当前位置:文档之家› 与国外高温合金铸造高温合金和耐蚀合金牌近似对照修订稿

与国外高温合金铸造高温合金和耐蚀合金牌近似对照修订稿

与国外高温合金铸造高温合金和耐蚀合金牌近似对照修订稿
与国外高温合金铸造高温合金和耐蚀合金牌近似对照修订稿

与国外高温合金铸造高温合金和耐蚀合金牌近

似对照

公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

高温合金成型方法

高温合金成型方法:熔模精密铸造,铸锭冶金(包括挤压、轧制、锻造等)粉末冶金,定向凝固。 高温合金的几种成型方法的工艺路线 粉末冶金 高温合金如TiAl基合金的室温塑性较差,用常规塑性变形的方法加工极为困难。粉末冶金法可以很好的解决这一问题。这种方法以合金或单质粉末为原材料,通常先采用常规塑性加工方法(如模压、冷等静压等)对粉末进行固结成形,在经烧结就可直接获得特定形状的零件,同时实现制件的近终成型,这样就避免了对TiAl基合金的后续加工。同时,相比于铸造合金,采用粉末冶金法所制得的材料组织更为均匀、细小。 目前基于高温合金粉末冶金的具体方法主要有:机械合金化、反应烧结、预合金粉末法、自蔓燃—高温合成、爆炸合成等。这些方法常常两种或多种方法结合在一起使用,难以严格区分。 但是,粉末冶金方法制得的TiAl基合金部通常含有较多的杂质含量(如氧、氮等),并且粉末冶金制得合金组织不致密,内部经常存在孔隙,这些都严重的限制了粉末冶金方法的应用及推广。部分学者采用热锻以及包套挤压方法在一定程度上减少了孔隙率,较大的提高了TiAl基合金的力学性能。在但由于Ti、Al 元素扩散系数差别太大,元素反应扩散距离大,以及柯肯达尔效应的影响,均匀、高致密度的TiAl基合金仍然比较难以获得。因此,在高纯粉末的制备、烧结工艺

的优化、杂质的控制、提高合金的致密度等方面,粉末冶金还有较长的路要走。 铸锭冶金 铸锭冶金是合金熔炼、铸造、锻造和轧制等技术的综合,是目前TiAl 基合金的典型加工工艺。 一般由铸造出来的铸锭,组织都比较粗大,成分由于偏析的存在而不均匀,并且内部也或多或少的存在缩松、缩孔等缺陷。铸锭在进行塑性加工之前,一般要对其进行热等静压,实现对铸锭的均匀化处理。这样可以一定程度上除合金成分的偏析,同时合金铸锭中的微观缩孔或孔洞也能被压实、焊合,这就可以防止铸锭在后续热加工过程中由于微观缩孔与孔洞引起的应力集中或合金的不均匀流变造成的铸锭的变形开裂。对Al>46%(原子)的合金热等静压多选择在1260℃/175MPa 进行。 通过对铸锭的进行热加工,可以破碎粗大的铸态组织,细化晶粒,进一步减小微观缩孔或孔洞的影响,较大幅度的提高TiAl 基合金的力学性能。通常使用的热加工工艺主要有等温锻造、包套锻造、热轧制或热挤压等。 等温锻造区间一般为1065~1175℃,名义应变速率在10-2~10-3/s之间,压缩比为4:1~6:1;在这种工艺条件可保证铸锭有良好的塑性同时又不开裂,所获得的组织中有超过50%的板条组织球化。在锻造过程中增大保压时间、将锻件在锻模内短暂停留或在两步锻造中间进行热处理都可以促进球化。从而细化组织,提高材料的力学性能。 包套锻造可以在锻坯外设置包套,在锻坯与包套材料之间采用隔热材料,使锻件在的一定范围内保持均匀的温度,从而得到细小、均匀的显微组织及良好的锻坯表面质量。包套材料一般采用不锈钢、TC4合金或工业纯钛,目前最好的隔热材料是SiO2纤维网[38]。包套技术与挤压技术结合起来,形成了包套挤压技术,这种技术也能极大程度的优化TiAl 基合金的组织和性能。 目前比较热门的方向是综合利用铸锭冶金的方法,采用轧制的方法制备TiAl 基合金板材,哈尔滨工业大学陈玉勇教授带领的课题组在这方面做了许多功能工作,取得了较大的成果。 离心铸造 离心铸造是指将液态金属浇入旋转的铸型中,使金属液在离心力作用下完成充填和凝固成型的一种铸造方法。为了实现这种工艺过程,必须采用专门的设备—离心铸造机(简称为离心机),提供使铸型旋转的条件。根据铸型旋转轴在空间位置的不同,常用的离心机分为立式离心铸造机和卧式离心铸造机两种。立式离心铸造的铸型是绕垂直轴旋转的,卧式离心铸造机的铸型是绕水平轴旋转的。 离心铸造可采用多种的铸型,如金属型、砂型、石膏型、石墨型陶瓷型及熔

高温合金概述

1.1 高温合金 1.1.1 高温合金及其发展概况 高温合金是指以铁、钴、镍为基体,能在600℃以上温度,一定应力条件下适应不同环境短时或长时使用的金属材料。具有较高的高温强度、塑性,良好的抗氧化、抗热腐蚀性能,良好的热疲劳性能,断裂韧性,良好的组织稳定性和使用可靠性。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用的可靠性,基于上述性能特点,且高温合金的合金化程度很高,故在英美称之为超合金(Superalloy)。 高温合金于20世纪40年代问世,最初就是为满足喷气发动机对材料的耐高温和高强度要求而研制的,高温合金的发展与航空发动机的进步密切相关,1939年英国Mond镍公司首先研究出Nimonic75,随后又研究出Nimonic80合金,并在1942年成功用作涡轮气发动机的叶片材料,此后该公司又在合金中加入硼、锆、钴、钼等合金元素,相继开发成功Nimonic80A、Nimonic90等合金,形成Nimonic合金系列。如今先进航空发动机中高温合金用量已超过50%。此外,在航天、核工程、能源动力、交通运输、石油化工、冶金等领域得到广泛的应用。高温合金在满足不同使用条件中得到发展,形成各种系列的合金,除传统的高温合金外,还开发出一批高温耐磨、高温耐蚀的合金。 高温合金是航空发动机、火箭发动机、燃气轮机等高温热端部件的不可代替的材料,由于其用途的重要性,对材料的质量控制与检测非常严格。高温合金的基本用途仍旧是飞行器的燃气轮发动机的高温部分,它要占先进的发动机重量的50%以上。然而,这些材料在高温下极好的性能已使其用途远远超出了这一行业。除了航空部件之外,规定将这些合金用于舰船、工业、陆地发电站以及汽车用途的涡轮发动机上。具体的发动机部件包括涡轮盘、叶片、压缩机轮、轴、燃烧室、后燃烧部件以及发动机螺栓。除了燃气发动机行业之外,高温合金还被选择用于火箭发动机、宇宙、石油化工、能源生产、内燃烧发动机、金属成形(热加工工模具)、热处理设备、核电反应堆和煤转换装置。

incoloy825高温耐蚀合金 N08825

Incoloy825高温耐蚀合金 Incoloy825特性及应用领域概述: 该合金是一种通用的工程合金,在氧化和还原环境下都具有抗酸和碱金属腐蚀性能高镍成分使合金具有有效的抗应力腐蚀开裂性。在各种介质中的耐腐蚀性都很好,如硫酸、磷酸、硝酸和有机酸,碱金属如氢氧化钠、氢氧化钾和盐酸溶液。合金的综合性能表现在腐蚀介质多样的核燃烧溶解器中,如硫酸、硝酸和氢氧化钠都在同一个设备中处理。应用于各种使用温度不超过550℃的工业领域,如:硫酸酸洗工厂用的加热管、容器、筐及链等、海水冷却热交换器、海洋产品管道系统、酸性气体环境管道、磷酸生产中的热交换器、蒸发器、洗涤、浸渍管等、石油精炼中的空气热交换器、食品工程、化工流程、高压氧气应用的阻燃合金等。 Incoloy825相近牌号: NS142、NO8825、NC21FeDu、W.Nr.2.4858 、NiCr21Mo、 NA16 Incoloy825 化学成分: Incoloy825物理性能: Incoloy825力学性能:(在20℃检测机械性能的最小值)

Incoloy825生产执行标准: Incoloy825 金相组织结构: 该合金具有稳定的面心立方结构。化学成分和恰当的热处理保证了耐腐蚀性不受敏化性的削弱。 Incoloy825工艺性能与要求: 1、合金加热环境含有硫、磷、铅或其他低熔点金属,合金将变脆。杂质来源于做标记的油漆、粉笔、润滑油、水、燃料等。燃料的硫含量要低,如液化气和天然气的杂质含量要低于0.1%,城市煤气的硫含量要低于0.25g/m3,石油气的硫含量低于0.5%是理想的。 2、合金合适的热加工温度为1150-900℃,冷却方式可以是水淬或快速空冷。 3、采用钨电极惰性气体保护焊、等离子弧焊、手工亚弧焊、金属极惰性气体保护焊、熔化极惰性气体保护焊,其中脉冲电弧焊是首选方案。 Incoloy825主要规格: Incoloy825无缝管、Incoloy825钢板、Incoloy825圆钢、Incoloy825锻件、Incoloy825法兰、Incoloy825圆环、Incoloy825焊管、Incoloy825钢带、Incoloy825直条、Incoloy825丝材及配套焊材、Incoloy825圆饼、 Incoloy825扁钢、Incoloy825六角棒、Incoloy825大小头、Incoloy825弯头、Incoloy825三通、Incoloy825加工件、Incoloy825螺栓螺母、 Incoloy825紧固件。

铸造高温合金发展的回顾与展望

第20卷 第1期2000年3月 航 空 材 料 学 报 JOURNAL OF AERONAUT ICAL M ATERIALS Vol.20,No.1 M arch2000 铸造高温合金发展的回顾与展望 陈荣章1 王罗宝1 李建华2 (1.北京航空材料研究院,北京100095; 2.中国人民大学,北京100872) 摘要:回顾了20世纪40年代以来铸造高温合金发展中的若干重大事件:叶片以铸代锻;真空 熔炼技术;定向凝固及单晶合金;合金成分设计;Ni3Al基铸造高温合金;合金凝固过程数值 模拟;细晶铸造。展望了铸造高温合金21世纪的发展:单晶高温合金仍然是最重要的涡轮叶 片材料;继续靠工艺的发展挖掘合金潜力;发展有希望的替代材料。 关键词:合金发展;铸造高温合金;燃气涡轮叶片 中图分类号:T G24 文献标识码:A 文章编号:1005 5053(2000)01 0055 07 自从20世纪40年代初期第一台航空喷气发动机采用第一个铸造涡轮工作叶片以来,铸造高温合金的发展经历了一段曲折而又辉煌的历程。众所周知,航空发动机的发展与高温合金的发展是齐头并进、密不可分的,前者是后者的主要动力,后者是前者的重要保证。占据着航空发动机中温度最高、应力最复杂的位置的铸造涡轮叶片的合金发展尤其是这样。半个世纪以来,航空发动机涡轮前温度从40年代的730 提高到90年代的1677 ,推重比从大约3提高到10[1],这一巨大进展固然离不开先进的设计思想、精湛的制造工艺以及有效的防护涂层,但是,高性能的铸造高压涡轮叶片合金的应用更是功不可没。40年代以来,标志着铸造高温合金性能水平的在140M Pa/100h条件下的承温能力从750 左右提高到当前的1200 左右(图1),是十分令人鼓舞的巨大成就。在这世纪之初回顾铸造高温合金发展的历程,不能不提到如下几件使人难忘的重大事件。 叶片以铸代锻 1943年,美国GE公司为其J 33航空发动机选用了钴基合金H S 21制作涡轮工作叶片,代替原先用的锻造高温合金H astelloy B。当时为了考核铸造高温合金作为转动件的可靠性,宇航局(NASA)有关部门曾对两种合金叶片同时进行台架试车鉴定。结果表明, HS 21完全可以代替H astelloy B制作涡轮转子叶片,从此开创了使用铸造高温合金工作叶片的历史[2,3]。之后,又谨慎地对X 40,GM R 235等铸造合金进行类似的考核研究,使铸造叶片的应用有所扩大。随着发动机推力的增大,叶片尺寸增大,当时发现叶片的主要失效模式从蠕变断裂转变为疲劳断裂,而铸造叶片由于晶粒粗大且不均匀,疲劳性能远低于锻造合金,加之当时出现了性能较高的沉淀硬化型镍基锻造高温合金,例如Nimonic80A, Udimet500,W aspaloy, 437 , 617等,而且锻造技术有所进步,这就使设计师又把叶片选 收稿日期:1999 09 20 作者简介:陈荣章(1937 ),男,研究员

Incoloy MA956铸造高温合金

上海商虎/张工:158 –0185 -9914 Incoloy MA956 铸造高温合金是指可以或只能用铸造方法成型零件的一类高温合金。 Incoloy MA956化学成分: 碳C: — 硅Si: — 锰Mn: — 铬Cr: 20 镍Ni: — 钼Mo: — 钴Co: — 钨W: — 铝Al: 4.5 铜Cu: — 钛Ti: 0.5 铁Fe: 74.4 其他(%): Y2O3 0.5 现在已完成商业化生产的主要有三种ODS合金: MA956合金在氧化气氛下运用温度可达1350℃,居高温合金抗氧化、抗碳、硫腐蚀之首位。可用于航空发动机燃烧室内衬。 MA754合金在氧化气氛下运用温度可达1250℃并坚持相当高的高温强度、耐中碱玻璃腐蚀。现已用于制造航空发动机导向器蓖齿环和导向叶片。 MA6000合金在1100℃拉伸强度为222MPa、屈从强度为192MPa;1100℃,1000小时持久强度为127MPa,居高温合金之首位,可用于航空发动机叶片。金属间化合物高温资料是近期研讨开发的一类有重要使用前景的、轻比重高温资料。十几年来,对金属间化合物的基础性研讨、合金设计、工艺流程的开发以及使用研讨现已老练,尤其在 Ti-Al、Ni-Al和Fe-Al系资料的制备加工技能、韧化和强化、力学功能以及使用研讨方面取得了令人瞩目的成果。 Ti3Al基合金(TAC-1),TiAl基合金(TAC-2)以及Ti2AlNb基合金具有低密度(3.8~ 5.8g/cm3)、高温高强度、高钢度以及优异的抗氧化、抗蠕变等长处,可以使结构件减重35~50%。Ni3Al基合金,MX-246具有很好的耐腐蚀、耐磨损和耐气蚀功能,展示出极好的使用前景。Fe3Al基合金具有良好的抗氧化耐磨蚀功能,在中温(小于600℃)有较高强度,成本低,是一种可以部分取代不锈钢的新资料。在民用工业的很多领域,服役的构件资料都处于高温的腐蚀环境中。为满意市场需要,依据资料的运用环境,归类出系列高温合金。 1、高温合金母合金系列 2、抗腐蚀高温合金板、棒、丝、带、管及锻件 3、高强度、耐腐蚀高温合金棒材、弹簧丝、焊丝、板、带材、锻件

中外常用钢材料牌号对照表

常用国内外钢材牌号对照表 中国 美国 日本 德国 英国 法国 前苏联 国际标准化组织 GB AST JIS DIN 、DINEN BS 、BSEN NF 、NFEN ΓOCT ISO 630 品 名 牌号 牌号 牌号 牌号 牌号 牌号 牌号 Q195 Cr.B Cr.C SS330 SPHC SPHD S185 040 A10 S185 S185 CT1K П CTlC П CTl ПC Q215A Cr.C Cr.58 SS 330 SPHC 040 A12 CT2K П—2 CT2C П—2 CT2ПC —2 Q235A Cr.D SS400 SM400A 080A15 CT3K П—2 CT3C П—2 CT3ПC —2 E235B Q235B Cr.D SS400 SM400A S235JR S235JRGl S235JRG2 S235JR S235JRGl S235JRG2 S235JR S235JRGl S235JRG2 CT3K П—3 CT3C П—3 CT3ПC —3 E235B Q255A SS400 SM400A CT4K П—2 CT4C П—2 CT4ПC —2 普 通 碳 素 结 构 钢 Q275 SS490 CT5C П—2 CT5ПC —2 E275A

中国 美国 日本 德国 英国 法国 前苏联 国际标准化组织 GB AST JIS DIN 、DINEN BS 、BSEN NF 、NFEN ΓOCT IS0 630 品 名 牌号 牌号 牌号 牌号 牌号 牌号 牌号 08F 1008 1010 SPHD SPHE 040A10 80K П 10 1010 S10C S12C CKl0 040A12 XCl0 10 C101 15 1015 S15C S17C CKl5 Fe360B 08M15 XCl2 Fe306B 15 C15E4 20 1020 S20C S22C C22 IC22 C22 20 25 1025 S25C S28C C25 IC25 C25 25 C25E4 40 1040 S40C S43C C40 IC40 080M40 C40 40 C40E4 45 1045 S45C S48C C45 IC45 080A47 C45 45 C45E4 50 1050 S50C S53C C50 IC50 080M50 C50 50 C50E4 优 质 碳 素 结 构 钢 15Mn 1019 080A15 15r

NS311(H03110)耐高温耐腐蚀合金

NS311(H03110)耐高温耐腐蚀合金 【供应品种】NS311圆棒、NS311无缝管、NS311板材、NS311带材、NS311管材 【冶韩实业(上海)有限公司周先生、郭女士、康女士、郑先生】 技术顾问:周工/TEL:①③⑧①⑥①⑥⑥③④③ NS311(H03110)耐蚀合金 NS311化学成分 NS311产品NS311标准NS311性能 NS311主要特性NS311用途举例 抗氧化性介质及含氟离子高温硝酸腐蚀,无磁性。 用于高温硝酸环境及强腐蚀条件下工作的无磁构件。 NS311化学成分作用分析: 1.铬(Cr):在结构钢和中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 2.镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 3.钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 4.钛(Ti):钛是钢中强脱氧剂。它能使钢的内部zuzh致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。 NS311化学成分检测方法: NS311光谱分析仪——优点是一次可以分析多种元素,精度较高。缺点是价格太高。 NS311分光光度计——优点是检测波长选择方便,价格不高。缺点是检测结果不能直接显示;没有曲线建立调用功能,检测不同元素每次要重新定标;比色皿放入和倒出液体不方便;对操作人员的化学分析基础知识要求高,因此不能适应企业现场在线检测分析的需要。 NS311比色元素分析仪——优点是使用方便,价格也不高,对操作人员的化学分析基础要求不高,因此被广泛用于企业生产检验现场分析。 NS311现货规格说明: 圆钢/圆棒/钢板/钢材/钢带/无缝管/扁钢/六角棒/元钢/角钢/盘条/线材/棒材/板材/板/棒钢棒/带钢/钢管/管材/研磨/棒拉/光棒/工字钢/槽钢/ NS311工艺类别说明: 热轧板/冷轧板/锻打/热顶锻/进口/固溶处理/时效处理/化学成份/价格/性能/淬火/回火/牌号/软态/硬态/全硬/退火/调质

K417镍基铸造高温合金材料报告

K417镍基铸造高温合金材料报告 K417是高强度的镍基铸造高温合金,其成分中的铝和钛含量较高,形成约占合金重量67%的γ′强化相,因而高温强度较高、塑性较好,加之其密度较低(7.8g/cm3),故特别适宜制作高温转动件。但它的组织稳定性较差,特别是当成分偏上限或铸造工艺参数控制不当时,零件在850~950℃长期工作中,有析出片状σ相的倾向。它的耐热腐蚀性能也较差,若长期高温使用,需用保护涂层 . 化学成分 Typical values(Weight %) Cr Ni Co Mo Al Ti 8.50-9.5 余14.0-16.0 2.50-3.20 4.80-5.70 4.50-5.00 Fe C Mn Si P S ≤1.0 0.13-0.22 ≤0.50 ≤0.50 ≤0.015 ≤0.010 力学性能 θ/℃持久性能拉伸性能 σb/ MPa t/h σb/ MPa δБ/% W / % 900 315 ≥70 635 6 8 物理性能 密度:7.8 g/m3 熔点:1260℃-1340℃ 磁性能:无 相近牌号 美国:IN100 技术标准 HB 5161—1988 物理数据 温度 ℃热导率W/mk 温度 ℃线膨胀系数10-6/K 132 10.87 200 13.2 419 14.23 431 13.5 661 19.25 679 13.5 760 25.94 759 14.7 947 38.49 868 15.7 1076 35.98 956 16.8 1109 41.42 1000 17.3 成形性能 用熔模铸造法可铸成壁厚小至1mm的薄壁零件也可铸造整体涡轮 焊接性能 可以进行氩弧堆焊 零件热处理工艺 1. 零件在铸态下使用; 2. 也可进行渗铝和消除应力的退火处理,处理温度低于1120℃。 表面处理工艺

高温合金基础知识

中文名称:铸造高温合金 英文名称:cast superalloy 定义:在铸造组织状态下具有良好性能并可直接铸成零件的高温合金。具有比同成分的变形合金高的抗蠕变性能。 中文名称:变形高温合金 英文名称:wrought superalloy 定义:适宜进行塑性成形的高温合金。所属学科:航空科技(一级学科);航空材料(二级学科) 弥散强化 弥散强化指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段。是指用不溶于基体金属的超细第二相(强化相)强化的金属材料。为了使第二相在基体金属中分布均匀,通常用粉末冶金方法制造。第二相一般为高熔点的氧化物或碳化物、氮化物,其强化作用可保持到较高温度。弥散强化是强化效果较大的一种强化合金的方法,很有发展前途。 沉淀强化 合金通过相变得到的合金元素与基体元素的化合物会引起合金强化,为沉淀强化,弥散强化则是机械混掺于基体材料中的硬质颗粒引起的强化。两者的区别是沉淀强化中沉淀相和基体有化学交互作用,而弥散强化沉淀相和基体无化学交互作用。 高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定应力作用下长期工作的一类金属材料;并具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用可靠性, 高温合金产品图片融品科技提供 基于上述性能特点,且高温合金的合金化程度较高,又被称为“超合金”,是广泛应用于航空、航天、石油、化工、舰船的一种重要材料。按基体元素来分,高温合金又分为铁基、镍基、钴基等高温合金。铁基高温合金使用温度一般只能达到750~780℃,对于在更高温度下使用的耐热部件,则采用镍基和难熔金属为基的合金。镍基高温合金在整个高温合金领域占有特殊重要的地位,它广泛地用来制造航空喷气发动机、各种工业燃气轮机最热端部件。若以150MPA-100H持久强度为标准,而目前镍合金所能承受的最高温度〉1100℃,而镍合金约为950℃,铁基的合金〈850℃,即镍基合金相应地高出150℃至250℃左右。所以人们称镍合金为发动机的心脏。目前,在先进的发动机上,镍合金已占总重量的一半,不仅涡轮叶片及燃烧室,而且涡轮盘甚至后几级压气机叶片也开始使用镍合金。与铁合金相比,镍合金的优

航空叶片材料——高温合金

高温合金 高温合金又叫热强合金、超级合金。按基体组织材料可分为三类:铁基、镍基和铬基。按生产方式可分为变形高温合金与铸造高温合金。按强化机理可分为碳化物强化、固溶强化、时效强化和弥散强化。一般用于航空发动机耐高温材料的制造,特别是喷气发动机最后两级压气机和最初两级涡轮叶片、燃烧室、加力燃烧室、涡轮盘、涡轮叶片及紧固件的制造。是重要战略物资,各航空大国都在极其保密的条件下研制。随着科技事业的发展,高温合金逐渐形成六个较为完整的部分。 一、变形高温合金 变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。按其热处理工艺可分为固溶强化型合金和时效强化型合金。 1、固溶强化型合金 使用温度范围为900~1300℃,最高抗氧化温度达1320℃。例如GH128合金,室温拉伸强度为850MPa、屈服强度为350MPa;1000℃拉伸强度为140MPa、延伸率为85%,1000℃、30MPa 应力的持久寿命为200小时、延伸率40%。固溶合金一般用于制作航空、航天发动机燃烧室、机匣等部件。 2、时效强化型合金 使用温度为-253~950℃,一般用于制作航空、航天发动机的涡轮盘与叶片等结构件。制作涡轮盘的合金工作温度为-253~700℃,要求具有良好的高低温强度和抗疲劳性能。 例如:GH4169合金,在650℃的最高屈服强度达1000MPa;制作叶片的合金温度可达950℃,例如:GH220合金,950℃的拉伸强度为490MPa,940℃、200MPa的持久寿命大于40小时。变形高温合金主要为航天、航空、核能、石油民用工业提供结构锻件、饼材、环件、棒材、板材、管材、带材和丝材。 二、铸造高温合金 铸造高温合金是指可以或只能用铸造方法成型零件的一类高温合金。其主要特点是: 1. 具有更宽的成分范围 由于可不必兼顾其变形加工性能,合金的设计可以集中考虑优化其使用性能。如对于镍基高温合金,可通过调整成分使γ’含量达60%或更高,从而在高达合金熔点85%的温度下,合金仍能保持优良性能。 2. 具有更广阔的应用领域 由于铸造方法具有的特殊优点,可根据零件的使用需要,设计、制造出近终形或无余量的具有任意复杂结构和形状的高温合金铸件。 根据铸造合金的使用温度,可以分为以下三类: 第一类:在-253~650℃使用的等轴晶铸造高温合金 这类合金在很大的范围温度内具有良好的综合性能,特别是在低温下能保持强度和塑性均不下降。如在航空、航天发动机上用量较大的K4169合金,其650℃拉伸强度为1000MPa、

国内外常用钢材标准牌号对照表20200711165902.doc

国内外常用钢材标准牌号对照表 种中国日本美国英国德国法国前苏联类CB JIS AISI 、ASTM BS DIN NF ΓOCT Q235-A · F SS41 A36、A283C Ust37-2 Q235-A SS41A、B Rst37-2 CT2 20 S20C C1020 En2C C22 C20 20 碳35 S35C C1035 En8A C35 XC38 35 素钢 20g SB42 A285、Gr.B A414、Gr.B 1633Gr.B Ast41 A42C 20K 20(管道用)STPG38、42 A106 、A53 st35.4 16Mn S M50B SM22 1633.Gr.1 st52-3 16Γ 低A516 、 合16MnR SPV36 A515、Gr·60、19Mn5 金Gr·70 钢 15MnV HTP57VW A225 、Gr.A A225、Gr.B 40Mn C1036 En15B 40MnA 40Mn5 40Γ 40Cr SCr4 5140 E n18 S117 41Cr4 38C4 40X 12CrMo A335 、P2 A213、Gr.B 3064-660 1501-620 13CrMo44 12CD4 12XM STT42 15CrMo STC42 A387、Gr.B 1653 16CrMo44 15CD4 15XM STB42 35CrMo SCM3 E4132 E4135 En19B 34CD4 35CD4 35XM 高0Cr13 SUS410 410S S41000 X7Cr13 Z6C13 08X13 合金0Cr18Ni9 SUS304 304 S30400 304S15 X5CrNi189 ZCN18.09 08X18H10 钢 0Cr18Ni10Ti SUS321 321 S32100 321S12 321S20 X10CrNiTi189 Z6CNT18.10 08X18H10T 0Cr17Ni12Mo2 SUS316 316 S31600 316S16 X5CrNiMo1810 Z6CND17.13 08X17H13M2

铸造高温合金

K417(美:IN100) 1、物理性能: 密度:7.8g/cm3熔点:1260-1340℃ 弹性模量:155-220GPa 热导率:13.2 W/(m?℃) 硬度(HRC):30-44 热膨胀系数( 20-100℃):13.2×10-6/℃ 2、主要特征:是一种低密度、高强度的镍基铸造高温合金。 3、用途举例:广泛用于各种航空发动机,涡轮增压器转子叶轮、火药起动机整体涡轮等。 4、品种规格:母合金棒材、精密合金棒材等协商供应,可根据客户要求生产。 K418 (美:INCO713C) 1、物理性能: 密度:8.0g/cm3熔点:1295-1345℃ 弹性模量:144-211GPa 热导率:10.15 W/(m?℃) 硬度(HRC):33-37 热膨胀系数( 20-100℃):12.60×10-6/℃ 2、主要特征:在900℃以下具有良好的蠕变强度、热疲劳性能和抗氧化性能。 3、用途举例:适合于在900℃以下工作的燃气轮机的涡轮转子叶片、导向叶片和整铸涡轮以及其他高 温零件。 4、品种规格:母合金棒材、精密合金棒材等协商供应,可根据客户要求生产。 5页

K403 1、物理性能: 密度:8.1 g/cm3 熔点:1260-1338℃弹性模量:125-178GPa 热导率:14.27 W/(m?℃) 硬度:HRC 36-39 热膨胀系数( 20 - 100°C):11.3×10-6/℃ 2、主要特征:具有较高的高温强度,在1000℃,100h的持久强度可达150MPa,1000h的持久强度可 达94MPa,该合金的铸造性能良好,可铸出形状复杂的精铸件。 3、用途举例:适用于制作1000℃以下工作的燃气涡轮导向叶片和900℃以下工作的涡轮转子叶片以及 其他零件。 4、品种规格:母合金棒材、精密合金棒材等协商供应,可根据客户要求生产。 K405 1、物理性能: 密度:8.12 g/cm3 熔点:1290-1345℃动弹性模量:203GPa 热导率:11.72 W/(m?℃) 硬度(HRC):38 热膨胀系数( 20 - 100°C):11.6×10-6/℃2、主要特征:具有较高的中、高温持久性能,特别是零件性能与试样性能比较接近。铸造性能良好, 可铸成形状复杂的空心叶片。 3、用途举例:适用于950℃以下工作的燃气涡轮片和其他高温用零件。 4、品种规格:母合金棒材、精密合金棒材等协商供应,可根据客户要求生产。 6页

高温合金

1.高温合金的定义:高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定盈利作用下长期工作的一类金属材料。 2.高温合金的命名方法: 变形高温合金以“GH”加4位阿拉伯数字表示。前缀后第一位数字表分类号,1、2表铁基或铁镍基,3、4表镍基,5、6表钴基;1、3、5表固溶强化型合金,2、4、6表时效沉淀型合金。前缀后的第2、3、4位表合金编号。 铸造高温合金以“K”加3位阿拉伯数字表示。前缀后第一位数字表分类号,含义与变形合金相同,第2、3位表合金编号。 粉末高温合金以“FGH”加阿拉伯数字表示。 3.高温合金主要用于四大热端部件:导向器、涡轮叶片、涡轮盘、燃烧室。 4.常见的高温合金基体有哪几种?铁基镍基钴基 5.高温合金的固溶强化机制:固溶度小的合金元素较之固溶度大的合金元素,会产生更强烈的固溶强化作用,但其溶解度小却又限制其加入量。 6.合金元素的固溶强化能力排序:Cr

中国高温耐蚀合金行业研究-上下游行业、行业特征及竞争

中国高温耐蚀合金行业研究-上下游行业、行业特征及竞争 上下游行业 1.高温耐蚀合金行业与上游行业的关系 本行业的上游主要为镍、钴、铬、钼等有色金属原材料。由于镍、钴等金属的资源稀缺性,近年来,价格有显著波动之势,给本行业的产品成本带来较大影响。公司钴、镍基本采取现款现货模式交易。 钴、镍两种有色金属在公司原材料采购中占有重要作用,对公司采购成本影响较大。近年来,上海市钴镍综合报告历史行情如下: (1)上海钴综合报价历史行情

(2)上海镍综合报价历史行情 2.高温耐蚀合金行业与下游行业的关联性及影响 高温耐蚀合金产品作为航空航天、燃气轮机、油气开采、石油化工、汽车、核电等重大设备的关键部件,应用广泛,需求旺盛。公司产品的下游应用领域主要为石油化工、油气钻采、化工、汽配、核电等。由于公司多品种、多规格、小批量的经营特点,经过多年的发展,公司在下游多行业里积累了大量稳定的

客户,公司与重要客户之间形成了长期牢固的合作关系。未来,下游行业的发展将推动公司不断发展壮大。 行业特征与经营模式 1.行业经营模式 高温耐蚀合金材料及制品行业在产品定价上主要采用产品成本加成的方式,以获取合理的利润。采购模式上,基本采用“以产定购”的模式,所需原材料直接向市场采购,部分零部件向合格供应商外协定制加工。生产模式上,基本采用“以销定产”,根据客户订单进行定制生产。销售方式上,基本以直 销的方式进行。 2.行业的周期性、季节性及区域性特征 (1)周期性 高温耐蚀合金材料及制品应用于石油化工、油气钻采、化工、冶金、造船、水处理、核电、航空航天等国民经济重要领域。本行业与宏观经济关系波动相关,受单一行业的影响较小。

中国与国外高温合金、铸造高温合金和耐蚀合金牌号近似对照

中国与国外高温合金牌号近似对照 No . 中国 日本 JIS 美国德国① 法国 NF 俄罗 斯 TOCT 英国② DS/DTD GB/T 旧 牌 号 商业牌号AMS/SAE DIN W-Nr. (L-Nr. ) 1 GH10 15 GH1 5 - - - - - - ЭП 868 - 2 GH10 35 GH3 5 - - - - - - ЭП 703 - 4 GH10 40 GH4 - - - - - - ЭП 395 - 5 GH11 31 GH1 31 - - - - - - ЭП 126 - 6 GH11 40 GH1 40 - - - - - - ЭП 602 - 7 GH20 18 GH1 8 - - - - - - - N263 8 GH20 36 GH3 6 - - - - - - ЭП 481 - 9 GH20 38 GH3 8A - - - - - - ЭП 696A - 10 GH21 30 GH1 30 - - - - - - ЭП 617 - 11 GH21 32 - GH132 A286 AMSS525 , 5731; SAEHEV7 X5NiCrTi26- 15 1.4980 (1.494 4) Z6NCT25 ATVSMo ЭП 786 DTD5026 12 GH21 35 GH1 35 - - - - - - ЭП 437 - 13 GH21 36 GH1 36 - V57 - X5NirTi26-1 5 1.4980 Z3NCT25 ; ATVS2 - - 14 GH23 02 GH3 02 - - - - ЭП 617 - 15 GH30 30 GH3 - - - - - ATGR; NC20T ЭП 435 HR5; DTD703B; N203,N403 16 GH30 39 GH3 9 - - - - - - ЭП 602 - 17 GH30 44 GH4 4 - - - - - - ЭП 868 - 18 GH31 28 GH1 28 - - - - - - - - 19 GH40GH3- - - - - - ЭПN80A

Inconel MA956高温合金使用温度

根据铸造合金的使用温度,可以分为以下三类: 第一类:在-253~650℃使用的等轴晶铸造高温合金这类合金在很大的范围温度内具有良好的综合性能,特别是在低温下能保持强度和塑性均不下降。如在航空、航天发动机上用量较大的K4169合金,其650℃拉伸强度为1000MPa、屈服强度850MPa、拉伸塑性15%;650℃,620MPa应力下的持久寿命为200小时。已用于制作航空发动机中的扩压器机匣及航天发动机中各种泵用复杂结构件等。第二类:在650~950℃使用的等轴晶铸造高温合金这类合金在高温下有较高的力学性能及抗热腐蚀性能。例如K419合金,950℃时,拉伸强度大于700MPa、拉伸塑性大于6%;950℃,200小时的持久强度极限大于230MPa。这类合金适于用做航空发动机涡轮叶片、导向叶片及整铸涡轮。 第三类:在950~1100℃使用的定向凝固柱晶和单晶高温合金这类合金在此温度范围内具有优良的综合性能和抗氧化、抗热腐蚀性能。例如DD402单晶合金,1100℃、130MPa的应力下持久寿命大于100小时。这是国内使用温度最高的涡轮叶片材料,适用于制作新型高性能发动机的一级涡轮叶片。 随着精密铸造工艺技术的不断提高,新的特殊工艺也不断出现。细晶铸造技术、定向凝固技术、复杂薄壁结构件的CA技术等都使铸造高温合金水平大大提高,应用范围不断提高。采用雾化高温合金粉末,经热等静压成型或热等静压后再经锻造成型的生产工艺制造出高温合金粉末的产品。采用粉末冶金工艺,由于粉末颗粒细小,冷却速度快,从而成分均匀,无宏观偏析,而且晶粒细小,热加工性能好,金属利用率高,成本低,尤其是合金的屈服强度和疲劳性能有较大的提高。 上海荣昆金属供应Incoloy MA956、MA754、MA758、MA6000等铸造高温合金。 目前已实现商业化生产的主要有三种ODS合金: MA956合金在氧化气氛下使用温度可达1350℃,居高温合金抗氧化、抗碳、硫腐蚀之首位。可用于航空发动机燃烧室内衬。 MA754合金在氧化气氛下使用温度可达1250℃并保持相当高的高温强度、耐中碱玻璃腐蚀。现已用于制作航空发动机导向器蓖齿环和导向叶片。 MA6000合金在1100℃拉伸强度为222MPa、屈服强度为192MPa;1100℃,1000小时持久强度为127MPa,居高温合金之首位,可用于航空发动机叶片。金属间化合物高温材料是近期研究开发的一类有重要应用前景的、轻比重高温材料。十几年来,对金属间化合物的基础性研究、合金设计、工艺流程的开发以及应用研究已经成熟,尤其在Ti-Al、Ni-Al和Fe-Al系材料的制备加工技术、韧化和强化、力学性能以及应用研究方面取得了令人瞩目的成就。 Ti3Al基合金(TAC-1),TiAl基合金(TAC-2)以及Ti2AlNb基合金具有低密度(3.8~5.8g/cm3)、高温高强度、高钢度以及优异的抗氧化、抗蠕变等优点,可以使结构件减重35~50%。Ni3Al基合金,MX-246具有很好的耐腐蚀、耐磨损和耐气蚀性能,展示出极好的应用前景。Fe3Al基合金具有良好的抗氧化耐磨蚀性能,在中温(小于600℃)有较高强度,成本低,是一种可以部分取代不锈钢的新材料。在民用工业的很多领域,服役的构件材料都处于高温的腐蚀环境中。为满足市场需要,根据材料的使用环境,归类出系列高温合金。

K403铸造高温合金

K403是镍基沉淀硬化型等轴晶铸造高温合金,合金由多种金属元素综合强化,使用温度在1000℃以下。该合金具有较高的高温强度,铸造性能良好,可铸出形状复杂的铸件。该合金耐热腐蚀性能较差,若在高温下长期使用,需要保护涂层。 物理性能:熔点:1260℃~1338℃;密度:ρ=8.10g/cm3;膨胀系数:20~800℃:13.8╳10-6℃-1;室温硬度(铸态):HRC36~39 力学性能:20℃:屈服强度840Mpa,延伸率7.0%;800℃:屈服强度880Mpa,延伸率10.0%。高温持久:800℃,350Mpa大于3000h,520Mpa大于100h。 主要应用:该合金用于1000℃以下工作的燃气涡轮导向叶片和900℃以下工作的涡轮转子叶片及其他零件。 2.K417G K417G是镍基沉淀硬化型等轴晶铸造高温合金(相当于美国IN731),是K417合金的改进型,使用在950℃以下。与K417相比,该合金的钴降低了5%,钛降低了0.3%但仍具有与K417相当的性能,密度小,塑性好、中温强度高,同时合金的组织稳定性有了显著提高。 物理性能:熔点:1281℃~1327℃;密度:ρ=7.85g/cm3;膨胀系数:20~800℃:14.77╳10-6℃-1;室温硬度:HRC34~36 力学性能:20℃:屈服强度790Mpa,延伸率11.0%;800℃:屈服强度825Mpa,延伸率7.0%。高温持久:800℃,440Mpa大于1200h。 主要应用:该合金用于制作航空发动机Ⅰ、Ⅱ级涡轮叶片,Ⅰ、Ⅱ级三联体空心导向叶片。 3.K438

K438是镍基沉淀硬化型等轴晶铸造高温合金,是抗热腐蚀性能最好的合金之一,使用温度小于900℃,合金成分和性能与国外广泛应用的IN738合金相当,合金中含有较高的铬元素,并含有钽和铌元素。该合金具有优异的抗热腐蚀性,具有中等水平的高温强度和良好的组织稳定性。 物理性能:熔点:1260℃~1330℃;密度:ρ=8.16g/cm3;膨胀系数:20~800℃:15.6╳10-6℃-1;室温硬度(850℃时效):HBS373 力学性能:20℃:屈服强度880Mpa,延伸率7.3%;800℃:屈服强度855Mpa,延伸率10.7%。高温持久:800℃,235Mpa大于20000h,450Mpa大于100h。 主要应用:该合金用于舰船及地面工业燃气轮机的长寿命涡轮工作叶片和导向叶片,以及航空发动机的涡轮零件及耐腐蚀部件。 4.K423 K423是镍基沉淀硬化型等轴晶铸造高温合金,含铬、钴和钼等固溶强化元素,含铝、钛γ'沉淀强化相形成元素,并加入硼、铪元素净化和强化晶界。合金在1000℃以下具有良好的抗氧化性能和抗冷热疲劳性能。该合金组织稳定性较差,在750℃~900℃下长期使用时,会有大量的片状σ相析出。 物理性能:熔点:1240℃~1325℃,密度:ρ=8.0g/cm3;膨胀系数:20~800℃:14.2╳10-6℃-1;室温硬度(铸态):HRC37~41 力学性能:20℃:屈服强度800Mpa,延伸率4.0%;800℃:屈服强度675Mpa,延伸率11.0%。高温持久:800℃,363Mpa大于250h。 主要应用:该合金适于制作燃气涡轮的空心和实心导向叶片和整铸导向器等,如涡扇发动机Ⅱ、Ⅲ级导向叶片。

相关主题
文本预览
相关文档 最新文档