ,试比较q p ,的大小 (答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小 (答:当01x <<或43x >时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3 log x =2log 2x ) 三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。如

高中数学必修(5)不等式专题检测

高中数学必修(5)不等式专题检测 说明:本试卷分第一卷和第二卷两部分,第一卷50分,第二卷100分,共150分;答题时间120分钟。 第Ⅰ卷(选择题共50分) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分). 1.若R c b a ∈,,,且b a >,则下列不等式一定成立的是 ( ) A .c b c a -≥+ B .bc ac > C . 02 >-b a c D .0)(2 ≥-c b a 2.若0< B .a b a 1 1>- C .3 131b a < D .3 2 3 2b a > 3.若关于x 的不等式m x x ≥-42 对任意]1,0[∈x 恒成立,则实数m 的取值范围是( ) A .3-≤m B .3-≥m C .03≤≤-m D .03≥-≤m m 或 4.已知实数x ,y 满足x 2+y 2=1,则(1-xy )(1+xy )有 ( ) A .最小值 21 和最大值1 B .最小值 4 3 和最大值1 C .最小值21和最大值4 3 D .最小值1 5.设x > 0, y > 0,y x y x a +++=1, y y x x b +++=11, a 与b 的大小关系 ( ) A .a >b B .a ---x a x x 在内有解,则实数a 的取值范围是( ) A .4-a C .12->a D .12---x a 则实数a 的取值范围是 ( ) A .1||a D .2||1<

最新高一数学不等式练习题

高一数学不等式练习题 1、不等式1 1 2x <的解集是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .()0,∞-?(2,)+∞ 2、不等式2 01x x -+≤的解集是( ) A .(1)(12]-∞--,, B .[12]-, C .(1)[2)-∞-+∞,, D .(12]-, 3、已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =( ) (A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3} 4 ) A. D. 5、不等式203x x ->+的解集是( ) (A)(-3,2) (B)(2,+∞) (C) (-∞,-3)∪(2,+∞) (D) (-∞,-2)∪(3,+∞) 6、若不等式210x ax ++≥对一切102x ?? ∈ ???,成立,则a 的最小值为( ) A.0 B.2- C.5 2- D.3- 7、设x 、y 为正数,则有(x+y)(1 x +4 y )的最小值为( ) A .15 B .12 C .9 D .6 8、.若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是( ) (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 9、下面给出的四个点中,位于???>+-<-+01, 01y x y x 表示的平面区域内的点是( ) (A )(0,2) (B)(-2,0) (C)(0,-2) (D)(2,0) 10、已知函数()???≥ -<+-=01 1x x x x x f ,则不等式()()111≤+++x f x x 的解集是( ) (A) {}121|-≤≤-x x (B) { }1|≤x x (C) {}12|-≤x x (D) {}1212|-≤≤--x x

高中数学必修5 第3章 不等式 教师版 不等式第14课时

听课随笔

第14课时 基本不等式的应用(2) 学习要求 1.进一步会用基本不等式解决简单的最大(小)值的实际问题。 2.通过对实际问题的研究,进一步体会数学建模的思想。 3.进一步开拓视野,认识数学的科学价值和人文价值. 【课堂互动】 自学评价 1.设x>0时, y=3-3x -x 1的最大值为323- 2.已知a>b>c , n ∈N*, 且11n a b b c a c , 则n 的最大值为_____4_____ . 3.已知x>0且x 1, y>0且y 1 , 则log y x+log x y 的取值范围是),2[]2,(+∞--∞ 【精典范例】 例1.过点(1 , 2)的直线l 与x 轴的正半轴、y 轴的正半轴分别交于A 、B 两点, 当△AOB 的面积最小时, 求直线l 的方程 【解】 见书(但设直线方程可有两种方法). 例2.如图(见书P 93) , 一份印刷品的排版 面积(矩形)为A , 它的两边都留有宽为a 的空白, 顶部和底部都留有宽为b 的空白, 如何选择纸张的尺寸, 才能使纸的用量最小? 见书. 思维点拔: 先建立目标函数,然后创造条件利用基本不等式求解。 追踪训练 1.某汽车运输公司,购买一批豪华大客车投人客

运,据市场分析,每辆客车营运的总利润y 万 元与营运年数n(n )N +∈的关系为 y=-n 2+12n -25,则每辆客车营运( C ) 年,使其营运年平均利润最大. A 3 B 4 C 5 D 6 2. 过第一象限内点P(a , b)的直线l 与x 轴 的正半轴、y 轴的正半轴分别交于A 、B 两 点, 当||||PB PA 取最小值时, 求直线l 的 方程. 解:设)0)((:<-=-k a x k b y l 则),0(),0,(b ak B k b a A +--. 所以||||PB PA =a k k b k ?+-+221||1 =ab k k ab 2)||1 |(|≥+ (等号当且仅当1-=k 时成立) 所以||||PB PA 取最小值2ab 时, 直线l 的 方程为:0=--+b a y x . 3.汽车行驶中, 由于惯性作用, 刹车后还要 向前滑行一段距离才能停住, 我们把这段距 离叫做“刹车距离”, 在某公路上, “刹车距 离”S (米)与汽车车速v (米/秒)之间有经验 公式: S=2403 v +v 85 , 为保证安全行驶, 要 求在这条公路上行驶着的两车之间保持的 “安全距离”为“刹车距离”再加25米, 现 假设行驶在这条公路上的汽车在平均车身 长5米, 每辆车均以相同的速度v 行驶, 并 且每两辆之间的间隔均是“安全距离”.

文本预览
相关文档 最新文档