当前位置:文档之家› 苯系物的高效液相色谱分析

苯系物的高效液相色谱分析

苯系物的高效液相色谱分析
苯系物的高效液相色谱分析

实验编号CA393002实验指导书

实验项目:苯系物的高效液相色谱分析

所属课程: 实验化学3-2

课程代码: CA393

面向专业: 化学

学院(系): 化学化工学院

实验室: 基础化学实验中心代号: 11101 2007 年 2 月18 日

高效液相色谱法在水质检测中的应用

高效液相色谱法在水质检测中的应用 摘要:液相色谱仪已广泛应用于水环境监测中,逐步成为常规检测方法,其适用于分子量大、挥发性低、热稳定性差的有机污染物的分离和分析,具有准确、快速等特点。 关键词:液相色谱仪;水环境监测;有机污染物 1、引言 高效液相色谱法 ( high performance liquid chro-matography,简称 HPLC),具有下列主要优点:固定相颗粒细且规则均匀,传质阻抗小,组分间分离效率高;利用高压泵输送流动相,大大缩短分析时间;使用高灵敏检测器,提高了检测灵敏度,在分析速度、分离效能、检测灵敏度和操作自动化方面,达到了和气相色谱法相媲美的程度,气相色谱法仅适于分析蒸汽压低、挥发性高、沸点低、热稳定性好的样品。在全部已知的有机化合物中仅有20%的样品符合这些条件,近80%的有机化合物属于挥发性低、易受热分解或者大分子化合物,适合于高效液相色谱分析,因此,HPLC 应用前景更为广阔。 在环境监测中,高翔液相色谱法已逐步上升为常用的监测方法,如检测多环芳烃类、酚类、多氯联苯、苯胺类、阴离子和非离子表面活性剂、有机农药除草剂等。随着经济的快速发展,人们在获取大量化学物质以满足经济、生产和生活需要的同时,也将一些典型的有毒有害的有机污染物带入环境,其中部分有机污染物已经直接或间接被证明具有致癌、致畸和致突变的作用,给人类健康和自然生态环境带来了严重、持久、潜在的危害。根据发达国家的经验和我国经济发展

伴随的污染现状,有毒有机污染物也必将成为我国环境监测的重要目标。 2、实验部分 2.1主要仪器 岛津公司生产的高效液相色谱仪(LC-20A),包括: (1)CBM-20A—系统控制器; (2)CTO-20A—色谱柱柱温箱; (3)LC-20A—溶液传输单元; (4)SPD-20A—紫外可见光检测器; (5)RF-20A—荧光检测器; (6)SIL-20A—自动进样器; (7)DGU-20A3R—在线脱气机 (8)数据处理:LC-LabSolutions工作站软件。 (9)色谱柱:Shim-pack column size serial NO.VP-ODS。 2.2液相色谱原理简介 液相色谱法是在高压条件下溶质在固定相和流动相之间进行的 一种连续多次交换的过程,它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同引起排阻作用的差别使不同溶质得以分离。 2.3建立实验方法 研究液相色谱测定苯系物的实验方法,结合查找的资料及实验验证,确定检测苯系物的实验方法如下: (1) 进样量:10微升;色谱柱:Shim-pack column size serial NO.VP-ODS 柱。

气相色谱法测定环境空气中的苯系物

气相色谱法测定环境空气中的苯系物 实验目的: 1.掌握气相色谱法原理及定性定量分析方法。 2.了解气相色谱仪的基本结构及操作步骤。 3.初步学会环境空气中苯系物的测定方法。 4.掌握色谱条件的选择原则。 5.了解气相色谱仪常见的检测器及检测原理。 6.了解气相色谱仪使用注意事项及实验安全常识。 实验原理: 1.气相色谱法原理。 气相色谱法是采用气体作为流动相的一种色谱方法,载气载着欲分离试样通过色谱柱中固定相,使试样中各组分分离,然后分别检测,其流程见图1。 图1 气相色谱仪结构 载气由高压钢瓶1提供,经减压阀2进入载气净化干燥管3,由针形阀控制载气的压力和流量,流量计5和压力表指示载气的柱前压力和流量。试样由进样器7进入并汽化,然后进入色谱柱8,各组分分离后依次进入检测器检测,然后经信号放大器10放大后由记录仪11记录。

气相色谱法的分离原理:利用待测物质在流动相(载气)和固定相两相间的分配有差异(即有不同的分配系数),当两相作相对运动时,这些组分在两相间的分配反复进行,从几千次到数百万次,即使组分的分配系数只有微小的差异,随着流动相的移动可以有明显的差距,最后使这些组分得到分离。 2.色谱条件的选择。 汽化室温度:通常选择比待测物质沸点高20—30℃。 色谱柱温度:通常选择比待测物质沸点低20—30℃。 检测器温度(FID):高于120℃。 载气流速:根据实验需要确定,载气流速越大出峰越快,但分离效果不好;流速越小,出峰越慢,但分离效果好。 3.气相色谱检测器。 (1)热导池检测器(TCD) 热导池检测器是基于不同的物质具有不同的热导系数。当电流通过钨丝时,钨丝被加热到一定温度,钨丝的电阻值也就增加到一定值。在未进试样时,通过热导池两个池孔的都是载气。由于载气的热传导作用,使钨丝的温度下降,电阻减小,此时热导他的两个池孔中钨丝温度下降和电阻减小的数值是相同的。在试样组分进入以后,载气流经参比池,而载气带着试样组分流经测量池,出于被测组分与载气组成的混合气体的热导系数和载气的热导系数不同。因而测量池中钨丝的散热情况就发生变化,使两个池孔巾的两根钨丝的电阻值之间有厂差异,此差异可以利用电桥测量出来。热导池检测器对所有物质都有响应,因此是应用最广、最成熟的一种检测器。 (2)氢火焰离子化检测器(FID) 氢火焰离子化检测器是利用高温的氢火焰将部分待测物质离子化,在电场的作用下形成电流,电流信号经放大器放大并被记录仪记录。氢火焰离子化检测器对含碳有机化合物有很高的灵敏度。一般比热导池检测器的灵敏度高几个数量级,故适宜于痕量有机物的分析。 (3)电子捕获检测器(ECD) 电子俘获检测器是应用广泛的一种具有选择性、高灵敏度的浓度型检测器。它的选择性是指它只对具有电负性的物质(如含有卤素、硫、磷、氮、氧的物质)

气相色谱法测定水中苯系物

龙源期刊网 https://www.doczj.com/doc/e16017020.html, 气相色谱法测定水中苯系物 作者:薛晓庆卢鹏宇 来源:《科学与财富》2015年第13期 摘要:具体分析了气相色谱法在饮用水中苯系物测定中的应用,介绍了毛细管气相色谱 法和填充柱气相色谱法两种测定水中苯系物的方法;实验结果表明,毛细管气相色谱法测定水中苯系物的灵敏度和精密度等是优于填充柱气相色谱法的,并具体分析了毛细管气相色谱法测定水中苯系物的优点。 关键词:苯系物;气相色谱法;毛细管柱;填充柱 引言 随着国民经济的高速发展,我国工业产业也有了突飞猛进的发展,然而在追求经济效益的同时也对环境带来了很多危害,其中苯系物是水资源中最重要的污染物之一。近年来,我国卫生部多次强调要保证居民饮水卫生、安全,环境监测中心站逐步加大了对饮用水中苯系物测定的研究。水中的苯系物主要是由于化工污染造成的,苯系物,尤其是二甲苯、甲苯、苯等是工业生产不可或缺的工业原料,化工厂排污不达标等因素都会导致当地地下水受到苯污染,使饮用水中苯系物超标,严重影响居民用水安全。因此,对于水中苯系物的监测是有重大意义的。以前国家环境监测分析方法多采用填充柱气相色谱法测定苯系物,但是经过多年实际应用发现,填充柱气相色谱存在分离能力差、柱效低等缺点,近年来逐步应用毛细管气相色谱法进行水中苯系物的测定,其具有柱效高、分离度好等优点。本文主要对两种测定方法进行对比研究。 1、气相色谱法测定水中苯系物的原理及方法 1.1测定原理 气相色谱法测定水中苯系物的原理是,二硫化碳可以将水中的苯系物萃取出来,如果有干扰物质,比如醇、酯、醚等,可以再用硫酸-磷酸混合酸进行二次处理除去干扰物质。最后用气相色谱仪氢火焰检测器进行测定,在监测过程中,出峰的顺序为:苯、甲苯、乙苯、对二甲苯、间二甲苯、邻二甲苯。采用相对保留时间进行定性,定量是采用外标法或者内标法(氯苯内标物)。 1.2测定方法 利用气相色谱法对水中苯系物进行测定,需要的实验仪器包括:HP6890 plus气相色谱仪,HP7683自动进样器,HP3398A化学工作站和配氢火焰检测器。主要实验试剂包括:甲苯、苯、乙苯、邻二甲苯、间二甲苯、对二甲苯标准溶液;苯系物混合标准样品和二硫化碳;

高效液相色谱法的应用

高效液相色谱法在药物分析中的应用与进展 摘要:主要介绍了高效液相色谱法在药物鉴别、药物杂质检查、药物含量测定等方面具体应用以及展望了高效液相色谱法在药物分析中的应用前景。 关键词:高效液相色谱法;HPLC;药物分析;联用技术 Abstract:Mainly introduced the high performance liquid chromatography in drug discrimination, drug impurity test, determination of the content and concrete application and the prospect of the high performance liquid chromatography in pharmaceutical analysis application prospect. Keywords: high performance liquid chromatography,HPLC ,pharmaceutical analysis,hyphenated techniques 引言: 高效液相色谱法(High Performance Liquid Chromatography \ HPLC)又称“高压液相色谱”、“高速液相色谱”、“高分离度液相色谱”、“近代柱色谱”等。高效液相色谱是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。HPLC在国内和国外的药物分析领域的应用范围很广,发展速度也很快,尤其在我国,近十几年来HPLC方法越来越受到重视。HPLC 在药物的分析中的应用主要是鉴别、有关物质的检查、有效成分及含量的测定[1];本文对高效液相色谱法(HPLC)技术在药物分析中的应用进行概述并展望其应用前景。 1 在药物分析中的应用 1.1 在药物鉴别中的应用 在HPLC 法中,药物组分的保留时间与其结构和性质有着直接的关系,不同的药物由于结构和性质的差异在色谱图上的出峰顺序不同,是定性的重要参数,

高效液相色谱法简介

高效液相色谱法简介 “色谱”一词是由俄国科学家斯威特提出的。色谱法是基于补充物质在相对运动物的两相之间分布时,物理或物理化学性质的微小的差异而使混合物相互分离的一类分离或分析方法。发展与上世纪初,飞速发展于五十年代,有超过30位科学家家因为它而获得诺贝尔奖,其有自己的理论和研究方法,同时也有众多的应用领域。 色谱法常见的方法有:柱色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。 柱色谱:柱色谱法是最原始的色谱方法,这种方法将固定相注入下端塞有棉花或滤纸的玻璃管中,将被样品饱和的固定相粉末摊铺在玻璃管顶端,以流动相洗脱。常见的洗脱方式有两种,一种是自上而下依靠溶剂本身的重力洗脱,一种是自下而上依靠毛细作用洗脱。收集分离后的纯净组分也有两种不同的方法,一种方法是在柱尾直接接受流出的溶液,另一种方法是烘干固定相后用机械方法分开各个色带,以合适的溶剂浸泡固定相提取组分分子。柱色谱法被广泛应用于混合物的分离,包括对有机合成产物、天然提取物以及生物大分子的分离。 薄层色谱:薄层色谱法是应用非常广泛的色谱方法,这种色谱方法将固定相图布在金属或玻璃薄板上形成薄层,用毛细管、钢笔或者其他工具将样品点染于薄板一端,之后将点样端浸入流动相中,依靠毛细作用令流动相溶剂沿薄板上行展开样品。薄层色谱法成本低廉操作简单,被用于对样品的粗测、对有机合成反应进程的检测等用途。

气相色谱:GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体流动相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。气相色谱被广泛应用于小分子量复杂组分物质的定量分析。 高效液相色谱:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9-107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。高效液相色谱(HPLC)是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效

气相色谱法测定苯系物..

气相色谱法测定苯系物 093858 张亚辉 气相色谱法测定苯系物 一.实验目的 1、掌握气相色谱保留值定性及归一化法定量的方法和特点; 2、熟悉气相色谱仪的使用,掌握微量注射器进样技术。 二.实验仪器与试剂 1.GC-2000型气相色谱仪,4台 2.医用注射器,1支 3.苯、甲苯、二甲苯混合物 三?实验原理 气相色谱法是以气体(载气)作为流动相的柱色谱分离技术,它主要是利用物质的极性或吸附性质的差异来实现混合物的分离,它分析的对象是气体和可挥发的物质。 顶空气相色谱法是通过测定样品上方气体成分来测定该组分在样品中的含量,常用于分析聚合物中的残留溶剂或单体、废水中的挥发性有机物、食品的气味性物质等等,其理论依据是在一定条件下气相和液相(固相)之间存在着分配平衡。顶空气相色谱分析过程包括三个过程:取样,进样,分析。根据取样方式的不同,可以把顶空气相色谱分为静态顶空气相色谱和动态顶空气相色谱。本实验采用静态顶空气相色谱法。 色谱定量分析,常用的方法有峰面积(峰高)百分比法、归一化法、内标法、外标法和标准加入法。本实验采用归一化法。归一化法要求所有组分均出峰,同时还要有所有组分的标准样品才能定量,公式如下:

f. * A X i ! - 100% ''A 1) 式中Xi代表待测样品中组分i的含量,Ai代表组分i的峰面积,fi代表组分i的校正因 子。 我们可以简单地认为各组分校正因子相同,则(1)因为所测样品为同系物, 式可化简为 A. x. — 100% .、A 载气携带被分析的气态混合物通过色谱柱时,各组分在气液两相间反复分 配,由于各组分的K值不同,先后流出色谱柱得到分离。 气相色谱的结构如下所述: (1)气路系统(Carrier gas supply) 气路系统:获得纯净、流速稳定的载气。包括压力计、流量计及气体净化装置。 载气:要求化学惰性,不与有关物质反应。载气的选择除了要求考虑对柱效的影响外,还要与分析对象和所用的检测器相配。 净化器:多为分子筛和活性碳管的串联,可除去水、氧气以及其它杂质。 (2)进样系统:进样器+气化室 液体进样器:不同规格的专用注射器,填充柱色谱常用10卩L;毛细管色谱常用1卩L ;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。 气体进样器:推拉式、旋转式(六通阀)。 气化室:将液体试样瞬间气化的装置。无催化作用。 (3)柱分离系统 填充柱:内径2~4 mm,长1~3m,内填固定相; 毛细管柱:内径0.1~0.5mm,长达几十至100m,涂壁固定液毛细管柱因渗透性好、传质快,因而分离效率高(n可106)、分析速度快、样品用量小。 柱温:是影响分离的最重要的因素。(选择柱温主要是考虑样品待测物沸点和对分离的要求。)柱温通常要等于或略低于样品的平均沸点(分析时间20-30min);对宽沸程的样品,应使用程序升温方法。 (4)检测系统 检测器是气相色谱仪的关键部件。实际应用中,通常采用热导检测器仃CD)、氢 火焰离子化检测器(FID)、电子捕获检测器(ECD)等,本实验选用热导检测器的结构,

气相色谱法测定苯系物 作业指导书

气相色谱法测定苯系物 作业指导书 (依据标准:GB/T14677-1993、 GB11890-89) 分析方法: GB14677-93 、GB11890-89 1概述 本方法选用SE-30毛细管柱,用二硫化碳萃取样品中的苯系物,用FID检测, 能同时检测样品中7种苯系物。 1.1分析对象、范围 本方法分析工业废水、地表水、废气中的苯系物,测定范围0.05mg/L~12mg/L 。 1.2 方法依据 本方法参照水质苯系物的测定,气相色谱法 GB11890-89 及<空气和废气监测分析方法>、EPA 8010法。 1.3检出限 水样测定检出限0.05mg/L,气样测定检出限0.004mg/m3~0.010mg/m3。 1.4存在和干扰 1.4.1二硫化碳中若有苯系物检出,应做硝化提纯处理; 1.4.2如萃取过程中产生乳化形象,可在分液漏斗中加入适量无水硫酸钠破乳; 1.4.3样品采集后应尽快分析,如不能及时分析,可在4℃冰箱内保存,不得超

过14天。 1.5仪器设备简介 GC-14A气相色谱仪,具FID检测器; 2.气样的前处理方法 用沙轮将采样管割开,采样管中的活性碳倒入具塞试管,加入2mL二硫化碳,振荡2min,放置20min,进样分析。 3样品净化 如水样中有悬浮物,样品应进行过滤。 4数据检测 4.1具体材料 4.1.1载气:氮气,纯度 99.9% ; 4.1.2燃气: 氢气; 4.1.3助燃气: 空气; 4.1.4 色谱柱 SE-30毛细管柱 4.2试剂 4.2.1二硫化碳 使用分析纯二硫化碳,如二硫化碳中有苯系物检出,应做硝化提纯处理,具体方法是:在1000mL吸滤瓶中加入200mL二硫化碳,加入50mL浓硫酸,置电磁搅拌器上,另取盛有50mL浓硝酸的分液漏斗置于吸滤瓶口,打开电磁搅拌器,抽真空升温至45℃,从分液漏斗向溶液中滴加硝酸,静止5min,如此交替进行30min,将溶液转移到500mL分液漏斗中,水洗。 4.2.2无水硫酸钠 350℃加热4小时,冷却后放在干燥器中保存。 4.3仪器操作条件 苯系物测定的仪器操作条件: 进样器温度: 120℃检测器温度:150℃柱温:65-150℃ 氮气流量:30mL/min 空气流量: 400mL/min 氢气流量:40mL/min 4.4样品分析

苯及苯系物

急性苯及苯系物中毒事件卫生应急处置技术方案 苯及其同系物(苯系物)统称为芳香烃。急性苯及苯系物中毒是短期内接触较大量苯或苯系物后引起的以中枢神经系统损害为主的全身性疾病。 1 概述 苯为具有特殊芳香味的无色透明油状液体,微溶于水,可与乙醇、乙醚、丙酮、汽油和二硫化碳等有机溶剂混溶。苯属中等毒类化合物,人在24000mg/m3浓度下接触30min有生命危险。甲苯、二甲苯、乙苯等苯系物大多为具有特殊芳香味的无色透明易挥发液体,难溶于水,可溶于醇、醚等有机溶剂,毒性大多为低毒(附件1)。 苯及苯系物可经过呼吸道、胃肠道和皮肤、黏膜进入体内,其中呼吸道吸收是群体性中毒事件的主要接触途径。接触苯及苯系物的常见机会有:作为稀释剂、萃取剂和溶剂,用于油漆、喷漆、油墨、树脂、人造革和粘胶等作业场所;苯及苯系物的生产和运输;作为化工原料,用于制造塑料、合成橡胶、合成纤维、香料、药物、农药、树脂等作业场所,等等。 2 中毒事件的调查和处理 2.1现场处置人员的个体防护 现场救援时首先要确保工作人员安全,同时要采取必要措施避免或减少公众健康受到进一步伤害。现场救援和调查工作要求必须2人以上协同进行,并配带通讯设备。进入苯及苯系物生产、储存等事故现场时,如现场有中毒死亡病人或空气苯浓度超过9800 mg/m3(甲苯浓度超过7700 mg/m3,二甲苯浓度超过4400mg/m3),必须穿戴A级防护服和自给式空气呼吸器(SCBA);如空气苯浓度在10mg/m3~9800mg/m3(甲苯浓度在100mg/m3~7700 mg/m3,二甲苯浓度在100mg/m3~

4400mg/m3),须选用可防含A类气体和至少P2级别颗粒物的全面型呼吸防护器(参见GB 2890-2009),并穿戴C级以上防护服、化学防护手套和化学防护靴;中毒事件现场已经开放通风,且空气苯浓度在50mg/m3以下,一般不需要穿戴个体防护装备。现场处置人员调查和处理经口中毒事件时,一般不必穿戴个体防护装备。 现场救援人员清洗大面积皮肤污染的苯及苯系物中毒病人时,应选用可防含A类气体和至少P2级别颗粒物的全面型呼吸防护器,并穿戴C级以上防护服、化学防护手套和化学防护靴。 医疗救护人员在现场救治点救治中毒病人时,一般不必穿戴个体防护装备。 2.2中毒事件的调查 调查人员应先了解中毒事件的概况,然后对事件相关场所和人员进行调查,并就事件现场控制措施(如关闭生产场所等)、救援人员的个体防护等向事件指挥部提出建议。 2.2.1中毒事件相关场所的调查 调查内容包括涉及生产工艺流程、环境状况、通风措施、防护条件、人员接触情况等,并尽早采集相关场所的空气样品,有条件可进行现场快速检测。 2.2.2中毒事件相关人员的调查 调查对象应包括中毒病人、目击证人以及其他相关人员(如生产人员、采购人员、运输人员以及医疗救援人员等)。调查内容包括接触时间、接触物质、接触人数、中毒人数、中毒的主要症状、中毒事故的进展情况、已经采取的紧急措施等。同时,向临床救治单位进一步了解相关资料(如抢救过程、临床治疗资料、实验室检查结果等)。 对现场调查的资料作好记录,进行现场拍照、录音等。取证材料要有被调查人的签字。

气质测定苯系物实验报告

气相色谱-质谱联用测定苯系物实验报告 一、实验目的 1.掌握气相色谱的基本原理。 2.掌握气相色谱仪组成结构及作用。 3.了解气相色谱-质谱联用法原理、特点和使用方法。 4.掌握气相色谱中质谱库定性的基本原理及外标定量方法和特点。 5.了解利用弱极性毛细管柱测定非/弱极性有机物的注意事项。 6.掌握吹扫捕集原理、使用特点、注意事项及其选择原则。 二、基本原理: 2.1 气相色谱工作原理 气相色谱是利用试样中各组份在气相和固定液液相间的分配系数不同,当汽化后的样品被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器,产生的离子流讯号经放大后,在记录器上描绘出各组份的色谱峰。 2.2 气相色谱仪的组成及作用 气相色谱的结构由以下几个系统组成:载气系统,进样系统,色谱柱,检测器,记录系统和温度控制系统。 (1) 载气系统:包括气源、气体净化、气体流速控制装置三部分,作用是提供稳定流量/压力的高纯载气。气源提供载气流动相,气体净化装置去除载气中的杂质和水汽,纯化载气,气体流速控制装置可控制载气的流量。 (2) 进样系统:包括注射器和进样口(隔垫、衬管),样品被注射器注入衬管后(液体样品将瞬间汽化),被载气带入色谱柱,分流功能也在进样口实现。 (3) 色谱柱:色谱柱是混合物样品中的各组分分离的场所,是气相色谱最重要的结构之一。色谱柱按照固定相是固体还是液体有填充柱和毛细管柱两种。 (4) 检测系统:获得与各组分含量呈比例的信号。 (5) 记录系统:包括放大器及记录仪,或数据处理装置及工作站,记录检测

顶空-气相色谱法测定土壤中的苯系物

顶空-气相色谱法测定土壤中的苯系物 发表时间:2017-09-20T16:14:24.060Z 来源:《防护工程》2017年第11期作者:谭富来[导读] 苯及其同系物是重要的化工原料,在工业上广泛使用并可以多种途径进入土壤。 佛山市中科院环境与安全检测认证中心有限公司广东佛山 528000 摘要:苯系物被广泛用于溶剂和基本化工原料,化工行业排放的苯系物造成土壤、河流、空气和地下水等有机污染,开展场地土壤中苯系物的监测工作意义重大。本文对顶空-气相色谱法测定焦化污染场地土壤中苯系物的方法进行了研究。 关键词:气相色谱;测定下限;组分含量 0 引言 苯及其同系物是重要的化工原料,在工业上广泛使用并可以多种途径进入土壤,污染环境,并对人体的血液、神经、生殖系统具有较强危害。因此,环境检测工作者需要选择科学有效的技术手段对场地土壤中苯系物的浓度进行监测。顶空-气相色谱法是目前测定焦化污染土壤中多种常见苯系物的分析方法中应用最为广泛的测定方法,其不仅简便、快捷,而且具有较好的精密度和准确度。 1 实验部分 1.1 仪器 顶空进样系统(AutoHS自动顶空进样器),GC(安捷伦科技有限公司7820A,FID),色谱柱(DB-WAX,30m×0.32mm×0.50μm)。 1.2 试剂 空白试剂水:二次蒸馏水或通过超纯水制备仪制备的无有机物水。甲醇(CH3OH),色谱纯。氯化钠(NaCl),优级纯,400℃下纯化4h。磷酸(H3PO4),优级纯。石英砂,分析纯,400℃下烘4h。 苯系物标准样品(9种):1000μg/mL,溶剂为甲醇。包括:苯、甲苯、乙苯、对-二甲苯、间-二甲苯、异丙苯、邻-二甲苯、正丙苯、苯乙烯,上海安谱实验科技股份有限公司生产。 苯系物标准使用液:将浓度为1000μg/mL的苯系物标准样品用甲醇稀释成浓度为10μg/mL的混合标准使用液。 饱和氯化钠溶液能有效提高溶液的离子强度,从而降低苯系物在水中的溶解度。故实验中全都选用饱和氯化钠溶液。 饱和氯化钠溶液的配制:用磷酸滴到500mL空白试剂水中,至pH≤2,再加入180g氯化钠,溶解混匀即可,用空白试验验证此溶液未被污染,在4℃下远离有机物环境中密封保存。 1.3 样品采样与保存 采样前使用便携式VOC测定仪对某焦化污染场地土壤中苯系物的浓度进行初步测定。经测定发现苯系物(异丙苯和正丙苯除外)含量大于500μg/kg,见图1。称取2g(精确至0.01g)样品置于顶空瓶(22mL)中,迅速向顶空瓶(22mL)中加入10.0mL甲醇,立即密封,在往复式振荡器上以150次/min的频率振荡10min。静置沉降后,用一次性巴斯德玻璃吸液管移取约1mL提取液至2mL棕色密实瓶中。该提取液可置于冷藏箱内4℃下保存,保存期为14d。 1-苯;2-甲苯;3-乙苯;4-对-二甲苯;5-间-二甲苯;6-异丙苯;7-邻-二甲苯;8-正丙苯;9-苯乙烯图1 9种苯系物标准(浓度为250μg/kg)色谱图与高浓度样品色谱图 对于异丙苯和正丙苯两组分的含量低于500μg/kg,直接称取2g(精确至0.01g)样品置于顶空瓶(22mL)中,迅速向顶空瓶(22mL)中加入10.0mL饱和氯化钠溶液,立即密封,在往复式振荡器上以150次/min的频率振荡10min,待测。 1.4 试验方法 1.4.1 顶空进样系统条件 顶空平衡温度为85℃,传输线温度110℃,进样针温度95℃。顶空瓶恒温时间50min,压力化平衡时间1min,进样时间0.2min,拨针时间0.4min。载气压力为15psi。 1.4.2 气相色谱条件 程序升温:40℃(保持6min)→5℃/min→110℃(保持0min)→10℃/min→200℃(保持3min);进样口温度:220℃;检测器温度:240℃;载气:氮气;柱流量:1.0mL/min;氢气流量:40mL/min;空气流量:400mL/min;进样方式:分流进样;分流比:10:1。 2 结果与讨论 2.1 校正曲线 参照仪器条件,建立浓度分别为10.0μg/kg、25.0μg/kg、50.0μg/kg、100μg/kg、250μg/kg和500μg/kg的初始校准曲线,测定结果见表1。结果表明9种苯系物的相关系数均大于0.999,线性良好。 2.2 方法检出限 根据《环境监测分析方法标准制订技术导则》HJ168-2010[5]规定,连续分析7个接近于检出限浓度(本实验选择加标浓度为10.0μg/kg)的实验室空白加标样品,计算其标准偏差S,按公式MDL=St(n-1,0.99)计算检出限。其中:t(n-1,0.99)是自由度为n-1,置信度为99%时的分布(单侧),自由度为n-1,n为重复分析的样品数。方法测定下限为4倍检出限。

苯系物测定方法

实验二居住区大气中苯、甲苯和二甲苯 卫生检验标准方法气相色谱法GB 11737—89 一、实验前取样标准方法: 1.选点要求 1.1采样点的数量:采样点的数量根据监测室面积大小和现场情况而确定,以期能正确反映室空气污染物的水平。原则上小于50m3的房间应设(1~3)个点; 50m3~100m3设(3~5)个点;100m3以上至少设5个点。在对角线上或梅花式均匀分布。 1.2采样点应避开通风口,离墙壁距离应大于0.5m。 1.3采样点的高度:原则上与人的呼吸带高度相一致。相对高度0.5~1.5之间。 2.采样时间和频率 年平均浓度至少采样3个月,日平均浓度至少采样18h,8 h平均浓度至少采样6 h,1 h平均浓度至少采样45min,采样时间应函盖通风最差的时间段。 3.采样方法和采样仪器 根据污染物在室空气中存在状态,选用合适的采样方法和仪器,用于室的采样器的噪声应小于50 dB(A)。具体采样方法应按各个污染物检验方法中规定的方法和操作步骤进行。 3.1筛选法采样:采样前关闭门窗12 h,采样时关闭门窗,至少采样45min. 3.2累积法采样:当采用筛选法采样达不到本标准要求时,必须采用累积法(按年平均、日平均、8 h平均值)的要求采样。 4.质量保证措施 4.1气密性检查:有动力采样器在采样前应对采样系统气密性进行检査,不得漏气。 42流暈校准:采样系统流量要能保持恒定,采样前和采样后要用一级皂膜计校准采样系统进气流量,误差不超过5%。

采样器流量校准:在采样器正常使用状态下,用一级皂膜计校准采样器流量计的刻度,校准5个点,绘制流量标准曲线。记录校准时的大气压力和温度。 4.3空白检验:在一批现场采样中,应留有两个采样管不采样,并按其他样品管一样对待,作为采样过程中空白检验,若空白检验超过控制围,则这批样品作废。 44仪器使用前,应按仪器说明书对仪器进行检验和标定。 4.5在计算浓度时应用下式将采样体积换算成标准状态下的体积: V0=V*(T0/T)*(P/P0) 式中: V。——换算成标准状态下的采样体积,L; V 一采样体积L; T0——标准状态的绝对温度,273K T一一采样时采样点现场的温度(t)与标准状态的绝对温度之和,(t + 273)K P0一-标准状态下的大气压力,101.3 KPa P一一采样时采样点的大气压力,KPa 4.6每次平行采样,测定之差与平均值比较的相对偏差不超过20% 。 5.记录 采样时要对现场情况、各种污染源、采样日期、时间、地点、数量、布点方式、大气压力、气温、相对湿度、空气流速以及采样者签字等做出详细记录,随样品一同报到实验室。 检验时应对检验日期、实验室、仪器和编号、分析方法、检验依据、实验条件、原始数据、测试人、校核人等做出详细记录。 6.测试结果和评价 测试结果以平均值表示,化学性、生物性和放射性指标平均值符合标准值要求时,为符合本标准。如有一项检验结果未达到本标准要求时,为不符合本标准。要求年平均、日平均、8 h平均值的参数,可以先做筛选采样检验。若检验结果符合标准值要求,为符合本标准。若筛选釆样检验结果不符合标准值要求,必须按年平均、日平均、8 h平均值的要求,用累积采样检验结果评价。

气相色谱法测定苯系物..

093858 张亚辉 气相色谱法测定苯系物 一. 实验目的 1、掌握气相色谱保留值定性及归一化法定量的方法和特点; 2、熟悉气相色谱仪的使用,掌握微量注射器进样技术。 二. 实验仪器与试剂 1. GC-2000型气相色谱仪,4台 2. 医用注射器,1支 3. 苯、甲苯、二甲苯混合物 三.实验原理 气相色谱法是以气体(载气)作为流动相的柱色谱分离技术,它主要是利用物质的极性或吸附性质的差异来实现混合物的分离,它分析的对象是气体和可挥发的物质。 顶空气相色谱法是通过测定样品上方气体成分来测定该组分在样品中的含量,常用于分析聚合物中的残留溶剂或单体、废水中的挥发性有机物、食品的气味性物质等等,其理论依据是在一定条件下气相和液相(固相)之间存在着分配平衡。顶空气相色谱分析过程包括三个过程:取样,进样,分析。根据取样方式的不同,可以把顶空气相色谱分为静态顶空气相色谱和动态顶空气相色谱。本实验采用静态顶空气相色谱法。 色谱定量分析,常用的方法有峰面积(峰高)百分比法、归一化法、内标法、外标法和标准加入法。本实验采用归一化法。归一化法要求所有组分均出峰,同时还要有所有组分的标准样品才能定量,公式如下: (1) 式中x i 代表待测样品中组分i 的含量,Ai 代表组分i 的峰面积,fi 代表组分i 的校正因子。 因为所测样品为同系物,我们可以简单地认为各组分校正因子相同,则(1)式可化简为 %100??= ∑i i i i i A f A f x % 100?=∑i i i A A x

载气携带被分析的气态混合物通过色谱柱时,各组分在气液两相间反复分配,由于各组分的K值不同,先后流出色谱柱得到分离。 气相色谱的结构如下所述: (1)气路系统(Carrier gas supply) 气路系统:获得纯净、流速稳定的载气。包括压力计、流量计及气体净化装置。 载气:要求化学惰性,不与有关物质反应。载气的选择除了要求考虑对柱效的影响外,还要与分析对象和所用的检测器相配。 净化器:多为分子筛和活性碳管的串联,可除去水、氧气以及其它杂质。(2)进样系统:进样器+气化室 液体进样器:不同规格的专用注射器,填充柱色谱常用10μL;毛细管色谱常用1μL;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。 气体进样器:推拉式、旋转式(六通阀)。 气化室:将液体试样瞬间气化的装置。无催化作用。 (3)柱分离系统 填充柱:内径2~4 mm,长1~3m,内填固定相; 毛细管柱:内径0.1~0.5mm,长达几十至100m,涂壁固定液毛细管柱因渗透性好、传质快,因而分离效率高(n可106)、分析速度快、样品用量小。 柱温:是影响分离的最重要的因素。(选择柱温主要是考虑样品待测物沸点和对分离的要求。)柱温通常要等于或略低于样品的平均沸点(分析时间20-30min);对宽沸程的样品,应使用程序升温方法。 (4)检测系统 检测器是气相色谱仪的关键部件。实际应用中,通常采用热导检测器(TCD)、氢火焰离子化检测器(FID)、电子捕获检测器(ECD)等,本实验选用热导检测器的结构,主要根据不同的气体有不同的热导系数,对待侧物进行检测。热导检测器包括:池体(一般用不锈钢制成);热敏元件:电阻率高、电阻温度系数大、且价廉易加工的钨丝制成;参考臂:仅允许纯载气通过,通常连接在进样装置之前;测量臂:需要携带被分离组分的载气流过,则连接在紧靠近分离柱出口处。四、实验条件 色谱柱:长2m,102白色担体60~80目,涂渍角鲨烷或PEG为固定液,液担比为5﹕100 柱温:80,气化室温度:100,检测器温度120,载气:氢气 五、实验内容 (1)配制苯、甲苯、二甲苯标准混合液(各取1,5,5)取1μL,测谱图,归一

高效液相色谱法的分类及原理

高效液相色谱法地分类及其分离原理 高效液相色谱法分为:液固色谱法、液液色谱法、离子交换色谱法、凝胶色谱法. .液固色谱法(液固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上地吸附作用不同来进行分配地. ①液固色谱法地作用机制 吸附剂:一些多孔地固体颗粒物质,其表面常存在分散地吸附中心点. 流动相中地溶质分子(液相)被流动相带入色谱柱后,在随载液流动地过程中,发生如下交换反应: (液相)(吸附)<>(吸附)(液相) 其作用机制是溶质分子(液相)和溶剂分子(液相)对吸附剂活性表面地竞争吸附. 吸附反应地平衡常数为: 值较小:溶剂分子吸附力很强,被吸附地溶质分子很少,先流出色谱柱. 值较大:表示该组分分子地吸附能力较强,后流出色谱柱. 发生在吸附剂表面上地吸附解吸平衡,就是液固色谱分离地基础.资料个人收集整理,勿做商业用途 ②液固色谱法地吸附剂和流动相 常用地液固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等. 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间地作用力很弱,分配比较小,保留时间较短;但极性分子与极性吸附剂之间地作用力很强,分配比大,保留时间长.资料个人收集整理,勿做商业用途 对流动相地基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样地检测 常用地流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等. ③液固色谱法地应用 常用于分离极性不同地化合物、含有不同类型或不;数量官能团地有机化合物,以及有机化合物地不同地异构体;但液固色谱法不宜用于分离同系物,因为液固色谱对不同相对分子质量地同系物选择性不高.资料个人收集整理,勿做商业用途 .液液色谱法(液液分配色谱法) 将液体固定液涂渍在担体上作为固定相. ①液液色谱法地作用机制 溶质在两相间进行分配时,在固定液中溶解度较小地组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大地组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离地目地.资料个人收集整理,勿做商业用途 液液色谱法与液液萃取法地基本原理相同,均服从分配定律:固液 值大地组分,保留时间长,后流出色谱柱. ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相. 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相.

仪器分析技能总结与综合

分析技能总结与综合 本学期我们学仪器分析课程的同时做了本课程的实验。理论可以指导实验,通过实验可以验证和发展理论。对于大多数同学来说,将来并不从事分析仪器制造或者仪器分析研究,而是将仪器分析作为科学实验的手段,利用它来获取所需要的 信息。 仪器分析实验的目的是让学生以分析仪器为工具,亲自动手去获得需要的信息,是学生走向未来社会独立进行科学实践的预演。本次实验课程收获很多。 仪器分析是以测量物质的某些物理和化学性质的参数来确定其化学组成,含量或结构的分析方法。在最终测量过程中,利用物质的这些性质获得定性,定量,结构以及解决实际问题的信息。 仪器分析的分类 一,电化学分析法建立在溶液电化学性质基础上的一类分析方法,包括电位分析法,库仑分析法,电重量分析法,伏安法和极谱分析法以及电导分析法。 二,色谱法利用混合物中各组分不同的物理和化学性质来达到分离的目的。分离后的组分可进行定性和定量分析,有时分离和测定同时进行,有时先分离后测定。包括气相色谱法和液相色谱法等。 色谱的定性分析-确定各色谱峰所代表的化合物。 各种物质在一定的色谱条件下均有确定的保留值,故保留值可作为一种定性指标(目前各种色谱定性方法的依据)。不同物质在同一色谱条件下,可能具有相似或相同的保留值,即保留值并非专属。仅根据保留值对一个完全未知的样品定性是困难的。如果在了解样品的来源、性质、分析目的的基础上,对样品组成作初步的判断,再结合下列的方法则可确定色谱峰所代表的化合物。 色谱定性和定量分析 利用保留值定性(最常用、最简单)

1.利用纯物质定性相同条件下,通过对比试样中具有与纯物质相同保留值的色谱峰,确定试样中是否含有该物质。该法不适用于不同仪器上获得的数据之间的对比。 2.利用加入法定性作出未知样品的色谱图,然后在未知样品加入某已知物,又得到一个色谱图。峰高增加的组分即可能为这种已知物。 色谱图的意义 ①根据色谱峰的个数,可以判断样品中所含组分的最少个数是样品中所含组分的最少个数; ②色谱峰的保留值,色谱定性分析的依据; ③色谱峰下的面积或峰高,色谱定量分析的依据; ④色谱峰的保留值及其区域宽度,评价色谱柱分离效能的依据; ⑤色谱峰两峰之间的距离,评价固定相(或流动相)选择是否合适的依据。 三,光学分析法建立在物质与电磁辐射互相作用基础上的一类分析法,包括原子发射光谱法,原子吸收光谱法,紫外—可见吸收光谱法,红外吸收光谱法,核磁共振谱法,分光和荧光光度法和X射线衍射法等。 我们本学期一共做了十二个分析试验,分别是一下十二个 (1)核磁共振波谱法研究乙酰丙酮的互变异构现象 核磁共振属于光学分析法。核磁共振波谱是以电磁波作用于磁场中的原子核时,原子核产生自旋跃迁所得的吸收波谱。由于各原子核所处的化学环境不同,使不同的有机化合物呈现不同的核磁共振谱,因此可以用核磁共振谱法测定和确证有机化合物的结构,检验化合物的纯度和进行混合物的分析。 为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。当外加射频场的频率与原子核自旋进动的频率相同的时候,即入射光子的频率与Larmor频率γ相符时,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号。 核磁共振的条件之一是外磁场中存在着具有磁矩的原子核。本实验是利用核磁

气相色谱法分析苯系物

实验一气相色谱法分析苯系物 一、实验目的: 1.掌握气相色谱法的基本原理和定性、定量方法。 2.学习纯物质对照法定性和归一化法定量的分析方法。 3.了解气相色谱的仪器组成、工作原理以及数据采集、数据分析的基本操作。 二、实验原理: 气相色谱方法是利用试样中各组份在气相和固定液相间的分配系数不同将混合物分离、测定的仪器分析方法,特别适用于分析含量少的气体和易挥发的液体。当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按流出顺序离开色谱柱进入检测器,被检测,在记录器上绘制出各组份的色谱峰——流出曲线。在色谱条件一定时,任何一种物质都有确定的保留参数,如保留时间、保留体积及相对保留值等。因此,在相同的色谱操作条件下,通过比较已知纯物质和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。测量峰高或峰面积,采用外标法、内标法或归一化法,可确定待测组分的质量分数。 1.典型气相色谱仪由以下五大系统组成: A. 载气系统:包括气源、净化干燥管和载气流速控制; 常用的载气有:氢气、氮气、氦气; 净化干燥管:去除载气中的水、有机物等杂质(依次通过分子筛、活性炭等); 载气流速控制:压力表、流量计、针形稳压阀,控制载气流速恒定。 B. 进样装置:进样器+气化室; 气体进样器(六通阀):推拉式和旋转式两种。 试样首先充满定量管,切入后,载气携带定量管中的试样气体进入分离柱; 液体进样器:不同规格的专用注射器,填充柱色谱常用10μL;毛细管色谱常用1μL; 气化室:将液体试样瞬间气化的装置。 C. 色谱柱(分离柱):色谱仪的核心部件。分为填充柱和毛细管柱。 D. 检测系统:色谱仪的眼睛,常用的检测器:热导检测器、氢火焰离子化检测器; E. 温度控制系统:温度是色谱分离条件的重要选择参数; 气化室、分离室、检测器三部分在色谱仪操作时均需控制温度; 气化室:保证液体试样瞬间气化; 分离室:准确控制分离需要的温度。当试样复杂时,分离室温度需要按一定程序控制温度变化,各组分在最佳温度下分离; 检测器:保证被分离后的组分通过时不在此冷凝。

相关主题
文本预览
相关文档 最新文档