当前位置:文档之家› 智能充电器设计1.0

智能充电器设计1.0

智能充电器设计1.0
智能充电器设计1.0

常州信息职业技术学院

学生毕业设计(论文)报告

系别:电子与电气工程学院

专业:电子信息工程技术

班号:电子124

学生姓名:张钰涵

学生学号:1206013419

设计(论文)题目:基于51单片机的智能定时充电器设计指导教师:胡远望

设计地点:常州信息职业技术学院

起迄日期:

毕业设计(论文)任务书

专业电子信息工程技术班级电子124 姓名张钰涵

一、课题名称:基于51单片机的智能定时充电器设计

二、主要技术指标(或基本要求):

1)画出电路原理图

2)通过单片机实现电路的智能控制

3)使用C语言实现程序编程

三、主要工作内容:

1.

2.收集单片机部件的重要参数

3.计算光伏发电的输出电量

4.计算阴天蓄电池供电的情况

四、主要参考文献:______________________________________________________________

[1] 潘永雄.新编单片机原理与应用[M].第2版,西安:西安电子科技大学出版社,2008.

[2] 徐伟祥,刘旭敏.单片微型机原理及应用[M].大连:大连理工大学出版社,1996.

[3] 胡汉才.单片机原理及其接口技术[M].北京:清华大学出版社,1996.

[4] 周航慈.单片机程序设计基础[M].北京:航空航天大学出版社,1999.

[5] 康华光,陈大钦.电子技术基础模拟部分[M].第4版,北京:高等教育出版社,1999.

[6] 戴佳,戴为恒,刘博文.51单片机C语言应用程序设计实例精讲[M].第2版,北京:电子工业出版社,2008

[7] 王耘. NiMH等常见蓄电池的原理及其应用[N].今日电子,2002年第2期

[8] 李宁. 充电器知识[N]电池工业,2001年第6卷第6期

[9] 张兴伟. 数字手机电路与检修技术[M].北京:人民邮电出版社,2006年

[10] Mcseley P T. Positive plate additives J. [N] Journal of Power Sources,1997年

[11] 马继军,浅析蓄电池脉冲快速充电技术及其应用[N]移动电源与车辆,1996

年第3 期

[12] 刘玉杰,姜印平, 孟祥适. 关于快速脉冲充电技术的研究[N]蓄电池,2004年第2期

[13] 牛黎明. 锂电池在线充放电管理电路的设计[M]计算机应用,2001年

[14] 戴佳, 戴卫恒. 51单片机C语言应用程序设计实例精讲[M].北京:电子工业出

版社2007年

[15] Maxim Integrated Products,Maxim Linear Charger for Single-Cell Li+ Battery[J], USA,2002

[16] 杨代华, 叶敦范, 王典洪. 单片机原理及应用[M]武汉:中国地质大学出版社,2000年

[17] 李建忠,单片机原理与运用[M].西安:西安电子科技大学出版社

学生(签名)年月日

指导教师(签名)年月日

教研室主任(签名)年月日

系主任(签名)年月日

毕业设计(论文)开题报告

摘要

Abstract

第1章前言 (1)

1.1 (2)

1.2本设计完成的智能化功能 (2)

2.1单片机简介 (2)

2.1.1单片机的特点 (2)

2.1.2单片机的应用 (3)

2.1.3单片机应用于充电器实现智能化 (2)

第2章原理框图及电路原理图 (2)

2.1 原理框图 (2)

2.2 基本工作原理 (4)

2.3电路原理图 (5)

第3章定时充电器供电系统设计 (2)

3.1 充电器供电模块 (2)

3.1.1电源模块构成 (2)

3.2 控制系统电路设计 (2)

第4章总结与分析 (15)

第5章结束语 (19)

参考文献 (20)

答谢词 (21)

全球能源短缺,环境污染,全球变暖等问题正日益困扰人类社会“寻求绿色替代能源,实现可持续发展”已成为世界面临的共同课题。太阳能光伏发电不排放二氧化碳和二氧化硫,有没有常规电源噪声,固体废物等污染,是最重要的可再生能源技术。随着社会的不断发展,太阳能发电技术,太阳能灯环保,能源,安全等优势,成为城市道路照明行业的新宠,市场潜力是巨大的。在不同的领域,如城市或农村,太阳能路灯照明要求的密度是不同的,本文通过研究太阳能灯和太阳能电池的工作原理,太阳能电池的基本特性。根据不同的要求,主要是从实用和经济的考虑,适当的区域的需要的太阳能光伏电池和太阳能光伏电池的配置选择适当的容量。

关键词:太阳能路灯,伏电池,化配置

Global energy shortages, environmental pollution, climate warming and other issues are increasingly troubled by the human society, "to find the green alternative sources of energy and achieve sustainable development" has become a common task facing all countries in the world. Solar PV does not emit CO2 and SO2, there is no noise of conventional power generation, solid waste and other pollution, is the most important renewable energy technologies. With the continuous development of solar power technology, solar energy street lamp to environmental protection, energy saving, security and other benefits to become the new darling of city road lighting industry, the market has great potential. In different regions, such as cities or rural areas, the density of solar street lighting requirements are different, this thesis by studying the solar lights and solar cell works, the basic characteristics of solar cells. According to different requirements, mainly from the practical and economic considerations demand for choice in the region suitable for the corresponding capacity of solar photovoltaic cells and solar photovoltaic cells configured.

Keywords :solarl light, PV, optimization

第1章前言

1. 引言

随着信息技术的高速的发展,信息化正以令人惊叹的速度渗透到各个领域。电池作为一个传统的产业,正经历着前所未有的变革,特别是在通信,动力等领域,对电池有了新的要求。智能充电器就在这种环境下应运而生。

在人们日常工作和生活中,随着各种电子产品的广泛应用,各种充电器就不可或缺。从电动刮胡刀到mp3,从手机到笔记本电脑,几乎只要用到电池的设备都会用到充电器。这些充电器都有便携的特点,所以充电器为人们外出旅游和出差提供了相当大的方便。

单片机在电池充电器领域有着广泛的应用,利用它的处理控制能力可以实现充电器的智能化。充电器种类品种繁多,但严格意义上讲,只有单片机参与处理和控制的充电器才能称为智能充电器。

1.1指导思想

(1)实现充电过程。充电分为两个方面:一是充电过程的控制;二是需要提供基本充电电压。

(2)智能化的实现。引入单片机可实现智能化。

1.2本设计完成的智能化功能

本设计是基于51单片机在实现锂离子电池充电方面的应用。这种智能充电器在单片机的控制下,实现预冲,充电保护,自动断电和充电完成报警提示功能。

2.单片机简介

在通用微机中央处理器(CPU)基础上,将输入/输出(I/O)接口电路、时钟电路以及一定容量的存储器等部件集成在同一芯片上,再加上必要的外围器件,如晶体振荡器,就构成了一个较为完整的计算机硬件系统。由于这类计算机系统基本部件集成在同一芯片内,因此被称为单片微控制器(Single-Chip-Micro Co ntroller)、微控制单元(Microcontroller Unit,MCU)或嵌入式控制器(Embe dded Controller),简称单片机。[1]

目前,8位高档机和16位机在单片机应用中占主导地位,产品众多,已有几十个系列、几百个型号,除了通用单片机以外,集成更多资源,如A/D转换器、D /A转换器、“看门狗”(Watchdog)电路、LCD控制器、网路控制模块等,将单片机嵌入式系统和Intenet连接起来已是一种趋势。还有专用单片机产品,如专门用于数据处理(图像和语言处理等)的单片机。总之,单片机正在向微型化、低功耗、高速、集成、高集成度、多资源、网络化、专用型方向发展。[2]

2.1单片机的特点

单片机芯片作为控制系统的核心部件,它除了具备通用微机CPU的数值计算功能外,还必须具有灵活、强大的控制功能,以便实时监测系统的输入量,控制系统,从而实现自动控制功能[3]。单片机主要面向工业控制,工作环境比较

恶劣,如高温、强电磁干扰,甚至含有腐蚀性气体,在太空中工作的按偏激控制系统,还必须具有抗辐射功能,此而决定了单片机CPU的技术特征和发展方向:(1)单片机CPU抗干扰性强,工作温度范围宽(按工作温度分类,有民用级工业级、汽车级及军用级)。

(2)单片机CPU可靠性高。在工业控制中,任何差错都可能造成极其严重的后果,因此在单片机芯片中普遍采用硬件看门狗技术,通过定时“复位”方式唤醒处于“失控”状态下的单片机芯片。

(3)单片机CPU电磁辐射量小。高可靠性和低电磁辐射指标决定了单片机系统的时钟频率很低。为此,单片机芯片一般采用HARVARD双总线结构,即指令和数据存储器空间相互独立,并通过各自的数据总线与CPU相连,使取指和读/写数据能同时进行。双总线结构能提高数据的吞吐率,以便在不降低数据吞吐率的条件下使用较低的时钟频率。

(4)单片机的控制功能很强。

(5)单片机的指令系统比较简单。

(6)单片机芯片往往不是单一的数字电路芯片,而是数字、模拟混合电路系统,即单片机芯片内长集成了一定数量的模拟比较器,A/D及D/A转换电路。

(7)单片机CPU采用嵌入式结构。尽管同一系列的单片机品种、规格繁多,但彼此差异却不大。

2.2单片机的应用

由于单片机具有如上所述的特点,因此在工业生产、日常生活等诸多领域,得到了日益广泛的应用,单片机的主要应用领域有:工业控制,如在工业生产过程中参数(如温度、压力、流量、液位等)的控制,数据处理功能于一体,如转速测试仪、噪声测试仪、振动测试仪及电子秤等。计算机网络与通信,单片机上有并行I/O接口,串联I/0接口,可用于通信接口,如单片机控制的自动呼叫应答系统、列车无线通信系统、遥测遥控系统等。家用电器,由于单片机体积小,控制能力强,且片内与定时器/计数器,所以广泛应用于家用设备中。如空调、洗衣机、微波炉及防盗报警等。

本设计是单片机在智能充电方面的应用。

2.3单片机应用于充电器实现智能化

因为多数充电器一般采用大电流的快速充电法,如果电池充满了,人们不及时断电就会使电池发烫,过度的充电会严重损害电池的寿命[4]。像一些成本比较低的充电器一般采用电压比较法,为了防止过度充充,基本上充电到一定的程度就停止大电流快充,转而用小电流涓流补充充电。

一部分的充电器不但能在很短时间内将电量充足,而且还可以对电池起到一定的维护作用,修复由于使用不当造成的记忆效应,即容量下降(电池活性衰退)现象。设计比较科学的充电器往往采用专用充电控制芯片配合单片机控制的方式。专用的充电芯片具有业界公认较好的-△v检测,可以检测出电池充电饱和时发出的电压变化信号,比较精确地结束充电工作,通过单片机对这些芯片的控制,可以实现充电过程的智能化,例如,在充电后增加及时关段电源、蜂鸣报警和液晶显示等功能。充电器的智能化可以缩短充电的时间,同时能够维护电池,延长电池使用寿命。

第2章原理框图及电路原理图2.1原理框图

2.2 基本工作原理

控制核心选用 STC12C2052 单片机,通过内部定时器 T0 倒计时的方式控制继电器断开与闭合,从而达到控制另外一个充电头充当的充电器的供电,另外,配置微动开关作为定时设置按键和8颗红色 LED 作为时间提示灯,在实际使用中,我们可以通过按键的设置,由 LED 指示灯提示大概剩余时间的同时,由 S TC12C2052 控制继电器的接通或者断开,进行对充电电路的控制,从而达到定时充电以防止过充的功能。,

2.3 电路原理图

第3章定时充电器供电系统设计

3.1 充电器供电模块

目前市场上存在大量的电池充电芯片,它们可直接用于充电器的设计。本设计主要利用51单片机实现手机单节锂离子(Li+)电池智能充电器,要求充电快速且具有优良的电池保护能力。通过查阅相关资料,目前市场上常见的智能充电芯片主要包括:MAX1898、MAX1758、SMC401。不同的芯片在控制充电过程中能力各不相同,其价格也迥异,控制电路更是错踪复杂。通过进行对比论证,在相同功能下,MAX1898 的外围电路更加简单,易于焊接,相关技术资料比较全面,因此我们选取了MAX1898作为此次的充电芯片。

MAX1898的内部电路包括输入电流调节器、电压检测器、充电电流检测器、定时器、温度检测器和主控器,输入电流调节器用于限制总输入电流,包括系统负载电流与充电电流,但检测到输入电路大于设定的门限电流时,通过降低充电电流从而控制输入电流,MAX1898外接限流型充电电源和PNP功率三级管,可对单节锂电进行有效的快充,它通过外接电容设定充电时间,通过外接电阻设置最大充电电流。

MAX1898 uMAX封装如图2.3所示。

MAX1898的引脚功能说明如下

IN(1引脚):传感器输入,检测输入电压和电流

CHG(2引脚):LED驱动器

EN/OK(3引脚):逻辑电平输入允许/电源输入“好”

ISET(4引脚):电流调节

CT(5引脚):安全的充电时间设置

RSTRT(6引脚):自动重新启动控制引脚

BATT(7引脚):接单个Li+的正极

GND(8引脚):接地

DRV(9引脚):外接电阻驱动器

CS(10引脚):电流传感器输入

MAX1898典型充电电路如图2.4所示。

MAX1898典型应用电路如图2.4所示。

定时电容C和充电时间T的关系式满足:

C=34.33×T

注:通过外接电容CT 设置快充时最大的充电时间T,式中T 单位为小时,C T 单位为nF,一般情况下快充时间不超过3 小时,因此CT一般为100nF。

最大充电电流Imax 和限流电阻R 的关系式满足:

Imax=1400/R

注:限制电流的模式下,通过外接电阻R来设置最大充电电流Imax,式中R 单位为欧姆,Imax 单位为安培。

输入电压范围为4.5V-12V。锂电池要求充电方式是恒流恒压方式,电源的输入需要采用恒流恒压源,一般采用直流电源外加变压器。

充电器电路充电控制电路如图2.5所示。

图2.5 MAX1898充电模块电路

3.1.1 电源模块构成

电源模块主要作用是将输入的220V/50HZ的交流电压通过变压、整流、7805芯片稳压后得到的5V直流电压为STC12C2052单片机和MAX1898锂离子电池充电芯片进行供电,同时也为其它电路提供合适的电压。

3.2 控制系统电路结构

STC12C2052系列单片机是单时钟/机器周期(1T)的兼容8051内核单片机,是高速/低功耗的新一代8051单片机,全新的流水线/精简指令集结构,内部集成MAX810专用复位电路。

3.2.1 STC12C2052特点:

(1)增强型8051CPU,单时钟/机器周期,指令代码完全兼容传统8051;

(2)工作电压:5.5V-3.5V(5V单片机)/3.8V-2.2V(3V单片机);

(3)工作频率范围:0-35MHz,相当于普通8051的0~420MHz,实际工作频率可达48MHz;

(4)用户应用程序空间512/1K/2K/3K/4K/5K字节;

(5)片上集成256节RAM;

(6)通用I/O口(15个),复位后为:准双向口/弱上拉(普通8051传统I/O 口)可设置成四种模式:准双向口/弱上拉,推挽/强上拉,仅为输入/高阻,开漏每个I/O口驱动能力均可达到20mA,但整个芯片最大不得超过55mA;

(7)ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,可通过串口随着直接下载用户程序,数秒即可完成一片;

(8)EEPROM功能;

(9)看门狗;

(10)内部集成MAX810专用复位电路;

(11)时钟源:外部高精度晶体/时钟,内部R/C振荡器用户在下载用户程序时,可选择是使用内部R/C振荡器还是外部晶体/时钟常温下内部R/C振荡器频率为:5.65MHz~5.95MHz精度要求不高时,可选择使用内部时钟,但因为有制造误差和温漂,应认为是4MHz~8MHz;

(12)共6个16位定时器/计数器;

(13)外部中断2路,下降沿中断或低电平触发中断,PowerDown模式可由外部中断唤醒;

(14)PWM(2路)/PCA(可编程计数器阵列);

(15)通用全双工异步串行口(UART),由于STC12系列是高速的8051,也可再用定时器软件实现多串口;

(16)SPI同步通信口,主模式/从模式;

(17)工作温度范围:0-75℃/-40-+85℃;

STC12C2052封装如图2.3所示

第4章总结与分析

通过搜集相关资料,本人对太阳能光伏发电和LED的应用已有了初步的了解。太阳能光伏发电技术和LED技术已通过前人的努力得到了长足的发展,从最初的实验室走到人们的生活的商品中。在未来它们会如何发展,我不敢想象。大体说来,现有的技术有如下特点:

1、太阳能电池的材料主要有单晶电池板、多晶电池板、非晶硅电池板。非晶硅电池板是淘汰的产品。单晶电池板是广泛采用的材料,多晶电池板使用成本制约了其广泛的应用,但是它们性能更好,是前沿性的研究热点。

2、蓄电池是光伏发电系统中的重要元件,但现有的电池技术和光伏发电的特点使得其在整个系统中成为最薄弱的环节。虽有好性能的锂电池,但是其过高的成本使得太阳能发电本来就不低的投入变得更不为市场所接受。成本低性能稍差的铅酸蓄电池成为主力军,但任需要好的电源控制系统为其提供良好的工作环境。

3、因为蓄电池技术不会在短期内得到解决,从改善电源控制器的方面入手成为提高光伏发电系统性能的最佳途径。电源控制器能控制充放电电压和电流,主流的充电方式二阶段式和恒压式。未采用更有效率,如最大功率跟踪式、模糊式、智能式的充电方式的主要原因还是成本问题。还有一个技术问题就是对蓄电池容量的预测,若此技术得到发展,充电自然会采用更有效率的方式。

4、LED是今后流行的光源。但是其单体发光功率不高,需要组合使用。驱动LED 的方式有多种选择。主要采用的是恒流源驱动,因为LED的发光率与电流成正比,与电压成非线性关系,不易控制。LED质量参差不齐,需更好的行业标准来规范。LED显示屏现已广泛利用,控制方式多采用行列扫列扫描技术,用单片机控制,多用串口相联。现有许多商业软件使得LED显示的编程变得十分方便。

答谢辞

经过了两个月的学习和查找资料,在胡远望老师的悉心指导和严格要求下,我终于完成了《基于51单片机的智能充电器设计》的论文。从课题选择、开题报告到具体设计,每一步对我来说无疑是巨大的尝试和挑战,也成就了我在大学期间独立完成的最大的项目。

首先,通过本次毕业设计,切切实实加强了我独立思考问题的能力,以及克服着手查资料时的无聊不良情绪。同时,也弥补了一些我在单片机知识上的漏洞,在以后的学习过程中消除了一些障碍。在毕业设计的过程中,让我熟悉了单片机的设计流程,以及论文的书写步骤,有了这方面的加强,在以后的学习过程中,相信我不会毛毛躁躁,静心完成诸如单片机的设计。

随着当今社会科技的高速发展,电池产业的也是飞速前进,已经渗透到各个电子产业,像从我们平时用的MP3到笔记本电脑,处处都有电池的身影,电池在这些电子产品中就像植物中的绿叶似的,光合作用,之后产生能量,如果没有绿叶,植物就不能生存,同样的道理,没有电池提供电能,所有电子产品就会变成一堆垃圾。我选择这个题目,感觉有与时俱进的意义。

在具体设计的过程中,感谢我的毕业设计老师,图书馆的老师以及和我一起做课题的同学,正是有了他们的帮助才使我这篇稚嫩的设计日臻完善。每一次改进我都收获良多,每一次修改后的成功我都能兴奋好长一段时间。虽然我的设计作品不是很成熟,即使借鉴前人的很多资料仍然还有很多不足之处,但我仍然心里有一种莫大的幸福感,因为我实实在在地走过了一个完整的设计所应该走的每一个过程,并且享受了每一个过程。

就此作结。

基于单片机的智能充电器设计毕业论文

基于单片机的智能充电器设计毕业 论文 目录 1 绪论 (1) 1.1课题研究的背景、目的及意义 (1) 1.2国外研究现状 (2) 1.2.1国外研究现状 (2) 1.2.2国研究现状 (2) 1.3研究容与章节安排 (5) 2 方案比较和选择 (6) 2.1总体设计框图 (6) 2.2电源模块 (7) 2.2.1电源方案的选择 (7) 2.3充电方法 (8) 2.3.1锂电池的充电特性 (8) 2.3.2充电方案的选择 (9) 2.4 SOC估算方法 (10) 2.4.1 SOC估算方法的选择 (10) 2.5通信方式 (11)

2.5.1 通信方式的选择 (11) 2.6本章小结 (12) 3 硬件设计与实现 (13) 3.1单片机电路 (13) 3.2充电电源电路 (16) 3.2.1变压电路 (16) 3.2.2整流、滤波电路 (17) 3.2.3 TL494脉宽调制电路 (17) 3.2.4 DC-DC电路 (19) 3.3电压采集电路 (19)

3.4温度采集电路 (21) 3.5报警电路 (21) 3.6本章小结 (22) 4 软件设计与实现 (23) 4.1软件开发环境 (23) 4.1.1 Qt5.4集成开发环境 (23) 4.2单片机程序设计 (23) 4.2.1 整体设计逻辑概述 (23) 4.2.2 电压、温度数据采集 (24) 4.3上位机软件程序设计 (25) 4.3.1 整体设计概述 (25) 4.3.2 程序逻辑流程图 (25) 4.3.3 UI界面 (25) 4.4 上下位机的通信设计 (27) 4.4.1 通信协议概述 (27) 4.4.2 上下位机通信流程图 (27) 4.5 本章小结 (28) 5 调试与分析 (29) 5.1充电电路检测 (29) 5.2温度电路检测 (30) 5.3电压电路检测 (31) 5.4充电器运行检测 (32)

镍氢电池充电器电路图及原理分析

镍氢电池充电器电路图及原理分析 镍氢电池充电器原理图:由LM324组成,用TL431设置电压基准,用S8550作为调整管,把输入电压降压,对电池进电行充电,电路附图所示.其工作原理是: 1.基准电压Vref形成 外接电源经插座X、二极管VD1后由电容C1滤波。VD1起保护作用,防止外接电源极性反接时损坏TL431。R3、R4、R5和TL431组成基准电压Vref,根据图中参数Vref= 2.5×(100+820)/820=2.80(v),这个数据主要是针对镍氢充电电池而设计(单节镍氢充电电池充满后电压约 为1.40V)。 2.大电流充电 (1)工作原理 接入电源,电源指示灯LED(VD2)点亮。装入电池(参考图片,实际上是用导线引出到电池盒,电池装在电池盒中),当电池电压低于Vref时,IC1-1输出低电平,VT1导通,输出大电流给电池充电。此时,VT1处于放大状态-这是因为电池电压和-VD4压降的和约为3.2V(假设开始充 电时电池电压约为2.5V),而经VD1后的电压大约5.OV,所以,VT1的发射极-集电极压差远大于0.2V,当充电电流为300mA时,VT1发热比较严重,所以最好用PT=625mW的S8550,或者适当增大基极电阻以减小充电电流(注:由于LM324低电平驱动能力较小,实测IC1-2,IC1-4输出低电平并不是0V,而是约为0.8V)。 (2)充电的指示 首先看IC1-3的工作情况:其同相端1O脚通过R13接Vref,R14接成正反馈,反相端9脚外接电容,并有一负反馈通路,所以,它实际上构成了滞回比较器。刚开始时C2上端没有电压,则IC1-3输出高电平。这个高电平有两个放电通路,一个通路是通过R14反馈到10脚,另一通路是经电阻R15对电容C2充电,当充电的电压高于10脚电压V+ 时,比较器翻转输出低电平;与此同时,由于R14的反馈作用,10脚电压立即下跳到V-,这时,电容C2通过电阻R15放电,当放电的电压小于10脚电压V-时,比较器再次翻转输出高电平,由于R14的反馈作用,10脚电压立即上跳到V+,此后电路一直重复上述过程,因此,IC1-3的输出为频率固定的方波信号。 其次看IC1-4的工作情况:电池电压经R2、R16分压,接IC1-4的12脚,因为R2<

基于单片机的电动车智能充电器的设计

前言 (4) 第一章充电器原理 (5) 1.1 蓄电池与充电技术 (5) 1.2 密封铅酸蓄电池的充电特性 (5) 1.3 充电器充电原理 (6) 1.3.1 蓄电池充电理论基础 (6) 1.3.2 充电器的工作原理 (8) 第二章总体设计方案 (10) 2.1 系统设计 (10) 2.2 方案策略 (10) 第三章硬件电路设计 (12) 3.1 电路总体设计 (12) 3.2 芯片介绍 (12) 3.2.1 LM358双运放 (12) 3.2.2 UC3842单管开关电源 (13) 3.2.3 EL817光耦合器 (14) 3.2.4 场效应管K1358 (15) 3.3 电动车充电器原理及各元件作用的概述 (16) 3.3.1 充电器原理图 (16) 图3.5 充电器原理图 (16) 3.3.2 各元器件作用概述 (16) 3.4 功能模块电路设计 (17) 3.4.1 第一路通电开始 (17) 3.4.2 第二路UC3842电路 (17) 3.4.3 第三路LM358(双运算放大器)电路 (18) 3.5 电动车充电器改进方案 (21) 3.5.1 增加充满电发声提示电路 (21) 3.5.2 加散热风扇 (22) 第四章总结与展望 (23)

致谢 (25)

电动车智能充电器设计及应用 中文摘要: 本设计介绍了充电器对蓄电池充电的一般原理,从阀控蓄电池内部氧循环的设计理念出发,研究各种充电方法对铅酸蓄电池寿命的影响。针对蓄电池充电过程中出现的种种问题,分析现有各种充电方法存在的问题,提出一种可对铅酸蓄电池实现四段式慢脉冲充电的智能充电器设计方案。控制开关电源的脉冲频率和占空比,从而调节充电电流和电压,实现对蓄电池的分级慢脉冲充电。这个方案不仅可实现快速充电,同时可以减少析气,消除硫化,进行均衡充电,从而大大地延长了铅酸蓄电池的使用寿命。 关键词:慢脉冲充电;蓄电池;充电器; Abstract: The design describes the charger to the battery charger of the general principles, from the internal oxygen cycle of valve-regulated battery design concepts starting to study a variety of charging methods for lead-acid battery life implications. For battery charging problems arising in the process, analysis of existing problems in a variety of charging methods, proposed a lead-acid batteries could achieve the Four-slow pulse charge of the intelligent charger design. Control the switching power supply pulse frequency and duty cycle, thus regulating charge current and voltage to achieve the classification of the battery charge with slow pulse. This program not only for fast charging, while reducing analysis of gas, to eliminate sulfide, a balanced charge, thus greatly extending the service life of lead-acid batteries. Key words: slow pulse charge; batteries; charger;

毕业设计_基于MAX1898的智能充电器设计

基于MAX1898的智能充电器设计 在人们日常工作和生活中,充电器的使用越来越广泛。从随身听到数码相机,从手机到笔记本电脑,几乎所有用到电池的电器设备都需要用到充电器。充电器为人们的外出旅行和出差办公提供了极大的方便。 单片机在电池充电器领域也有着广泛的应用,利用它的处理控制能力可以实现充电器的智能化。充电器各类繁多,但从严格意义上讲,只有单片机参与处理和控制的充电器才能称为智能充电器。 1 实例说明 随着手机在世界范围内的普及使用,手机电池充电器的使用也越来越广泛。 本章将通过一个典型实例介绍51单片机在实现手机电池充电器方面的应用。实例所实现的充电器是一种智能充电器,它在单片机的控制下,具有预充、充电保护、自动断电和充电完成报警提示功能。 实例的功能模块如下。 ●单片机模块:实现充电器的智能化控制,比如自动断电、充电完成报警提示等。 ●充电过程控制模块:采用专用的电池充电芯片实现对充电过程的控制。 ●充电电压提供模块:采用电压转换芯片将外部+12V 电压转换为需要的+5V电压, 该电压在送给充电控制模块之前还需经过一个光耦模块。 ●C51程序:单片机控制电池充电芯片实现充电过程的自动化,并根据充电的状态给 出有关的输出指示。

2 设计思路分析 要实现智能化充电器,需要从下面两个方面着手。 (1)充电的实现。它包括两部分:一是充电过程的控制;二是需要提供基本的充电电压。(2)智能化的实现。在充电器电路中引入单片机的控制。 2.1 为何需要实现充电器的智能化 充电器实现的方式不同会导致充电效果的不同。 由于充电器多采用大电流的快速充电法,在电池充满后如果不及时停止会使电池发烫,过度的充电会严重损害电池的寿命。一些低成本的充电器采用电压比较法,为了防止过充,一般充电到90%就停止大电流快充,而采用小电流涓流补充充电。 手机电池的使用寿命和单次使用时间与充电过程密切相关。锂电池是手机最为常用的一种电池,它具有较高的能量重量比、能量体积比、具有记忆效应,可重复充电多次,使用寿命较长,价格也越来越低。锂电池对于充电器的要求比较苛刻,需要保护电路。为了有效利用电池容量,需将锂电池充电至最大电压,但是过压充电会造成电池损坏,这就要求较高的控制精度。另外,对于电压过低的电池需要进行预充,充电器最好带有热保护和时间保护,为电池提供附加保护。 一部好的充电器不但能在短时间内将电量充足,而且还可以对电池起到一定的维护作用,修复由于使用不当造成的记忆效应,即容量下降(电池活性衰退)现象。设计比较科学的充电器往往采用专用充电控制芯片配合单片机控制的方法。专用的充电芯片具备业界公认较好的-△V 检测,可以检测出电池充电饱和时发出的电压变化信号,比较精确地结束充电工作,通过单片机对这些芯片的控制,可以实现充电过程的智能化,例如,在充电后增加及时关断电源、蜂鸣报警和液晶显示等功能。充电器的智能化可以缩短充电的时间,同时能够维护电池,延长电池使用寿命。 2.2 如何选择电池充电芯片 目前市场上存在大量的电池充电芯片,它们可直接用于进行充电器的设计。在选择具体的电池充电芯片时,需要参考以下标准。 ●电池类型:不同的电池(锂电池、镍氢电池、镍镉电池等)需选择不同的充电芯片。 ●电池数目:可充电池的数目。 ●电流值:充电电流的大小决定了充电时间。 ●充电方式:是快充、慢充还是可控充电过程。 本例要实现的是手机的单节锂离子电池充电器,要求充电快速且具有优良的电池保护能力,据此选择Maxim公司的MAX1898作为电池充电芯片。

智能型充电器的电源和显示的设计论文

前言 随着越来越多的手持式电器的出现,对高性能、小尺寸、重量轻的电池充电器的需求也越来越大。电池技术的持续进步也要求更复杂的充电算法以实现快速、安全的充电。因此需要对充电过程进行更精确的监控,以缩短充电时间、达到最大的电池容量,并防止电池损坏。AVR 已经在竞争中领先了一步,被证明是下一代充电器的完美控制芯片。Atmel AVR 微处理器是当前市场上能够以单片方式提供Flash、EEPROM 和10 位ADC的最高效的8 位RISC 微处理器。由于程序存储器为Flash,因此可以不用象MASK ROM一样,有几个软件版本就库存几种型号。Flash 可以在发货之前再进行编程,或是在PCB贴装之后再通过ISP 进行编程,从而允许在最后一分钟进行软件更新。EEPROM 可用于保存标定系数和电池特性参数,如保存充电记录以提高实际使用的电池容量。10位A/D 转换器可以提供足够的测量精度,使得充好后的容量更接近其最大容量。而其他方案为了达到此目的,可能需要外部的ADC,不但占用PCB 空间,也提高了系统成本。AVR 是目前唯一的针对像“C”这样的高级语言而设计的8 位微处理器。C 代码似的设计很容易进行调整以适合当前和未来的电池,而本次智能型充电器显示程序的编写则就是用C语言写的。

第一章概述 第一节绪论 1.1.1课题背景 如今,随着越来越多的手持式电器的出现,对高性能、小尺寸、重量轻的电池充电器的需求也越来越大。电池技术的持续进步也要求更复杂的充电算法以实现快速、安全的充电。因此需要对充电过程进行更精确的监控,以缩短充电时间、达到最大的电池容量,并防止电池损坏。与此同时,对充电电池的性能和工作寿命的要求也不断地提高。从20世纪60年代的商用镍镉和密封铅酸电池到近几年的镍氢和锂离子技术,可充电电池容量和性能得到了飞速的发展。目前各种电器使用的充电电池主要有镍镉电池(NiCd)、镍氢电池(NiMH)、锂电池(Li-Ion)和密封铅酸电池(SLA)四种类型。 电池充电是通过逆向化学反应将能量存储到化学系统里实现的。由于使用的化学物质的不同,电池有自己的特性。设计充电器时要仔细了解这些特性以防止过度充电而损坏电。 目前,市场上卖得最多的是旅行充电器,但是严格从充电电路上分析,只有很少部分充电器才能真正意义上被称为智能充电器,随着越来越多的手持式电器的出现,对高性能、小尺寸、轻重量的电池充电器的需求也越来越大。电池技术的持续进步也要求更复杂的充电算法以实现快速、安全地充电,因此,需要对充电过程进行更精确地监控(例如对充、放电电流、充电电压、温度等的监控),以缩短充电时间,达到最大的电池容量,并防止电池损坏。因此,智能型充电电路通常包括了恒流/恒压控制环路、电池电压监测电路、电池温度检测电路、外部显示电路(LED或LCD显示)等基本单元。其框图如下:

手机充电器电路设计[1]

手机充电器电路设计 摘要:通过对课程的学习设计。了解手机充电器的工作原理及设计流程,确定相关参数和电路图。 关键字:隔离变压器频率绝缘电阻绝缘强度可燃性自由跌落湿热试验工作原理工作流程 1 前言(李洋) 1 电路设计思想 从手机锂离子二次电池的恒流/恒压充电控制出发,用220V 交流电通过配置的内置储能锂电池对手机锂离子电池充电。电路的具体工作流程如图1所示。 图1 工作流程图 2 电路设计方案 充电芯片选用美信半导体公司的锂电池充电芯片,这款充电芯片具

有很强的充电控制特性,可外接限流型充电电源和P沟道场效应管,能对单节锂电池进行安全有效的快充。其最大特点是在不使用电感的情况下仍能做到很低的功率耗散,且充电控制精度达0.75%;可以实现预充电;具有过压保护和温度保护功能,其浮充方式能够充至最大电池容量。当充电电源和电池在正常的工作温度范围内时,接通电源将启动一次充电过程。充电结束的条件是平均的脉冲充电电流达到快充电流的1%,或时间超出片上预置的充电时间。所选用的充电芯片能够自动检测充电电源,在没有电源时自动关断以减少电池的漏电。启动快充后打开外接的P型场效应管,当检测到电池电压达到设定的门限时进入脉冲充电方式,充电结束时,外接LED指示灯将会进行闪烁提示。 电路工作原理 内置储能电池的充电及其保护电路其中包括:LED显示、热敏电阻,电流反向保护。ADJ引脚通过10kΩ的电阻与内部1.4V的精密基准源相连接,当ADJ对地没有连接电阻时,电池充电电压阈值为缺省值:VBR =4.2V;当需要自行设置充电阈值时,可在ADJ引脚与GND间接一精度为1%的电阻RADJ,阻值由式(1)确定:RADJ=10kΩ/(VBR/VBRC-1) (1) 由图3可知,充电阈值为4.1V,可得RADJ=410k 做手机充电器电路设计,需先对其工作环境进行分析,了解其工作原理。

智能充电器设计参考资料APPlication note

8-bit Microcontrollers Application Note Rev. 8080A-AVR-09/07 AVR458: Charging Lithium-Ion Batteries with ATAVRBC100 Features ? Fully Functional Design for Charging Lithium-Ion Batteries ? High Accuracy Measurement with 10-bit A/D Converter ? Modular “C” Source Code ? Easily Adjustable Battery and Charge Parameters ? Serial Interface for Communication with External Master ? One-wire Interface for Communication with Battery EEPROM ? Analogue Inputs for Reading Battery ID and Temperature ? Internal Temperature Sensor for Enhanced Thermal Management ? On-chip EEPROM for Storage of Battery and Run-Time Parameters 1 Introduction This application note is based on the ATAVRBC100 Battery Charger reference design (BC100) and focuses on how to use the reference design to charge Lithium-Ion (Li-Ion) batteries. The firmware is written entirely in C language (using IAR ? Systems Embedded Workbench) and is easy to port to other AVR ? microcontrollers. This application is based on the ATtiny861 microcontroller but it is possible to migrate the design to other AVR microcontrollers, such as pin-compatible devices ATtiny261 and ATtiny461. Low pin count devices such as ATtiny25/45/85 can also be used, but with reduced functionality.

万能充电器结构设计

万能充电器结构设计 手机充电器开发目录 一、方案定向 二、基本规格要求书的制作 三、ID 的确认 四、结构建模 1.资料的汇总 2.构思拆件 3.外观件的绘制 4.初步拆件 5.PCB 设计指引制作 6.拆件效果图的确认 五、结构设计 ㈠主体:面底壳 1.止口线的制作 2.螺丝柱的结构 3.主扣的分布 4.与透明盖装配位置的结构设计 5.接触片的避空槽的设计 6.与胶垫或海绵垫等装配位置的结构设计 https://www.doczj.com/doc/e12452139.html,B 的固定结构 8.连接片尾部的避空口设计 9.插头安装的设计 10.散热窗,贴主标的位置,支撑凸点的设计 11.PCBA板的固定结构 ㈡透明盖 1.接触片、连接片的固定结构 2.接触片接触头的避空口设计 3.与主体装配的常用结构 4.压紧电池的装置设计 ㈢充电器夹紧力产生装置的结构设计 ㈣其他零配件的设计。 六、结构手板的制作与验证 七、结构设计优化 八、结构评审 九、开模评审 十、开模期间的项目跟进 十一、报价资料的整理 十二、试模与改模 十三、试产 十四、量产 手机充电器简介 手机充电器主要按照使用的方式进行分类。手机充电器大致可以分为座式充电器、旅行充电器和车载充电器。 * 座式充电器。这类充电器一般多为慢充模式,充电时间较长,大约为4~5 小时。 * 旅行充电器。大多数手机标准配置中只有旅行充电器。旅行充电器和座式充电器对电池充电的效果是一样的。这类充 电器携带方便,对于经常出外旅行的人来说比较合适,它一般是快速充电方式,充电时间为2~3 小时,旅行充电器基本 都具有充满自停的功能,对手机不会有任何不良影响。 * 车载充电器。这类充电器可以方便用户在汽车上为手机充电。其原理是采用汽车点烟器的电流电压12-24V,经“车

手机充电器设计报告

手机充电器设计报告 题目:手机充电器设计 指导老师:翟永前 专业班级:电子信心工程专业12级 组别:第六组 组长:曹广振 团队成员:王沛、索彬、赵小芳、曹广振

院系名称:通信信号学院 智能充电器的设计 【摘要】 随着手机在世界范围内的普及,手机电池充电器的使用越来越广泛。充电器种类繁多,但从严格意义上讲,只有单片机参与处理和控制的充电器才能称为智能充电器。 该设计利用51单片机的处理控制能力实现充电器的智能化,在单片机的控制下,具有预充、充电保护、自动断电和充电完成报警提示功能。该设计包括了六个功能模块: ·单片机模块:实现充电器的智能控制,如自动断电,充电完成报警提示。·充电过程控制模块:采用专用的电池充电芯片实现对充电过程的控制。·光耦模块:控制通电和断电,在电池充满电后及时关断充电电源。 ·充电电压提供模块:将一般家用交流电压经过变压器、电压转换芯片等转换为5V直流电压。 ·电压测试模块:利用AD转换把充电电池两端的电压通过数码管显示出来。·C51程序:单片机控制电池充电芯片实现充电过程的自动化,并根据充电状态给出有关的指示。 【关键字】 单片机、电压转换、MAX1898、智能、充电器

【目录】 一、设计综述 (4) 二、基本方案 (4) 三、软硬件设计 (5) 四、软硬件仿真 (13) 五、测试 (13) 六、设计体会 (14)

一、设计综述 手机电池的使用寿命和单次使用时间预充电过程密切相关,锂电池是手机最为常用的一种电池,它具有较高的能量重量比、能量体积比,具有记忆效应,可重复充电多次,使用寿命较长,价格也越来越低。锂电池对于充电器的要求也比较苛刻,需要保护电路,为了有效利用电池容量,须将锂电池充点值最大电压,但是过压充电会导致电池损坏,这就要求较高的充电精度。 而大部分充电器多采用大电流的快速充电法,在电池充满后如果不及时停止会使电池发烫,过度的充电会严重损害电池的寿命。一些低成本的充电器采用电压比较法,为了防止过充,一般充电到90%就停止大电流快充,而采用小电流涓流补充充电,这样就使充电时间增长了。 一部好的充电器不但能在短时间内将电量充足,而且还可以对锂电池起到一定的维护作用,修复由于记忆造成的记忆效应,即电池容量下降现象。设计比较科学的充电器往往采用专用充电芯片配合单片机控制的方法。专用的充电芯片可以检测出电池充电饱和时发出的电压变化信号,比较精确的结束充电工作,通过单片机对这些芯片的控制,可以实现充电过程的智能化,以缩短充电时间,同时能够维护电池,延长电池使用寿命。 另外,比起一般充电器,智能充电器还增加了充电电压的显示,让我们能直观的看到电池的由预充、快充、满充充电阶段,从而加强对电池的维护。 二、基本方案 (一)方案分析 该设计采用逐个功能模块分析再组合的方法来实现方案。1、单片机模块 智能的实现利用单片机控制,经过分析,单片机芯片可以选择Atmel公司的AT89C52,来控制充满电时蜂鸣器报警声,以及通过中断控制光耦器件通电和断电。 2、充电过程控制模块

锂离子电池智能充电器硬件方案

锂离子电池智能充电器硬件方案

锂离子电池智能充电器硬件的设计 锂离子电池具有较高的能量重量和能量体积比,无记忆效应,可重复充电次数多,使用寿命长,价格也越来越低。一个良好的充电器可使电池具有较长的寿命。利用C8051F310单片机设计的智能充电器,具有较高的测量精度,可很好的控制充电电流的大小,适时的调整,并可根据充电的状态判断充电的时间,及时终止充电,以避免电池的过充。 本文讨论使用C8051F310器件设计锂离子电池充电器的。利用PWM脉宽调制产生可用软件控制的充电电源,以适应不同阶段的充电电流的要求。温度传感器对电池温度进行监测,并经过AD转换和相关计算检测电池充电电压和电流,以判断电池到达哪个阶段。使电池具有更长的使用寿命,更有效的充电方法。 设计过程 1 充电原理 电池的特性唯一地决定其安全性能和充电的效率。电池的最佳充电方法是由电池的化学成分决定的<锂离子、镍氢、镍镉还是SLA电池等)。尽管如此,大多数充电方案都包含下面的三个阶

段: ● 低电流调节阶段 ● 恒流阶段 ● 恒压阶段/充电终止 所有电池都是经过向自身传输电能的方法进行充电的,一节电池的最大充电电流取决于电池的额定容量也能够用1/50C(20mA>或更低的电流给电池充电。尽管如此,这只是一个普通的低电流充电方式,不适用于要求短充电时间的快速充电方案。 现在使用的大多数充电器在给电池充电时都是既使用低电流充电方式又使用额定充电电流的方法,即容积充电,低充电电流一般使用在充电的初始阶段。在这一阶段,需要将会导致充电过程终止的芯片初期的自热效应减小到最低程度,容积充电一般见在充电的中级阶段,电池的大部分能量都是在这一阶段存储的。在电池充电的最后阶段,一般充电时间的绝大部分都是消耗在这一阶段,能够经过监测电流、电压或两者的值来决定何时结束充电。同样,结束方案依赖于电池的化学特性,例如:大多数锂离子电池充电器都是将电池电压保持在恒定值,同时检测最低电

(完整版)USB充电器的设计_毕业设计

湖北轻工职业技术学院毕业设计(论文) 题目 USB充电器的设计 系部信息工程系 专业电子信息工程技术

毕业设计(论文)任务书 设计(论文)题目:USB充电器的设计 设计(论文)主要内容: 1.介绍USB充电器的背景。 2.总结充电器的概念和特性。 3.描述USB充电器设计方法。 4.实现电路。从硬件电路上来完成USB充电器的设计。 5.对设计做整体概述和分析。设计过程中遇到的问题及解决办法、课程设 计过程体会、创新点、新颖性、应用价值等。 要求完成的主要任务: 本课题要求完成的主要任务是设计USB充电器,实现对交流信号的转换,在交流信号波动时保证输出直流信号的稳定,并且要考虑到散热的问题。 指导教师签名:教研室主任签名: 湖北轻工职业技术学院

毕业设计(论文)开题报告 题目 USB充电器的设计 系部信息工程系 专业电子信息工程技术 班级 09电信班 姓名杨小莉 指导教师赵欣 2012年 3 月 13 日 一、选题的依据及意义 USB充电器在各个领域用途广泛,特别是在生活领域被广泛用于MP3、MP4、手机、相机等常见电器。USB充电器通常指的是一种将交流电转换为低压直流电的装置。充电器是采用电力电子半导体器件,将电压和频率固定不变的交流电变换为直流电的一种静止变流装置。在以蓄电池为工作电源或备用电源的用电场合,充电器具有广泛的应用前景。 二、国内外研究概况及发展趋势 在2006年12月14日为了统一手机充电器接口,信产部就颁布了《移动通信手持机充电器及接口技术要求和测试方法》。在接口方面参照了通用串行总线(USB)类型A系列接口规范,并将统一的连接接口设在充电器一侧。

手机充电器电路原理图分析

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,

基于单片机的智能充电器硬件设计

邮局订阅号:82-946120元/年技术创新 嵌入式与SOC 《PLC 技术应用200例》 您的论文得到两院院士关注 闫艳霞:讲师硕士 基金申请人:姜利英;基金资助项目名称:基于BNI 融合的传感器构筑及性能研究;基金颁发部门:国家自然科学基金委;基金编号:(61002007) 基于单片机的智能充电器硬件设计 Design of intelligent charger based on single-chip microcomputer (郑州轻工业学院)闫艳霞 姜利英姜素霞YAN Yan-xia JIANG Li-ying JIANG Su-xia 摘要:锂离子电池以其诸多优点成为应用最广泛的可充电电池,针对锂离子电池充电器的不足,设计了一种采用单片机控制的智能型充电控制器,系统硬件组成包括单片机电路、充电控制电路、电压转换及光耦隔离电路,该智能充电器实现智能控制预充、快充、满充三个充电进程,判断充电终止状态,能够有效防止锂离子电池的欠充或过充,具有高效安全的充电控制、过压保护和过流保护功能。 关键词:锂离子电池;智能充电器;AT89C51;MAX1898中图分类号:TN248.4文献标识码:A Abstract:Lithiumion batteries have become the most widely used rechargeable batteries due to their many https://www.doczj.com/doc/e12452139.html,bined with the shortcomings of common chargers,I try to design a type of intelligent battery charger based on microcomputer.The hardware cir -cuits of the system include microcomputer circuit,charge control circuit,voltage transformation and the light pair isolating circuit..It can control both the three charging process which include previous charge,fast charge and full charge,and judge the charge termina -tion state smartly.It aslo can prevent less charged or overcharged of lithium battery effectively,it also has the functions of high secu -rity charge control,over-voltage protection and over-current protection. Keywords:Lithium battery;intelligent battery charger;AT89C51;MAX1898 文章编号:1008-0570(2012)10-0207-02 引言 电池技术的进步要求复杂的充电算法以实现快速、安全的充电,因此需对充电过程进行更精确的监控(如对充、放电电流、充电电压、温度等的监控)。同时,对充电电池的性能和工作寿命的要求也不断地提高。因为锂离子电池有较高的能量比,放电曲线平稳,自放电率低,循环寿命长,具有良好的充放电性能,可随 充随放、 快充深放,无记忆效应,不含镉、铅、汞等有害物质,对环境无污染,被称为绿色电池,所以锂离子电池得到迅速发展和广泛的应用。 锂离子电池智能充电控制器是指能根据用户的需要智能控制充电进程,并且在充电过程中能对被充电电池进行保护从而防止过电压和温度过高的一种智能化充电控制器,充电器为充电电池补充能源的静止变流装置,因此其性能的优劣直接关系到用电系统的安全性和可靠性指标。本文针对锂离子电池的特点,提出了一种新型的智能充电的设计方案。 1系统设计 1.1锂离子电池充电过程 将锂离子电池的电压曲线分为三段,如图1-1。 图1-1锂离子电池的充电特性 根据锂离子电池充电特性的三段性,充电控制时需采用分段控制的方式,:进入B —C 段之前,电池电量己基本用完,此时采用恒定的小电流充电。当进入B —C 段时,若采用恒流充电,电流过大会损坏电池,电流过小使充电时间过长,根据电压变化情况控制充电电流,使电池充电已满,若此时停止充电,电池会自放电。为防止自放电现象发生,采用浮充维护充电方式,用小电流 进行涓流充电。 充电过程中需不断检测电池两端电压,锂离子电池是以零增量检测为主,时间、温度和电压检测为辅的方式。系统在充电过程检测有无零增量(△V)出现,作为判断电池已充满的正常标准,同时判断充电时间、电池温度及端电压,是否已超过预先设定的保护值作为辅助检测手段。当电池电压超过检测门限时,系统会检测有无零增量出现,若出现零△V,则认为电池正常充满,进入浮充维护状态;在充电过程中,系统会一直判断充电时间、电池温度及端电压是否己到达或超过了充电保护条件。若其中一个条件满足,系统会终止现有充电方式,进入浮充维护状态。 1.3锂离子电池智能充电器功能模块 图1-2系统总体框图 锂离子电池对充电器要求较苛刻,需保护电路,为有效利用电池容量,需将锂离子电池充电至最大电压,但过压充电会造成电池损坏,这就要求较高的控制精度。另外,对于电压过低的电池需要进行预充,充电器最好带有热保护和时间保护,为电池提供附加保护。针对这些应用特点,设计了一种基于单片机 207--

智能充电器设计

摘要 随着便携式电子设备的普及和充电电池的广泛应用,充电器的使用也越来越广泛,但其性能却跟不上电池的发展要求,其电路设计存在较大的缺陷。针对目前市售充电器的技术缺陷,本文应市场需求设计了一款智能镍氢电池充电器。本智能充电器具有检测镍氢电池的状态;自动切换电路组态以满足充电电池的充电需要;充电器短路保护功能;以恒压充电方式进入维护充电模式;充电状态显示的功能。本文充分考虑了国内外的设计方案,在设计中针对市场需求,在功能上进行了适当调整,以满足用户对高性价比的需要。功能适用、价格低廉、电路简化是本设计的重点。 关键词:维护充电、充电电池、智能充电

Abstract Along with the prevalence of the portable devices and cells used widely, chargers are implicated in more fields than before. But the performance of the chargers is far too behind the requirement of the developing cells. With the demerit of the available chargers, this paper designs an intelligent Ni-Mn cells charger. The features of the intelligent charger are depicted as follows, detecting the state of the recharge cells, automatically switching the module of the circuit to meet the demand of the cells, short protection for the charger, maintenance charge module with constant voltage and current, state showing. This paper considers designations from home and abroad fully and adjusts a few functions of the circuit to satisfy the user requirement of high performance-price ratio. The focus of this designation in this paper is proper function, low-cost, and simplified circuit. KeyWords:maintenance charge module、Rechargeable batteries、 intelligent charge

恒流恒压充电器的原理与设计

恒流恒压充电器的原理与设计 2009-09-22 09:26 随着高新电子技术的发展各类充电电子产品不断上升,为此云峰电子为朋友们提供些相关恒流充电器的制作与原理分析,请仔细阅读!详情咨询https://www.doczj.com/doc/e12452139.html, 第一类、lm317恒流源电路图 图1、图2分别是用78××和LM317构成的恒流充电电路,两种电路构成形式一致。对于图1的电路,输出电流Io=Vxx/R+IQ,式中Vxx是标称输出电压,IQ是从GND端流出的电流,通常IQ≤5mA。当VI、Vxx及环境温度变化时,IQ的变化较大,被充电电池电压变化也会引起IQ的变化。IQ是Io的一部分,要流过电池,IQ的值与Io相比不可忽略,因而这种电路的恒流效果比较差。对于图2的电路,输出电流Io=VREF/R+IADJ,式中VREF是基准电压,为1.25V,IADJ是从调整端ADJ流出的电流,通常IADJ≤50μA。虽然IADJ也随VI及环境条件的变化而变化,且也是Io的一部分,但由于IADJ仅为78××的IQ的1%,与Io相比,IQ可以忽略。可见LM317的恒流效果较好。 对可充电电池进行恒流充电,用三端稳压集成电路构成恒流充电电路具有元件易购、电路简单的特点。有些读者在设计电路时采用78××稳压块,如《电子报》2001年第2期第十一版刊登的《简单可靠的恒流充电器》及今年第6期第十版的《恒流充电器的改进》一文,均采用7805。78××虽然可接成恒流电路,但恒流效果不如LM317,前者是固定输出稳压IC,后者是可调输出稳压IC,两种芯片的售价又相近,采用LM317才是更为合理的改进。 LM317采用T0-3金属气密封装的耗散功率为20W,采用TO-220塑封结构的耗散功率为15W,负载电流均可达1.5A,使用时需配适当面积的散热器。由于LM317的VREF=1.25V,其最小压差为3V,因此输入电压VI达4.25V就能正常工作。但应注意输出电流Io调得较大时,输入电压VI的范围将减小,超出范围会进入安全保护区工作状态,使用时可从图3的安全工作区保护曲线上查明输入—输出压差(VI-Vo)的范围。 78××与LM317内部均有限流、过热保护功能,后者还有安全工作区保护功能。78××不允许GND端悬空,否则器件极易损坏。LM317即使ADJ端悬空,各种保护功能仍然

手机万能充电器结构设计概述

一款手机万能充电器结构设计过程 手机充电器开发目录 一、方案定向 二、基本规格要求书的制作 三、ID的确认 四、结构建模 1.资料的汇总 2.构思拆件 3.外观件的绘制 4.初步拆件 5.PCB设计指引制作 6.拆件效果图的确认 五、结构设计 ㈠主体:面底壳 1.止口线的制作 2.螺丝柱的结构 3.主扣的分布 4.与透明盖装配位置的结构设计 5.接触片的避空槽的设计 6.与胶垫或海绵垫等装配位置的结构设计 https://www.doczj.com/doc/e12452139.html,B的固定结构 8.连接片尾部的避空口设计 9.插头安装的设计 10.散热窗,贴主标的位置,支撑凸点的设计 11.PCBA板的固定结构 ㈡透明盖 1.接触片、连接片的固定结构 2.接触片接触头的避空口设计 3.与主体装配的常用结构 4.压紧电池的装置设计 ㈢充电器夹紧力产生装置的结构设计 ㈣其他零配件的设计。 六、结构手板的制作与验证 七、结构设计优化 八、结构评审 九、开模评审 十、开模期间的项目跟进 十一、报价资料的整理 十二、试模与改模 十三、试产 十四、量产 手机充电器简介 手机充电器主要按照使用的方式进行分类。手机充电器大致可以分为座式充电器、旅行充电器和车载充电器。 * 座式充电器。这类充电器一般多为慢充模式,充电时间较长,大约为4~5小时。 * 旅行充电器。大多数手机标准配置中只有旅行充电器。旅行充电器和座式充电器对电池充电的效果是一样的。这类充电器携带方便,对于经常出外旅行的人来说比较合适,它一般是快速充电方式,充电时间为2~3小时,旅行充电器基本都具有充满自停的功能,对手机不会有任何不良影响。 * 车载充电器。这类充电器可以方便用户在汽车上为手机充电。其原理是采用汽车点烟器的电流电压12-24V,经“车充”内部电路进行稳压,整流滤波后,输出合适手机充电所需电压,对电池进行充电。车载充电器的一端插入点烟器,另一端连接手机,一般充电电流较大,属快速充电,一般充电时间为60-90分钟。 现在在一些大城市的主要商场、饭店、车站出现了一种给手机充电的装置,叫做“街头手机充电器”,这种装置有一人多高,分布有不同手机品牌的充电插头,只要把充电器上的小夹子往电池上一夹,再投进去一元硬币,您的手机就可以充

相关主题
文本预览
相关文档 最新文档