当前位置:文档之家› 短壁采煤机研究与总体设计

短壁采煤机研究与总体设计

短壁采煤机研究与总体设计
短壁采煤机研究与总体设计

短壁采煤机研究与总体设计

伍丽娅,冯泾若

(天地科技股份有限公司上海分公司,上海200030)

[摘 要] 论述了国内外短壁采煤机的总体特点、技术发展、设备配套和采煤工艺,可供采煤

机科研、制造、选型和使用单位参考。

[关键词] 短壁;采煤机;总体设计

[中图分类号]TD42116 [文献标识码]A [文章编号]100626225(2002)0420008203

G eneral design and research of short w all shearers

WU Li 2ya ,FEN G Jing 2ruo

(Coal Mining Machinery Department ,Shanghai Branch ,China Coal Research Institute ,Shanghai 200030,China )

Abstract :The general features ,technical development ,equipment mating and coal mining technology are discussed in this paper ,be reference for the engincers and tedinicians in charge of shearer ’s development ,manufacture ,selection and use 1K ey w ords :short wall shearer ;general design

[收稿日期]2002-07-22

[作者简介]伍丽娅(1957-),女,湖南津市人,1986年山东矿业学院毕业,获工学硕士学位,现为天地科技股份有限公司监事。

1 短壁采煤机有别于其它采煤机的基本特点

短壁采煤机是一种外形独特,性能良好,用途

广泛的特殊单滚筒采煤机。其基本特点是:

(1)机身较短,一般3m 左右;

(2)一个摇臂布置在机身中部,能向左右摆动或转动270°以上;

(3)不用斜切进刀,当滚筒完全进入顺槽时,采煤机和输送机一起直接进刀;

(4)通过改变摇臂长度和机面高度,来适应不同的采高范围。

除了上述中置单节摇臂的基本型外,国外还有专门用于大断面巷道掘进的侧置两节摇臂型等。2 国内外短壁采煤机的总体特点和技术发展211 德国、波兰短壁采煤机的总体特点

20世纪80年代中期德国的ESA 260和ESA 2150及波兰的KGU 2130短壁采煤机总体特点是:

(1)电机横向布置,并以电机为摇臂回转轴;

(2)由液压马达经行星减速器和圆柱齿轮,带

动摇臂360°回转,并由液压制动器经行星减速器和圆柱齿轮,实现摇臂定位;

(3)液压传动,采用Eicotrack 无链牵引。这种电机布置方式比一般横向布置和纵向布置

复杂,使用维护条件差;齿轮调高机构的优点是摇臂回转角度大,但是结构复杂,缺少减振和过载保

护。212 上海分院研制的M G D 2N 系列短壁采煤机

20世纪80年代末、90年代初煤科总院上海分院先后开发了无链牵引用于综采的N G D1502NW 、N G D2502NW 和有链牵引、用于普采或经济综采的M G D1502N 短壁采煤机,如表1。

表1 N G D 2N 系列液压牵引短壁采煤机

技术参数

M G D1502NW M G D1502N M G D2502NW

装机功率/kW 150150250截割功率/kW

≤150≤150≤250上摆最大采高/mm 28472475,26653067下摆最大采高/mm 26112295,24293014上摆卧底量/mm 243175,309428下摆卧底量/mm 363355,545481机面高度/mm 161214301663回转中心高/mm 124210601293机身长度/mm 300030003385摇臂长度/mm

805615,805874摇臂转角/(°

)270270320滚筒直径/mm 160016001800滚筒转速/r ?min -1323232截深/mm 630600630牵引类型Roll Rack 有链Roll Rack 牵引力/kN 200200250牵引速度/m ?min -1666重量/t

15141417

这3种短壁采煤机的总体特点是:(1)单电机纵向布置;

8

第7卷第4期(总第51期)

2002年12月煤 矿 开 采Coal Mining Technology Vo117No 14(Series No 151)

September 2002

(2)摇臂采用齿条油缸调高和定位,根据不同用途,可以安装成向上或向下摆动,最大摆角270~320°;

(3)液压牵引,采用Roll Rack无链牵引或有链牵引;

(4)行走箱布置在底托架上,容易实现系列化。

这种电机布置方式的优点是机身较窄,缺点是齿轮传动复杂。调高机构的优点是齿条油缸能够吸收振动,便于保护,简单可靠,维修方便。

213 上海分公司研制的横向布置短壁采煤机2000年,上海分公司研制开发的新系列短壁采煤机,如表2。

表2 M G/2NWD系列电牵引短壁采煤机

技术参数MG150/2002N A W D

MG200/2502N A W D

MG250/3002N A W D

MG150/2002NW D

MG200/2502NW D

MG250/3002NW D

MG150/2002NG W D

MG200/2502NG W D

MG250/3002NG W D

MG150/2002NG1W D

MG200/2502NG1W D

MG250/3002NG1W D

采高范围/m210~215213~310215~315215~410装机功率/kW200,250,300

截割功率/kW150,200,250

牵引功率和

类型/kW50(交流电牵引)

牵引力/kN250~125~0

牵引速度/m?m in-10~1010~2010

机身长度/mm准机载低压或机载中压3010,机载低压3130上摆最大截高/mm2540310935684011

下摆最大截高/mm2482302434833898

上摆卧底量/mm432416397786

下摆卧底量/mm490501482899

机面高度/mm1415169419331946

回转中心高/mm1025130415431556

摇臂长度/mm6159059051205

摇臂摆角/°310

滚筒直径/mm1800180022402500

滚筒转速/r?m in-129,32,36

截深/mm630,800630

驱动轮中心高/mm1165144416831696

销轨中心高/mm491504

驱动轮销轨中心

距/mm67495311921205

摆线轮齿数/个8,138,10,108,13,138,13,13

重量/t20212223

新系列短壁采煤机的总体特点是:

(1)截割电机横向布置在机身上而不是摇臂回转轴上,提高了电机和整机的可靠性和可维修性,总体结构优于国外同类产品;

(2)摇臂轴用关节轴承取代三层复合材料滑动轴承,大大提高了可靠性和使用寿命;

(3)继续采用简单可靠的齿条油缸调高系统,摇臂可以向上方或向下方摆310°;

(4)更换电机,可以实现截割功率150,200或250kW;

(5)可以多电机电牵引,牵引功率50kW,装机功率200,250,300kW,电牵引短壁采煤机属于国际首创。也可以单电机液压牵引,牵引力250kN。牵引速度0~11m/min,装机功率150, 200,250kW;

(6)电牵引短壁采煤机按原理可分为交流变频调速和开关磁阻调速,按系统可分为准机载低压(有非机载牵引变压器,有牵引电缆,机载低压变频器或低压功率变换器)、机载低压(无牵引电缆,有机载牵引变压器,有机载低压变频器或低压功率变换器)和机载中压(

无牵引变压器,无拖曳牵引电缆,机载中压变频器或中压功率变换器);

(7)有可编程序控制器、状态检测、故障诊断和无线电遥控;

(8)采用Eicotrack无链牵引,可靠性高,控顶距小;

(9)可自带调高泵,也可拖曳乳化液管调高,简化系统。

图1 M G250/3002NWD型采煤机

这种单电机横向布置的液压牵引短壁采煤机系列,性能比原有的单电机纵向布置的液压牵引短壁采煤机更好;多电机横向布置的电牵引短壁采煤机系列,技术上居国际领先水平。准机载低压交流变频的M G250/3002NWD已在大同综采工作面使用,如图1。机载低压交流变频的M G250/3002NAWD

9

伍丽娅等:短壁采煤机研究与总体设计2002年第4期

将在兖州轻放工作面使用。

交流变频调速目前技术最成熟、应用最广泛;开关磁阻调速列入国家九五、十五项目,低速性能好、四象限运行容易、结构简单、可靠性高。低压的变频器和SRD控制器应用广,产品多;中压小功率的变频器和SRD控制器需要特制,但是对于1140V的电牵引采煤机,特别是一些要求结构紧凑的电牵引采煤机,总体设计上的优势十分明显。214 新系列短壁采煤机的通用化、标准化

根据煤质硬度,可以更换截割电机,组装成截割功率150kW,200kW,250kW的采煤机。

根据采高要求,可以更换滚筒、摇臂、底托架,组装成高型、基型、矮型采煤机。

装上变频器和变频电机,可以组成交流变频电牵引采煤机,装上功率变换器和开关磁阻电机,可以组成开关磁阻电牵引采煤机,装上液压泵箱和液压马达,可以组成液压牵引采煤机。

3 短壁采煤机的设备配套和采煤工艺

311 综放工作面设备配套

采煤机 考虑到生产能力和地质条件,截割功率宜大不宜小;

液压支架 可与长壁设备通用;工作面两端可设排头(尾)架;工作面和机尾先移架,后推溜;机头若传动部平行布置则先推溜,后移架,若传动部垂直布置则先移架,后推溜。尽量采用垂直布置,以便排头(尾)架与工作面支架统一,及时支护。

工作面前部输送机 机头尾按短壁综采要求变线,确保采煤机割透,有适当的下切量,摇臂能够翻转,并使巷道宽度尽量小;采用矮机尾架、机头单传动部垂直布置在煤壁侧;销轨式或齿轨式无链牵引。

工作面后部输送机 机头尾与前部输送机通用,与支架软连接。

312 综采工作面设备配套

综采工作面设备配套,除没有后部输送机外,其余同综放工作面。还可以把工作面输送机和转载机合二而一,成为90°转弯输送机。

313 对上下顺槽断面的要求

上顺槽净高:矮型≥215m,基型≥219m,净宽≥315m。

下顺槽净高:矮型≥215m,基型≥219m,净宽≥315m。

314 采煤工艺

采煤工艺分机尾进刀和机头进刀两种。

机尾进刀 采煤机从轨道巷向运输巷割顶刀。跟机移架。采煤机爬上输送机机头,割顶煤。采煤机摇臂落下。采煤机爬下输送机机头,割底煤。采煤机从运输巷向轨道巷割底刀。跟机推输送机,爬上输送机尾,割底煤。采煤机举起摇臂,把滚筒放在轨道巷断面之内,推输送机机尾进刀。

机头进刀 采煤机从运输巷向轨道巷割顶刀。跟机移架。采煤机爬上输送机机尾,割顶煤。采煤机摇臂落下。采煤机爬下输送机机尾,割底煤。采煤机从轨道巷向运输巷割底刀。跟机推输送机。采煤机爬上输送机头,割底煤。采煤机举起摇臂,把滚筒放在运输巷断面之内,推输送机机头进刀。

机头进刀要求巷道宽度较大,割上刀片帮时容易堵塞输送机;机尾进刀当工作面倾角大时机尾处装煤较困难。

315 注意事项

(1)我国现有的各种短壁采煤机和短壁工作面输送机都是煤科总院上海分院设计的,首采工作面的总体配套由煤科总院上海分院负责。经验表明工作面总体配套(特别是输送机机头机尾设备配套)和巷道布置是短壁工作面的关键之一。

(2)短壁采煤机的生产能力,带式输送机的输送能力往往成为限制产量的“瓶颈”。

(3)短壁工作面的推进速度较快,两三天要缩一次胶带,一两个月要搬一次家,因此要注意设备的装拆搬运,建议选用组合式供电设备。

(4)从采掘平衡看,短壁工作面推进速度可能达到150~300m/月,掘进机掘进速度是1000m/月,要注意短壁工作面回采、掘进和准备的平衡。

[参考文献]

[1]伍丽娅,冯泾若1短机身采煤机在特殊采煤方法中的应用

[A]1煤炭工业技术委员会,煤炭工业放顶煤开采技术中心1

综采放顶煤综合技术研究与应用[C]120001

[2]伍丽娅,冯泾若1短壁工作面和短壁采煤机的经济技术分析

[J]1煤矿开采,2002,(3):6281

[责任编辑:邹正立]

01

总第51期煤 矿 开 采2002年第4期

电牵引采煤机截割部设计

摘要 摘要:本文完成了MG400/930一WD电牵引采煤机的整机外形的布局设计,介绍了采煤机的类型和工作原理,以及目前国内采煤机的现状和发展趋势,从左摇臂、左牵引部、左行走部、左电器控制箱、右电器控制箱、右行走箱、右牵引部、右摇臂的具体布局到各次的特点都有所涉及;重点完成了采煤机摇臂的设计计算,包括摇臂壳体以及壳体内一轴、第一级惰轮组、二轴、第二级惰轮组、第三级惰轮组、中心轮组、第一级行星减速器、第二级行星减速器几乎所有零部件的装配关系,各轴的转速计算,功率的传递计算,第一级圆柱直齿齿轮减速器的设计计算,第二级圆柱直齿齿轮减速器的设计计算,第一级行星减速器的设计计算,第二级行星减速器的设计计算,各轴的设计以及校核,所有轴承支撑处轴承的选择校核、花键连接处花键的选用以及校核。 关键词:采煤机;电牵引;摇臂;行星轮减速器

ABSTRACT Abstract:This paper completed a MG400/930 WD Electric Traction Shearer of equipment configuration for the layout .Shearer introduced the type and principle,and the current domestic Shearer's current situation and development trend .From The left arm、left traction Department、the Department of left running,、the electrical control box on the left and right electrical control box,、dextral box、and the right of traction 、right arm to the specific layout of the features have been covered,shearer will focus on completing the design of the Rocker which including Shell and Shell within one axis,、the first-round group inert、two-axis,、the second-round group inert、the third-round group inert,、the center round group、first-class planetary reducer,、and the second-stage planetary reducer almost all parts of the assembly.The shaft speed and power transmission are calculated importont .First-class Spur Gear reducer design calculation, the second-straight cylindrical gear reducer design, first-class planetary reducer design calculation, the second-stage planetary reducer design, the design of the shaft and Verification, Bearing all the support bearings choice Department Verification, Key spent connecting Department spent Key Selection and Verification. Keywords:seam;shearer;electrical haulage;Rocker ;Planetary gear reducer

掘进机截割部设计汇总

2.1.2 各部件的结构型式的确定 2.1.2.1 切割机构 (3)行星减速器 主要由箱体、减速齿轮、二级行星轮架、输入、输出轴构成。太阳轮与行星轮相啮合,此行星轮通过两个轴承装在星轮轴上,两端装有孔用弹性挡圈,星轮装在第一级行星架相应的轴孔内,内轮与箱体组成一体并与行星轮啮合带动第一级行星架,实现第一级减速[7]。 第二级的太阳轮与第一级行星架为渐开县花键联结,太阳轮与第二行星轮啮合,此行星轮装在第二级的轮轴,此轮轴装在第二级行星架相应轴孔内。这里内轮与减速器壳体组成一体与行星轮啮合,此星轮不仅自转还绕太阳轮公转,从而实现第二级减速器。 图2-1 EBZ200E掘进机的截割部行星减速器结构 Fig.2-1 EBZ200E roadheader in Jiamusi Coal Mine Machinery Co. Ltd. 2.2.4 截割机构技术参数的初步确定 2.2.4.3 电动机的选择 根据行业标准MT477-1996YBU系列掘进机用隔爆型三相异步电动机选择,确定截割功率为200kw,额定电压AC1140 /660 V,转速1500rpm

表2-2电动机的基本参数[13] 功率/kW 效率η/% 功率因数 /cos?堵转转矩堵转电流最小转矩最大转矩冷却水流 量/31 m h- ? 额定转矩额定电流额定转矩额定转矩 200 92 0.85 2.0 6.5 1.2 2.6 1.3

3悬臂式掘进机截割机构方案设计 3.1截割部的组成 掘进机截割部主要由截割电动机、截割机构减速器、截割头、悬臂筒组成。见图3-1.截割部是掘进机直接截割煤岩的装置,其结构型式、截割能力、运转情况直接影响掘进机的生产能力、掘进效率和机体的稳定性,是衡量掘进机性能的主要因素和指标。因此,工作部的设计是掘进机设计的关键。 1 截割头 2 伸缩部 3 截割减速机 4 截割电机 图3-1 纵轴式截割部 ?3.2 截割部电机及传动系统的选择 切割电机的选择应根据工作条件选取,由设计要求可知,所设计的掘进机可截割硬度为小于85Mpa的中硬岩,查表2-1可知应该选取功率为200KW的截割电动机。电机动力经传动系统传向截割头进行截割,且机体为焊接结构,前端与行星减速器相联,后端联接回转台。电机输出力矩,通过花键套传递给减速器,再由花键套传到主轴,主轴通过内花套键与截割头相联,把力(矩)传递到割头上,截割头以此方式进行工作。 3.5 传动方案设计 悬臂式掘进机的传动方式为电机输出轴通过联轴器将转矩传递给减速器的输入轴,减速器输出轴通过联轴器将转矩传递给主轴,主轴带动截割头转动。

钢便桥设计计算详解

某大桥装配式公路钢便桥工程专项施工方案之一 设计计算书 二〇一六年三月六日

目录 1、工程概况 (4) 1.1 **大桥 (4) 1.2 钢便桥 (5) 2、编制依据 (5) 3、参照规范 (5) 4、分析软件 (5) 5、便桥计算 (5) 5.1 主要结构参数 (5) 5.1.1 跨度 (6) 5.1.2 便桥标高 (6) 5.1.3 桥长 (6) 5.1.4 结构体系 (6) 5.1.5 设计荷载 (6) 5.1.6 材料 (8) 5.2 桥面计算 (8) 5.2.1 桥面板 (8) 5.2.2 轮压强度计算 (9) 5.2.3 桥面板检算 (9) 5.3 桥面纵梁检算 (10) 5.3.1 计算简图 (10) 5.3.2 截面特性 (10) 5.3.3 荷载 (11) 5.3.4 荷载组合 (13) 5.3.5 弯矩图 (14) 5.3.6 内力表 (14) 5.3.7 应力检算 (15) 5.3.8 跨中挠度 (16) 5.3.9 支座反力 (17) 5.4 横梁检算 (17) 5.4.1 计算简图 (17) 5.4.2 装配式公路钢桥弹性支承刚度 (17) 5.4.3 横梁模型 (18) 5.4.4 作用荷载 (18) 5.4.5 计算结果 (19) 5.4.6 截面检算 (20) 5.4.7 挠度检算 (20) 5.5 主桁计算 (21) 5.5.1 分配系数计算 (21) 5.5.2 计算模型 (22) 5.5.3 截面特性 (22) 5.5.4 作用荷载 (24) 5.5.5 荷载组合 (25)

5.5.6 主要杆件内力及检算 (26) 5.5.7 支座反力 (33) 5.6 桩顶横梁计算 (33) 5.6.1 上部恒载计算 (33) 5.6.2 作用效应计算 (34) 5.6.3 荷载分配系数计算 (34) 5.6.4 荷载分配效应 (37) 5.6.5 横梁计算模型 (37) 5.6.6 横梁作用荷载 (37) 5.6.7 横梁荷载组合 (38) 5.6.8 横梁弯矩图 (38) 5.6.9 横梁应力图 (38) 5.6.10 横梁挠度 (39) 5.7 钢管桩计算 (39) 5.7.1 钢管桩顶反力 (39) 5.7.2 钢管桩材料承载力检算 (40) 5.7.3 钢管桩侧土承载力检算 (40) 6、钻孔平台计算 (41) 5.8.1 桥面板计算 (41) 5.8.2 纵向分配梁计算 (42) 5.8.3 墩顶横梁 (45) 5.8.4 平台钢管桩检算 (49) 7、剪力支承设计 (50) 7.1 水平支承系 (50) 7.1.1 2.3m水平支承检算 (50) 7.1.2 2.5m水平支承检算 (50) 7.1.3 5m水平支承检算(双根对肢) (51) 7.2 斜支承系 (51)

工作面更换采煤机左行走部安全技术措施详细版

文件编号:GD/FS-9198 (解决方案范本系列) 工作面更换采煤机左行走部安全技术措施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

工作面更换采煤机左行走部安全技 术措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 (一)、概述 25203综采工作面左行走部导向滑靴销轴耳断裂,为了保证作业安全,特制定本安全技术措施。 (二)、行走部的拆卸与安装工艺 1、采煤机停在运输机尾割完三角煤后,拉空运输机上浮煤,打出工作面所有支架护帮板,升紧支架,拉回机尾段运输机溜槽,闭锁作业区域液压支架、加锁。采煤机、运输机停电、闭锁加锁,执行专人专锁。 2、拆下行走部处的电缆槽内所有电缆、水管,拆下挡煤板。

3、把放在运输机尾的新行走部运至需要更换的地方,放在支架内一侧,并采取防倒、防滑措施,运输过程中严防碰伤牵引块接触面或其他人员、设备。 4、拆掉销排止推销,拆下销排,使行走部正对拆卸掉挡煤板部位,吊挂起采煤机电缆使其高于采煤机机身,便于拆卸行走部。 5、采煤机两滚筒支撑在煤墙侧,使采煤机左行走部处于悬空状态。拆下牵引扭矩轴,使用力矩倍增器拆卸牵引块固定螺栓。注意拆卸螺栓时一定要均匀拆卸。 6、把拆卸下的旧行走部放在支架内另一侧,并做好防倒、防滑工作,且便于回收。 7、用两个5吨吊链把支架前放置的新行走部吊至采煤机前,对正行走部安装位置,必要时用一个3吨吊链,进行调偏。

采煤机滚筒设计

毕业设计说明书 题目名称:采煤机滚筒设计说明书 院系名称:机械设计制造及其自动化 班级: 学号: 学生姓名: 指导教师: 2015年10月

采煤机滚筒的设计 摘要 采煤机是煤矿综采工作中的关键机械设备之一,大功率、高强度、高可靠性是现代采煤机发展方向。 本论文完成了采煤机滚筒的设计,对滚筒中的组成部件都做了具体分析计算,重点对滚筒的结构进行了优化设计。包括滚筒的布局设计及三维建模。文中主要介绍了目前国内外采煤机的研究现状及未来发展趋势,同时介绍了采煤机滚筒的类型、工作原理和主要组成,还介绍了采煤机滚筒的具体结构。 本文运用大学所学的知识,提出了采煤机滚筒的结构组成、工作原理以及主要零部件的设计中所必须的理论计算和相关强度校验,构建了采煤机滚筒总的指导思想,从而得出了该采煤机滚筒的优点是高效,经济,并且运行平稳的结论。关键字采煤机滚筒;结构;组成;结论

The design of shearer drum Abstract The shearer is a medium-low power electric haulage shearers mining medium-thick seam, for coal seam thickness , mining height ,coal bed pitch less than it, it can be used for hard coal mining. This paper completed the design of shearer rocker arm, including the layout and three-dimensional modeling of speed reducer, it described the current status of domestic and international coal mining research and future development trends, the type of shearer, working principles and main components,it also introduced the specific structure of shearer rocker. In the design process, completed the calculation and design of the reducer drive scheme and related components. First, completed the rocker reducer transmission ratio , speed and transfer power distribution calculation. Secondly, the completion of the design and check of five shafts and the shaft driving gears inside the rocker arm shell,simply introduced the assembly relationships and intensity checking of the planetary gear train. Thirdly, the completion of the selection and check the spline for connection. Finally, the three-dimensional modeling. Key words:pneumatic manipulator; cylinder ;pneumatic loop ;degrees

厌氧塔计算手册

1. 厌氧塔的设计计算 1.1 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为 5.0 /( 3 / ) N v kgCOD m d 进出水 COD 浓度 C 0 2000( mg / L) , E=0.70 QC 0 E 3000 20 0.70 8400m 3 3 V= 5.0 ,取为 8400 m N v 式中 Q ——设计处理流量 m 3 / d C 0——进出水 CO D 浓度 kgCOD/ 3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器 3 座,横截面积为圆形。 1) 反应器有效高为 h 17.0m 则 横截面积: S V 有效 8400 =495(m 2 ) h 17.0 单池面积: S i S 495 165(m 2 ) n 3 2) 单池从布水均匀性和经济性考虑,高、直径比在 1.2 : 1 以下较合适。 设直径 D 15 m ,则高 h D*1.2 15 * 1.2m 18 ,设计中取 h 18m 单池截面积: S i ' 3.14 * ( D )2 h 3.14 7.52 176.6( m 2 ) 2 设计反应器总高 H 18m ,其中超高 1.0 m 单池总容积: V i S i ' H ' 176.6 (18.0 1.0) 3000( m 3 ) 单个反应器实际尺寸: D H φ15m 18m 反应器总池面积: S S i ' n 176.6 3 529.8(m 2 ) 反应器总容积: V V 'i n 3000 3 9000(m 3 )

刚便桥设计计算方案书

乐昌至广州高速公路——乳源河大桥 钢栈桥设计计算方案书 一、钢便桥设计要点 (一)刚便桥设计结构体系 钢便桥拟采用梁柱式钢管贝雷梁简支结构设计,跨径设计9m,横向钢管间距为3m,每排3根,采用直径529mm钢管。桥面宽6m设计,在钢管上横向布置2根I36b工字钢,纵向布置3组6排贝雷简支纵梁。贝雷纵梁上横向铺设20#槽钢,槽钢间距为7cm,槽钢上铺设5mm防滑板做桥面系。 (二)支架纵梁 纵向布置3组6排贝雷简支纵梁(布置图见附图),纵梁跨径为9m,纵梁端头剪切力最大,端头竖向采用20#槽钢或工字钢1.5m范围进行加固处理。54m阶段设置一个制动墩,间距为2m,6根钢管组成。 (三)跨径9m验算 1、竖向荷载计算 A、机械自重考虑:W=60t=600KN;即W1=600KN/9m=66.6 KN/m B、钢板自重: W2=94.2/10*0.008=0.075KN/m2 C、I36b工字钢自重:W3=65.689*1.0=0.65689 KN/m D、贝雷梁自重:W4=0.3*10/3=10KN/m E、人群及机具工作荷载:Q5=2.0 KN/m 2、竖向荷载组合:

A 、q=机械荷载+钢板自重+贝雷梁自重+人、机具荷载 =66.6 KN/m+6.0*0.075 KN/m 2+6*10 KN/m+2.0*6 =139.05 KN/m 3、贝雷纵梁验算 9m 9m 9m 9m 四跨等跨连续梁静载布置图q 四跨等跨连续梁活载布置图 9m 跨选用3组6排国产贝雷,最大跨按9m 计算为最不利荷载,贝雷片布置间距布置110cm 为一组,其力学性质: I=250500 cm 4 [M]=78.8 t.m [Q]=24.5 t (1)贝雷片在荷载作用下最大弯矩: Mmax=qL 2/8=139.05*92/8=1407.8813KN.m 单片贝雷片承受弯矩: M=1407.8813/8=175.9852KN.m <[M]=788KN.m 满足要求。 注:[M]单片贝雷片容许弯矩。

更换采煤机行走部安全技术措施

己15—12050采煤工作面作业规程补充措施 己15—12050采煤工作面更换采煤机行走部 安全技术措施 ————措施编号:ZCED—058 施工单位: 施工队长: 技术负责: 措施编制: 编制时间:2015-04-11

更换采煤机下摇臂安全技术措施 一、概述 我队回采的己15-12050采面使用的MGTY300/700-1.1D型采煤机,在使用过程中下行走部出现故障需要更换,为保证施工的安全,特制定本措施。 二、施工顺序 运输新采煤机行走部→拆卸采煤机滚筒→拆卸采煤机行走部→安装采煤机摇臂→安装采煤机滚筒→运输旧采煤机摇臂。 三、准备工作 1、采煤机原则上要停在机头15架以下顶板完好地段,刮板输送机推移千斤顶保持收缩状态,以便于摇臂和滚筒的拆卸、安装。 2、采煤机下滚筒至机头做好更换、运输下摇臂所需的空间。倾向长度8—10米,走向宽度2米,高度不低于2.8米。支护方式:每架支架上架设两根2.2米直径160mm的圆木梁,间距0.75米,圆木梁伸入支架不得小于0.3米。顶板及煤墙用半圆木、竹笆背严背实,然后打上贴帮柱。 3、准备齐拆卸、安装和起吊摇臂所需的工具,手拉葫芦等不完好不得使用。 4、新摇臂运至采面前提前拆除机巷人行道侧影响运输的超前支护,旧摇臂运出转载机头后要及时恢复机巷超前支护。 5、从机巷使用无极绳绞车将新采煤机摇臂运至开关列车处卸车,拆除开关列车处胶带输送机托架,使用回柱绞车配合手拉葫芦将摇臂拉

至刮板输送机机头,再使用手拉葫芦运至采面,旧摇臂按照反方向运出采面装车升井。 四、拆卸、安装采煤机下摇臂及滚筒安全技术措施 1、拆卸摇臂及滚筒的工作程序: 采煤机下牵到合适的位置 拆除滚筒→拆除摇臂。 安装摇臂及滚筒的工作程序: 安装下摇臂→安装下滚筒→安装下调高千斤顶。 2、起吊前,对起吊区加强支护,选择牢固可靠位置进行起吊,要指定专人观察起吊点的受力情况,发现问题要立即处理。 3、作业前,采煤机、刮板输送机必须停电闭锁,采煤机所在的位置关闭支架高压截止阀。起吊摇臂和滚筒时,要使用3吨和5吨手拉葫芦配合起吊,起吊位置要选在安全可靠处,同时要避开支架管线,防止挤、压坏管线。所用的链环螺丝要上满扣,任何人员都要站在安全位置,不得把身体的任何部位伸在被起吊的摇臂及滚筒下方,以确保作业时的安全。 4、拆卸的采煤机滚筒要捆扎牢固,防止倾倒伤人。 5、拆卸、安装摇臂及滚筒时要有机电队长或机电班长现场统一指挥,确保无误。 6、安装好后,要进行送电点动试车,无问题后再试运转5~10分钟,以确保设备能正常运转。 五、其它安全技术措施: 1、运输新、旧摇臂时,要严格执行作业规程中运输大件安全技

机械毕业设计206MG3000700-WD型采煤机截割部的设计

1.1引言 (1) 1.2采煤机械概述 (1) 1.2.1采煤机械化的发展 (1) 1.2.2机械化采煤的类型 (2) 1.3采煤机简述 (2) 1.3.1采煤机的分类、组成和工作原理 (2) 1.3.2滚筒采煤机的工作原理 (3) 1.3.3滚筒采煤机的特点 (4) 1.3.4采煤机与刨煤机的比较 (4) 2 MG300/700-WD型采煤机 (4) 2.2主要用途及适用范围 (5) 2.3型号的组成及其代表的含义 (5) 2.4 使用环境条件 (5) 3 MG3000/700-WD型采煤机截割部的设计 (7) 3.1 截割部概述 (7) 3.2 截割部传动总体方案 (7) 3.2.1 设计总则 (7) 3.2.2 已知条件 (8) 3.2.3 截割部传动方案的确定 (8) 3.2.4 计算传动效率 (9) 3.2.5 传动比的分配及配齿情况 (10) 3.3 截割部传动系统齿轮的校核计算 (11) 3.3.1 概述 (11) 3.3.2 截一齿轮,惰一齿轮,截二大齿轮校核计算 (11) 3.3.3 变速齿轮校核计算 (19) 3.3.4 截三轴小齿轮,惰二轴齿轮,对三轴齿轮,截四轴齿轮校核计算 (24) 3.4 截割部传动系统辅助装置的校核计算 (45) 3.4.1 各轴花键的设计与校核 (45) 3.4.2 截割部传动系统各传动轴、轴承的校核 (50) 4 MG300/700-WD型采煤机截割部说明 (58) 4.1截割机构 (58) 4.2截割机构的传动系统 (58) 4.3截割部减速箱 (59) 4.4截割滚筒 (60) 4.5 维护与检修 (60)

翻译部分.............................................................................................. 错误!未定义书签。 英文原文....................................................................................... 错误!未定义书签。 中文译文....................................................................................... 错误!未定义书签。参考书目 (63) 致谢 (65)

厌氧塔设计计算书

1.厌氧塔的设计计算 1.1反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E=0.70 V= 3 084000 .570 .0203000m N E QC v =??= ,取为84003 m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .1784002 m h V S =有效 == 单池面积:)(1653 4952 m n S S i == = 2) 单池从布水均匀性和经济性考虑,高、直径比在1.2:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765 .714.3)2 ( *14.32 2 2' m h D S i =?== 设计反应器总高m H 18=,其中超高1.0m 单池总容积:)(3000)0.10.18(6.176'3 ' m H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762 ' m n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.1762430002 3h m m S Q V r =??= = 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 1.7.2 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于2.0)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16' m b l == 每个单元宽度:)(57.27 187 ' m l b == = 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142 323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

掘进机的截割机构的设计

摘要 随着煤炭行业机械化程度的加快,煤炭行业以前只是重视采煤的机械化,大多数的煤炭行业很少有在掘进方面有较大的投入和研究,这样就造成了采掘速度远远大于开拓速度,此时怎样来提高出煤量,开拓的机械化就显得极其重要了。作为我国主要能源的煤炭资源在开采上日趋机械化的同时,迫切需要拥有先进的掘进机械,掘进机的研制成功标志着我国的煤炭行业已达到世界的先进水平。 掘进机截割机构是掘进机的主要组成部分,按照掘进机截割部的总体、动力部分、传动部分以及执行部分的设计思路进行掘进机截割部的设计。在设计时,动力部分做选型计算,传动部分的行星减速机构做具体的设计计算和校核,执行部分只对执行元件进行设计计算和校核。设计对于提高和改进掘进机工作性能,发展我国大口径全断面掘进机产业以及进一步提高我国的盾构研发能力、改善研发条件具有重大战略意义。 关键词:掘进机; 截割臂; 行星减速器

Abstract With the accelerating of coal industry, the degree of mechanization mining coal industry is the importance before, the most mechanized excavating in coal industry has rarely have large investment and research, thus causing the mining speed than develop, how to improve the speed of coal, development of a mechanized appears very important. As our main source of energy in the exploitation of coal resources in the increasingly urgent need, mechanized excavating the advanced mechanical, swinging the successful development of the coal industry, China has reached the advanced world level. Determing cutting mechanism is the main component, the product in accordance with the overall determing cutting parts, power transmission part and the part, the part of the design thought for the design of determing cutting. In the design, selection of part, transmission parts of planetary gearhead institutions do specific design calculation and test execution part only, design calculation of actuators and checking. Design for improvement in China, the development work performance swinging big caliber, whole section roadheader industry and further enhance our shield developing capability, improve development condition with the strategic significance. Key words:roadheader ; cutting arm ; planetary-gear drive

钢便桥计算书正文(最终)

本计算内容为针对沭阳县新沂河大桥拓宽改造工程钢便桥上、下部结构验算。 二、验算依据 1、《沭阳县新沂河大桥拓宽改造工程施工图》; 2、《沭阳县新沂河大桥拓宽改造工程钢便桥设计图》; 3、《装配式公路钢桥使用手册》; 4、《公路钢结构桥梁设计规范》JTGD64-2015; 5、《钢结构设计规范》GBJ50017-2003; 6、《路桥施工计算手册》; 7、《公路桥涵地基与基础设计规范》JTG D63-2007; 8、《沭阳县新沂河大桥拓宽改造工程便道便桥工程专项施工方案》。 三、结构形式及验算荷载 3.1、结构形式 北侧钢便桥总长60m,南侧钢便桥总长210m,上部均为6排单层多跨贝雷梁简支结构,跨径不大于9m;下部为桩接盖梁形式,盖梁采用45A双拼工字钢,桩基采用单排2根采用529*8mm钢管桩。见下图: 立 面形式横断面形式

钢便桥通行车辆总重600KN,重车车辆外形尺寸为7×2.5m,桥宽6m,按要求布置一个车道。 横向布载形式 车辆荷载尺寸 四、结构体系受力验算 4.1、桥面板 桥面板采用6×2m定型钢桥面板,计算略。 4.2、25a#工字钢横梁(Q235) 横梁搁置于6排贝雷梁上,间距1.5m。其中:工字钢上荷载标准值为1.18KN/m;25a#工字钢自重标准值0.38KN/m。计算截面抗弯惯性矩I、截面抗弯模量分别为:I =50200000mm4;W =402000mm3。

(1)计算简图: (2) 强度验算: 抗弯强度σ=Mx/Wnx=46580000/402000 =115.9Mpa<[f]=190Mpa;满足要求! 抗剪强度τ=VSx/Ixtw=167362×232400/(50200000×8)=96.8Mpa<ft =110Mpa;满足要求! (2) 挠度验算: f=M.L2/10 E.I =35.8*1.32/10*2.1*5020*10-3 =0.57mm

采煤机截割部设计本科毕业设计

摘要 本文描述了中煤层电牵引采煤机整机方案设计以及截割部的设计过程。 中煤层电牵引采煤机可用于煤层厚度为2-4m、煤质中硬的缓倾斜煤层。与传统的纵向布置的单电机采煤机相比,该采煤机将截割电机直接安装在截割部壳体内,齿轮减速装置全部集中在截割部壳体及行星减速器内,取消了螺旋伞齿轮、固定减速箱、摇臂回转套等结构,使其结构更简单、紧凑,可靠性更高。 截割部是采煤机直接落煤、装煤的部分,其消耗的功率约占整个采煤机功率的80%-90%,主要由截割部壳体、截割电机、齿轮减速装置、滚筒等组成。该采煤机的截割部采用四级传动;前三级为直齿传动,第四级为行星传动。二级传动的圆柱齿轮为可换齿轮,使输出转速可根据不同的煤质硬度在两档速度内选取。截割部采用了三个惰轮轴,使采煤机能够满足截割高度对截割部长度的要求。设计将截割部行星减速器和滚筒直接联结,取消了安装在滚筒上的截齿,使结构简单、可靠。 关键词:采煤机,截割部,结构,设计

Abstract This brochure describes the type of hydraulic shearer traction unit program design and cutting the Department of Design and calculation process. traction Shearer hydraulic seam thickness can be used for 2-4 m, Hard coal to the gently inclined seam. With the traditional vertical layout of the single-motor compared to Shearer, Shearer will be the ranging-arm installed directly in the cutting of the shell, gear device exclusively on cutting Shell and planetary reducer, the abolition of the spiral bevel gears, gear box fixed, Rocker rotating sets of structures, their structure is simpler, more compact and higher reliability. Ranging-arm of the shearer is directly charged coal, the coal loaded, its about the power consumption of the entire power shearer 80% -90%, mainly by cutting Shell, cutting electrical, Gear and drum components. The shearer cutting unit used four drive; Before three straight tooth drive, the fourth level of planetary transmission. 2 Drive Gear to be for the gears, enabling the output speed can be based on different coal hardness in two tranches within the selected speed. Cutting the Department has adopted a three lazy axle, to meet the shearer cutting height on the ranging-arm degree requirements. Designed to be cutting planetary reducer and drum direct link, canceled installed in the drum Pick, simple and reliable. Keywords: shearer, ranging-arm,structure,design

UASB的设计计算书

两相厌氧工艺的研究进展 摘要:传统的厌氧消化工艺中,产酸菌和产甲烷菌在单相反应器内完成厌氧消化的全过程,由于二菌种的特性有较大的差异,对环境条件的要求不同,无法使二者都处于最佳的生理状态,影响了反应器的效率。1971年Ghosh和Poland提出了两相厌氧生物处理工艺[1],它的本质特征是实现了生物相的分离,即通过调控产酸相和产甲烷相反应器的运行控制参数,使产酸相和产甲烷相成为两个独立的处理单元,各自形成产酸发酵微生物和产甲烷发酵微生物的最佳生态条件,实现完整的厌氧发酵过程,从而大幅度提高废水处理能力和反应器的运行稳定性。 (1) 两相厌氧消化工艺将产酸菌和产甲烷菌分别置于两个反应器内,并为它们提供了最佳的生长和代谢条件,使它们能够发挥各自最大的活性,较单相厌氧消化工艺的处理能力和效率大大提高。Yeoh对两相厌氧消化工艺和单相厌氧消化工艺进行了对比实验研究。结果表明:两相厌氧消化系统的产甲烷率为0.168m3CH4/(KgCOD Cr?d)明显高于单相厌氧消化系统的产甲烷率0.055m3CH4/(KgCOD cr?d)。 (2) 反应器的分工明确,产酸反应器对污水进行预处理,不仅为产甲烷反应器提供 了更适宜的基质,还能够解除或降低水中的有毒物质如硫酸根、重金属离子的毒性,改变难降解有机物的结构,减少对产甲烷菌的毒害作用和影响,增强了系统运行的稳定性。 (3) 产酸相的有机负荷率高,缓冲能力较强,因而冲击负荷造成的酸积累不会对产 酸相有明显的影响,也不会对后续的产甲烷相造成危害,提高了系统的抗冲击能 力。 (4) 产酸菌的世代时间远远短于产甲烷菌,产酸菌的产酸速度高于产甲烷菌降解酸的速率[4,5],产酸反应器的体积总是小于产甲烷反应器的体积。 (5) 两相厌氧工艺适于处理高浓度有机污水、悬浮物浓度很高的污水、含有毒物质及难降解物质的工业废水和污泥。 2两相厌氧工艺的研究现状 2. 1反应器类型 从国内外的两相厌氧系统研究所采用的工艺形式看,主要有两种:第一种是两相均采用同一类型的反应器,如UASB反应器,UBF反应器,ASBR反应器,其中UASB 反应器较常用。第二种是称作Anodek的工艺,其特点是产酸相为接触式反应器 (即完全式反应器后设沉淀池,同时进行污泥回流),产甲烷相则采用其它类型的反应器⑹。 王子波、封克、张键采用两相UASB反应器处理含高浓度硫酸盐黑液,酸化相为8.87L的普通升流式反应器,甲烷相为28.75L的UASB反应器,系统温度 (35 ±)C。当酸化相进水COD 为(6.771 ?11.057)g/ L ,SO42-为(5.648?8.669) g/

高速公路高坡便桥设计方案和计算书

高坡拌合站便道横跨隧道便桥施工方案和力学检算书 编审批日制:核:准:期:

目录 第1章概述 (1) 1.1工程概况 (1) 1.2设计说明 (2) 1.3 设计依据 (3) 1.4 技术标准 (3) 1.5 便桥钢材选用及设计参数 (4) 第2章荷载计算 (4) 2.1上部结构恒重 (4) 2.2 车辆荷载 (5) 2.3人群荷载 (6) 第3章纵梁计算 (7) 3.1 纵梁最不利荷载确定 (7) 3.2 纵梁计算 (7) 第4章横梁计算 (10) 4.1横梁最不利荷载确定 (10) 4.2砼罐车荷载下横梁检算 (11) 第5章24M跨贝雷架计算 (14) 5.1 荷载计算 (14) 5.2 挂车-80级荷载下贝雷架计算 (14) 第6章M IDAS空间建模复核计算 (17) 6.1 Midas空间模型的建立 (17) 6.2 工况一计算 (17) 6.3 工况二计算 (24) 第7章桥台地基承载力验算 (30) 第8章细部构造计算 (30) 8.1 销子和阴阳头计算 (30) 8.2端部支座钢板下砼局部承压计算 (32) 8.3桥台砼抗冲切计算 (34) 第9章结论 (35) 第10章施工方案 (35) 10.1 10.2 10.3 10.4 10.5 10.6桥台施工 (35) 贝雷架安装 (36) 横梁安装 (36) 纵梁及钢板安装 (36) 通车试验 (36) 施工安全及保证措施 (36)

第 1 章 概 述 1.1 工程概况 高坡拌合站设置于线路里程 DK417+400 处横向 200 米一平坦旱地范围 内(见附图),设办公生活区、搅拌楼、砂石料场、道路、绿化带,占地面 积合计 270000m ,拌合站下埋深 27.03 米处有高坡隧道通过,隧道宽 14m ;拌 和站门前有便道一条,由原来的乡道改建而成,便道处纵断面根据线路纵断 面图确定,如图 1-1 所示;便道在 DK417+313 处与高坡隧道立体交叉,交叉 处地下岩层稳定,无溶洞,约 4 米的表层地质结构为第四系全新统坡洪积层, 土石工程等级为Ⅱ级,表层 4 米以下为白云质灰岩,土石工程等级为Ⅴ级, 层理产状为:N45W/45°SE (73°),风化等级为弱风化岩;我单位在此处进 行地质钻探,钻探结果如图 1-2 所示,与设计资料相符。由于该便道上将来 经常要通行混凝土罐车等重型车辆,为了确保重型车辆的通行不对隧道施工 产生影响,保证隧道施工安全。特设置跨径 24 米,长 25.66 米,净宽 3.8m 的临时便桥于该便道上,桥位详见附图。 图 1-1 线路纵断面在高坡拌合站处截图 2

相关主题
文本预览
相关文档 最新文档