当前位置:文档之家› 第3章 参数统计

第3章 参数统计

第3章 参数统计
第3章 参数统计

第3章(参数估计)

3.1 点估计

1.点估计——又称为定值估计,是指直接用一个样本统计量的值作为总体参数的估计值。 用于点估计的主要方法:矩估计法、最大似然估计法。

2.矩估计法——是指根据替换原理,用样本矩去替换相应的总体矩,用样本矩的函数去替换相应总体矩的函数,求得估计量的方法。用矩估计法求得的估计量称为矩估计量。用矩估计法得出的估计值可能不是唯一的。

3.最大似然估计法——就是从参数空间中寻找一个参数值,这个参数值对已经出现的样本观测值是最可能的,即把令样本观测值出现的可能性最大的参数值作为参数的估计。用最大似然法求得的估计量称为最大似然估计量,简记为MLE 。

3.2 点估计的评价标准

1.常用的评价标准有三个:无偏性、有效性、一致性。

2.无偏性——是指样本估计量抽样分布的均值等于被估总体参数的真实值。 有效性——

又称为最小方差性,是指在若干个无偏估计量中,方差最小的那个无偏估计量就是有效估计量.一个有效的估计量,首先必须是无偏的。

一致性——又称为相合性,它说明当样本容量n 趋近于无穷大∞时,样本估计量依概率收敛于总体参数的真实值θ。即随着样本容量的增大,点估计量的值越来越接近被估计总体参数的真值。换言之,一个大样本给出的估计量要比一个小样本给出的估计量更接近总体参数的真实值。

3.几个重要的结论

(1)样本均值、样本方差和样本比率,分别是总体均值、总体方差和总体比率的无偏、有效和一致的优良估计量;

(2)无偏估计有时可能不存在,有时也可能不唯一;

(3)除了无偏性、有效性、一致性,评价一个点估计量的好坏时,还可以用均方误差MSE 的概念。

3.3 区间估计的概念

1.区间估计——就是用一个区间去估计未知总体参数,把未知总体参数值界定在两个数值之间。即根据样本估计量,以一定的置信度估计和推断总体参数的区间范围。

2.总体参数的估计区间,通常是由样本统计量加减抽样极限误差而得到的。

3.P{θ1≤θ≤θ2}=1-α

则称区间[θ1,θ2]为θ的置信度为1-α的置信区间。α为显著性水平;1-α为区间估计的 置信度或置信水平。

置信度——包含总体参数真值的次数在所有置信区间中所占的比率。 4.影响置信区间宽度的因素

①当样本容量n 确定时,置信区间的宽度随着置信水平1-α的增大而增大。从直觉上说,置信区间比较宽时,才会使这一区间有更大的可能性包含总体参数的真值。

?????????????????统计预测区间估计点估计参数估计非参数估计抽样估计假设检验推断统计θ

θ=)(?E

②当置信水平1-α固定时,置信区间的宽度随着样本容量n 的增大而变窄。即置信水平不变时,样本容量n 越大,抽样误差越小,估计的精度越高,则置信区间就越窄。

3.4一个正态总体参数的区间估计

1.总体均值的区间估计

1、总体方差σ2已知时

当总体服从正态分布,又已知总体方差σ2时,无论样本为大样本或小样本,经过标准化后,样本均值都服从标准正态分布,因此总体均值μ在1–α的置信水平下,置信区间为:

例1:一家企业每天生产化肥的产量为8000袋左右,按规定每袋的重量应为100克。为分析每袋重量是否符合要求,质检部门从某天生产的一批化肥中随机抽取了25袋,测得平均每袋的重量为105.36克,已知产品重量的分布服从正态分布,且总体的方差为100。要求以95%的置信度,估计该批产品平均重量的置信区间。

解:依题意得,零件长度方差已知,又n =25,σ=10,查表得 Z α/2=1.96而抽样极限误差为:

所以在95%的置信水平下该种零件的平均长度的置信区间为:

表明在95%的置信水平下,该批产品的平均重量在101.44至109.28克之间。

2、总体方差未知,但大样本时

若总体方差未知,但在大样本的情况下,样本均值仍然可以用正态分布近似,只是要用样本

例2一家保险公司收集到由36个投保人组成的一个随机样本,并计算得到这个样本的平均年龄为39.5岁,标准差为7.77岁。试在90%的置信水平下,建立投保人年龄的置信区间。 解:

本题的总体方差未知,但属于大样本

抽样极限误差为:

表明在90%的置信水平下,投保人的平均年龄在37.37至41.63岁之间。

注:置信度越大,抽样极限误差越大,置信区间就越宽。反之,置信度越小,抽样极限误差越小,置信区间就越窄。

3、总体方差未知且小样本时

根据小样本分布定理可知,在小样本条件下,如果总体是正态分布、总体方差未知的情况,那么随机变量服从自由度为

n-1的t 分布。此时在给定的置信水平1-α下,总体均值μ的置

信区间 例3已知某种灯泡的寿命服从正态分布,现从一批灯泡中随机抽取16只,测得其平均使用寿命为1490小时,标准差为24.77小时。试以95%的置信度,估计该批灯泡平均使用寿命的置信区间。

解 n =16属于小样本且总体方差σ2未知,又已知α=0.05

于是,抽样极限误差为:

所以在95%的置信度下,置信区间为:

计算结果表明:在95%的置信度下,该种灯泡平均使用寿命在1476.8至1503.2小时之间。

二、总体比率的区间估计

我们只讨论大样本情况下,总体比率的区间估计。

在1-α

例5为了控制某生产线的废品率,现随机从产品中抽取60件进行调查,结果发现有9件废品。试以98%的置信水平,估计该生产线产品废品率的置信区间。

【解】n =60属于大样本,1-α=0.98,Z α/2=2.33,p=0.15,抽样极限误差为

所以在98%的置信度下,该生产线产品废品率的置信区间为:

计算结果表明:在98%的置信度下,该生产线产品废品率在4.26%至25.74%之间。

三、总体方差的区间估计

样本方差服从自由度为n -1的Χ2分布。因此,对于给定的置信度1-α,总体方差的置信区

例4某自动车床加工的某种零件长度X 近似服从正态分布,现随机抽查16个零件,测得其方差为0.00244。试以95%的置信度,估计该种零件方差的置信区间。

【解】已知S2=0.00244,1-α=0.95,α=0.05,查χ2分布表得:

χ20.025(16-1)=χ20.025(15)=27.488

χ21-0.025(16-1)=χ20.975(15)=6.262 131.2)1(2/=-n t α2574

.00426.01074

.015.01074.015.0≤≤?+≤≤-?+≤≤-??P P p P p p p

在95%的置信度下,总体方差的置信区间为:

计算结果表明:该自动车床加工的零件长度方差在0.00133至0.00584之间。

3.5两个正态总体参数的区间估计

1、两个总体的方差都已知

当两个总体都是正态总体时,两个样本均值之差经标准化后服从标准正态分布。则两个总体

【例1】为了调查甲、乙两家银行的户均存款额,从两家银行各抽选一个由25个储户组成的随机样本。两个样本均值分别为4500元和3250元,两个总体标准差分别为920元和960元。根据经验,知道两个总体均服从正态分布,试求两个总体均值之差的置信度为90%的置信区间。

【解】两个总体均服从正态分布,且总体方差都已知,因此两个总体均值之差的90%的置

即置信区间为(811,1689),表明在90%的置信水平下两个银行户均存款额之差在811元至1689元之间。

2、两个总体方差未知,但都是大样本

对于正态总体,虽然方差是未知的,但在大样本情况下,两个样本均值之差经标准化后仍服从标准正态分布,因此可用两个样本方差来代替总体方差。故两个总体均值之差在1-α置信水平下的置信区间为:

学独立地抽取了两个随机样本,得到有关数据如下:

中学1:样本容量为46,平均分为86分,标准差为5.8分;

中学2:样本容量为33,平均分为78分,标准差为7.2分。

试以95%

的置信水平估计两个中学高考英语平均分之差的置信区间。

【解】依题意两个总体都未知,但有以下条件

属于大样本,且

也属于大样本,且 30461>=n 8.51=s 30332>=n 2.72=s

于是在95%的置信水平下两个中学高考英语平均分之差的置信区间为:

即置信区间为(5.03,10.97),表明在95%的置信水平下两个中学高考英语平均分之差在5.03分至10.97分之间。

3、两个总体方差未知,但相等

当两个总体方差未知但相等时,需要用两个样本的方差来估计,此时必须将两个样本的数据组合在一起,以给出总体方差的合并估计量,计算公式为:

这时,两个样本均值之差经过标准化以后服从t分布,即

【例3】为了估计两种方法组装产品所需时间的差异,分别对两种不同的组装方法各随机的安排12个工人,得到有关数据如下:

方法1:平均时间为32.5分钟,方差为15.996

方法2:平均时间为28.8分钟,方差为19.358

假定两种方法组装产品的时间服从正态分布,且方差相等。试以95%的置信水平建立两种方法组装产品所需平均时间差值的置信区间。

【解】依题意两个总体方差都未知,但相等的情况下

首先,总体方差的合并估计量为

于是在95%的置信水平下,两个总体均值之差的置信区间为:

0.14至7.26分钟。

二、两个总体方差之比的区间估计

由于两个样本方差之比的抽样分布服从F分布,因此我们用F分布来构造两个总体方差之

比的置信区间

【例4】已知A 、B 两种品牌袋装大米的重量服从正态分布,为了研究它们重量的差异,现随机抽取了13袋A 品牌和16袋B 品牌大米,得到有关数据如下:

A 品牌:方差为0.23

B 品牌:方差为0.15

试给出两个总体方差之比的90%的置信区间。

【解】由于两个样本方差之比的抽样分布服从F 分布,根据公式可得90%置信水平下的置信区间为

三、两个总体比率之差的区间估计

在估计两个总体比率之差时,我们通常会假定两个总体近似服从正态分布来,且两个样本是独立的。此时,两个总体比率之差π1-π2在1-α 置信水平下的置信区间为 ()2

22111221)1()1(n p p n p p z p p -+-±-α 【例5】在某个电视节目的收视率调查中,农村随机调查了500人,有45%的人收看了该节目;城市随机调查了400人,有32%的人收看了该节目。试以95%的置信水平估计城市与农村收视率差别的置信区间

【解】已知n 1=500,n 2=400,p 1=45%,p 2=32%,1-α =95%, z α/2=1.96

则π1-π2置信度为95%的置信区间为

()()

%32.19,%68.6%32.6%13400

%)321(%32500%)451(%4596.1%32%45=±=-?+-??±- 即城市与农村收视率差值的置信区间为(6.68%,19.32%)

常用医学统计学方法汇总

选择合适的统计学方法 1连续性资料 1.1 两组独立样本比较 1.1.1 资料符合正态分布,且两组方差齐性,直接采用t检验。 1.1.2 资料不符合正态分布,(1)可进行数据转换,如对数转换等,使之服从正态分布,然后对转换后的数据采用t检验;(2)采用非参数检验,如Wilcoxon检验。 1.1.3 资料方差不齐,(1)采用Satterthwate 的t’检验;(2)采用非参数检验,如Wilcoxon检验。 1.2 两组配对样本的比较 1.2.1 两组差值服从正态分布,采用配对t检验。 1.2.2 两组差值不服从正态分布,采用wilcoxon的符号配对秩和检验。 1.3 多组完全随机样本比较 1.3.1资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey 法,Scheffe法,SNK法等。 1.3.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Kruscal-Wallis法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用成组的Wilcoxon检验。 1.4 多组随机区组样本比较 1.4.1资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey 法,Scheffe法,SNK法等。 1.4.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Fridman检验法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用符号配对的Wilcoxon检验。 ****需要注意的问题: (1)一般来说,如果是大样本,比如各组例数大于50,可以不作正态性检验,直接采用t 检验或方差分析。因为统计学上有中心极限定理,假定大样本是服从正态分布的。 (2)当进行多组比较时,最容易犯的错误是仅比较其中的两组,而不顾其他组,这样作容易增大犯假阳性错误的概率。正确的做法应该是,先作总的各组间的比较,如果总的来说差别有统计学意义,然后才能作其中任意两组的比较,这些两两比较有特定的统计方法,如上面提到的LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。**绝不能对其中的两

X射线机暴光参数计算法

X射线机曝光参数计算法 基本参数确定 一、以透照厚度为准:单壁单影=T;双壁单影或双壁双影=2T 1、≤10mm时,1mm相当于5KV; 2、10~20mm时,1mm相当于6.2KV; 3、21~30 mm时,1mm相当于9KV; 4、31~40 mm时,1mm相当于12KV; 二、焦距 焦距每增加或者减少100mm,电压增大或者减少10KV。 三、时间 1分钟=25KV 三、X射线机曝光参数为(基数): 透照厚度T=8mm时,电压170KV,时间为1分钟。 四、X射线机焦点到窗口的距离 XXQ 2005 120 mm XXQ 2505 150 mm XXQ 3005 170 mm 五、计算方法 1、当透照厚度增加或者减少1 mm时,电压变化按(一)中各变化范围执行; 2、当焦距每增加或者减少100mm时,压变化按(二)中执行; 3、时间每增加或者减少1分钟,电压增加或者减少25KV; 例:计算φ219*14管焊口的曝光 第一步:确定所用X射线机型号,XXQ 2505或者XXQ 3005型; 第二步:计算焦距-----219+150=369 mm或者219+170=389 mm 第三步:确定焦距和电压变化量,我们一般以X射线机曝光正常基数为准,即600 mm;这里φ219*14的焦距为219+150=369 mm或者219+170=389 mm,比基数600 mm缩短231 mm或者211 mm,那么电压就应该减去23.1KV或者21.1KV。 第四步:计算透照厚度变化时,电压变化量,我们基本厚度是8 mm,现在透照厚度是 14×2=28 mm。这样比基本厚度8 mm增加20mm,根据(一)中4参照,电压补偿量为: 20 mm×8KV=160KV。因为基数是170KV,故正常曝光参数为:170KV+160KV-23.1KV=306.9KV 或者170KV+160KV-21.1KV=308.9KV,时间1分钟。 第五步:因为1分钟=25KV,在此基础上计算XXQ 2505或者XXQ 3005型的曝光参数: 1、XXQ 2505:用240KV拍片,其时间为(306.9 KV-240 KV)÷25KV/分钟=2.68 分钟;这里2.68分钟是在原来1分钟基础需要补偿的2.68分钟,故还应加上基础1分钟, 即正常曝光时间为2.68分钟+1分钟≈4分钟

参数统计与非参数统计、

样本统计方法一般分为两个大的分支—参数统计和非参数统计。非参数统计方法主要有:一是卡方拟合度检验(大众媒介研究者经常比较某一现象所观察到的发生频次和其期望值或假设的发生频次,卡方(X的平方)是一个表示期望值和观察值之间关系的值)。其局限性在于变量必须是定类或者定序测量的。二是交叉表分析,可以同时检验两个或者更多的变量。参数统计常用于定距或定比数据。一是t检验,二是方差分析;三是相关性统计分析。 T分布在抽样分布和样本分布之间架起了一座桥梁,是借助于颐和总显著性检验来实现的,成为“t检验”。t检验又称“均值检验”,用以计算样本均值是否不同于总体均值、零或另一样本均值。可分为三种类型:一是检验样本均值是否不同于其总体均值。二是检验一个样本均值是否与另一个样本均值不同(独立样本t检验)。三是重复测量的t检验—当相比较的两组样本以某种相联系的方式重复(相同的被试在不同时间段的结果检验)。 方差分析(ANOV A)——当实验涉及机组的比较时适用的统计方法。它是均值检验的一种自然延伸,更强调样本组内与组间的变化而不是样本组均值。ANOV A将发生在因变量上的变化分为由自变量作用的方差(称为被假设方差)和不被解释的方差(称为误差或剩余方差)。“被解释”方差成为“主效应”。ANOV A应用F分布而非t分布。多因子方差分析——任何有两个或更多个自变量的ANOV A可以是多因子ANOV A,测量其“交互效应”。 相关检验——不同于t检验的均值检验,相关是一种“关联性”测量。相关测量一个变量值的改变与另一个变量值改变的关联程度。相关的显著性是指,系统性变化是否又非偶然因素引起的;换言之,相关系数是否显著大于零。最常见的相关检验是皮尔逊积矩相关系数。 例3:在某次的新闻节目收视情况调查中,总体为某市12岁以上的居民。有效样本男性为240人,平均每天收视时间31.5分钟,标准差12分钟;样本中女性180人,平均每天收视时间26.3分钟,标准差19分钟,请问总体中男女居民的新闻节目收视时间有无差异?原假设H0:总体中没有差异:H0:u1=u2;H1:u1>u2, u1

齿轮各参数计算方法

齿轮各参数计算方法 1、齿数Z 闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多一些为好,小一些为好,小齿轮的齿数可取为z1=20~40。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿数,一般可取z1=17~20。为使齿轮免于根切,对于α=20度的标准支持圆柱齿轮,应取z1≥17 2、模数m 齿距与齿数的乘积等于分度圆的周长,即pz=πd。为使d为有理数的条件是 p/π为有理数,称之为模数。即:m=p/π 模数m是决定齿轮尺寸的一个基本参数。齿数相同的齿轮模数大,则其尺寸也大。

3、分度圆直径d 齿轮的轮齿尺寸均以此圆为基准而加以确定,d=mz 4、齿顶圆直径da和齿根圆直径df 由齿顶高、齿根高计算公式可以推出齿顶圆直径和齿根圆直径的计算公式: da=d+2ha df=d-2hf =mz+2m=mz-2×1.25m =m(z+2)=m(z-2.5) 5、分度圆直径d 在齿轮计算中必须规定一个圆作为尺寸计算的基准圆,定义:直径为模数乘以齿数的乘积的圆。实际在齿轮中并不存在,只是一个定义上的圆。其直径和半径分别用d和r表示,值只和模数和齿数的乘积有关,模数为端面模数。与变位系数无关。标准齿轮中为槽宽和齿厚相等的那个圆(不考虑齿侧间隙)就为分度圆。标准齿轮传动中和节圆重合。但若是变位齿轮中,分度圆上齿槽和齿厚将不再相等。若为变位齿轮传动中高变位齿轮传动分度圆仍和节圆重合。但角变位的齿轮传动将分度圆和节圆分离。 6、压力角αrb=rcosα=1/2mzcosα 在两齿轮节圆相切点P处,两齿廓曲线的公法线(即齿廓的受力方向)与两节圆的公切线(即P点处的瞬时运动方向)所夹的锐角称为压力角,也称啮合角。对单个齿轮即为齿形角。标准齿轮的压力角一般为20”。在某些场合也有采用α=14.5°、15°、22.50°及25°等情况。

常见统计分布及其特点

【附录一】常见分布汇总 一、二项分布 二项分布(Binomial Distribution),即重复n次的伯努利试验(Bernoulli Experiment),用ξ表示随机试验的结果, 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是。 二、泊松poisson分布 1、概念 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧10,p≦0.1时,就可以用泊松公式近似得计算。 2、特点——期望和方差均为λ。 3、应用(固定速率出现的事物。)——在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布 三、均匀分布uniform 设连续型随机变量X的分布函数F(x)=(x-a)/(b-a),a≤x≤b 则称随机变量X服从[a,b]上的均匀分布,记为X~U[a,b]。 四、指数分布Exponential Distribution 1、概念

2、特点——无记忆性 (1)这种分布表现为均值越小,分布偏斜的越厉害。 (2)无记忆性 当s,t≥0时有P(T>s+t|T>t)=P(T>s) 即,如果T是某一元件的寿命,已知元件使用了t 小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。 3、应用 在电子元器件的可靠性研究中,通常用于描述对发生的缺陷数或系统故障数的测量结果 五、正态分布Normal distribution 1、概念 2、中心极限定理与正态分布(说明了正态分布的广泛存在,是统计分析的基础) 中心极限定理:设从均值为μ、方差为σ^2;(有限)的任意一个总体中抽取样本量为n 的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ^2/n 的正态分布。 3、特点——在总体的随机抽样中广泛存在。 4、应用——正态分布是假设检验以及极大似然估计法ML的理论基础 定理一:设X1,X2,X3.。。Xn是来自正态总体N(μ,δ2)的样本,则有 样本均值X~N(μ,δ2/n)——总体方差常常未知,用t分布较多 六、χ2卡方分布(与方差有关)chi-square distribution 1、概念 若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同 分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution),其中参数n 称为自由度 【注意】假设随机干扰项呈正态分布。因此,卡方分布可以和RSS残差平方和联系起来。用RSS/δ2,所得的变量就是标准正态分布,就服从卡方分布。

电机参数计算方法

我设定的自制马达规格如左:使用7.4V 1600mA锂电池,耗电在7A以内(马达功率约50W,电池放电系数约4.4C),采用直驱或减速皆可。 以上述条件,无刷马达应采用△接线铜损较小(因线电流=√3*相电流,故马达内线圈电流会较小,以相同的线径来说,铜损自然较小)。 我是采用AWG #28号线(直径0.32mm),每相每极绕21圈,采用△接线,使用7.4V 1600mA 锂电池。 以直驱测试,其数据如下: 螺旋桨测量转数(RPM) 测量电池电流(A) 测量马达线电流(A) 换算马达相电流(A) 计算功率(W) 4040 15000 6.2A 3.6A 2.1A 45W 5025 13000 7.4A 4.3A 2.5A 55W 以减速组测试(58/18=3.2),其数据如下: 螺旋桨测量螺旋桨转数(RPM) 换算马达转速(RPM) 测量电池电流(A) 计算功率(W) 7060 6250 20000 4.2A 31W 8060 5500 17600 6.2A 46W 9070 5000 16000 7.4A 55W 无刷马达/有碳刷马达效能计算 扭力常数: Kt=Kb x 1.345 Kt=1345 / kv 消耗电流: I = [V-(Kb x kRPM)] / Rm I = [V-(RPM / kv)] / Rm 输出扭力: J = (Kt x I) - (Kt x Inl) 每分钟转速: kRPM = (V - RmI) / Kb kRPM = (V - RmI) x kv / 1000 输出功率: Po = (J x RPM) / 1345 消耗功率: Pi = V x I 马达效率: Eff = (Po / Pi) x 100 最高效率电流: Ie max = Sqrt [(V x Inl) / Rm] 符号定义: Eff = 效率 I = 消耗电流值 Iemax=发挥最高效率之电流量 Inl = 无负载量测电流值 J = 扭力(oz-in) Kb = 电压常数(Volt / 1000 RPM) Kt = 扭力常数(oz-In / A) Pi = 消耗功率(Watts) Po = 机械输出功率(Watts) Rm = 马达内阻 RPM = 每分钟转速 V = 电压

统计学分析方法

统计分析方法总结 分享 胡斌 00:06分享,并说:统计 1.连续性资料 1.1 两组独立样本比较 1.1.1 资料符合正态分布,且两组方差齐性,直接采用t检验。 1.1.2 资料不符合正态分布,(1)可进行数据转换,如对数转换等,使之服从正态分布,然后对转换后的数据采用t检验;(2)采用非参数检验,如Wilcoxon检验。 1.1.3 资料方差不齐,(1)采用Satterthwate 的t’检验;(2)采用非参数检验,如Wilcoxon检验。 1.2 两组配对样本的比较 1.2.1 两组差值服从正态分布,采用配对t检验。 1.2.2 两组差值不服从正态分布,采用wilcoxon的符号配对秩和检验。 1.3 多组完全随机样本比较 1.3.1资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。 1.3.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Kruscal-Wallis法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用成组的Wilcoxon检验。 1.4 多组随机区组样本比较 1.4.1资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。 1.4.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Fridman检验法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni 法校正P值,然后用符号配对的Wilcoxon检验。 ****需要注意的问题: (1)一般来说,如果是大样本,比如各组例数大于50,可以不作正态性检验,直接采用t检验或方差分析。因为统计学上有中心极限定理,假定大样本是服从正态分布的。 (2)当进行多组比较时,最容易犯的错误是仅比较其中的两组,而不顾其他组,这样作容易增大犯假阳性错误的概率。正确的做法应该是,先作总的各组间的比较,如果总的来说差别有统计学意义,然后才能作其中任意两组的比较,这些两两比较有特定的统计方法,如上面提到的LSD检验,Bonferroni法,tukey 法,Scheffe法,SNK法等。**绝不能对其中的两组直接采用t检验,这样即使得出结果也未必正确** (3)关于常用的设计方法:多组资料尽管最终分析都是采用方差分析,但不同设计会有差别。常用的设计如完全随即设计,随机区组设计,析因设计,裂区设计,嵌套设计等。 2.分类资料

线路参数计算公式

参数计算(第一版) 1.线路参数计算内容 1.1已知量: 线路型号(导线材料、截面积mm 2)、长度(km)、排列方式、线间距离(m)、外径(mm)、分裂数、分裂距(m)、电压等级(kV)、基准电压U B (kV , 母线电压作为基准电压)、基准容量S B (100MV A)。 1.2待计算量: 电阻R(Ω/km)、线电抗X(Ω/km)、零序电阻R0(Ω/km)、零序电抗X0(Ω/km)、对地电纳B(S/km)、对地零序电纳B0(S/km)。 1.3计算公式: 1.3.1线路电阻 R=ρ/S (Ω/km) R*=R 2B B U S 式中 ρ——导线材料的电阻率(Ω·mm 2/km); S ——线路导线的额定面积(mm 2)。 1.3.2线路的电抗 X=0.1445lg eq m r D +n 0157 .0(Ω/km) X*=X 2B B U S 式中 m D ——几何均距,m D =ac bc ab D D D (mm 或cm,其单位应与eq r 的单位相同); eq r ——等值半径, eq r =n n m rD 1 (mm,其中r 为导线半径); n ——每个导线的分裂数。 1.3.3零序电阻 R0=R+3R g (Ω/km)

R0*=R0 2B B U S 式中 R g ——大地电阻, R g =π2×10-4×f =9.869×10-4×f (Ω/km)。在f =50Hz 时, R g =0.05Ω/km 。 1.3.4零序电抗 X0=0.4335lg s g D D (Ω/km) X0*=X0 2B B U S 式中 g D ——等值深度, g D = γ f 660,其中γ为土壤的电导率,S/m 。当土壤电导率不明 确时,在一般计算中可取g D =1000m 。 s D ——几何平均半径, s D =32 m D r '其中r '为导线的等值半径。若r 为单根导 线的实际半径,则对非铁磁材料的圆形实心线,r '=0.779r ;对铜或铝的绞线,r '与绞线股数有关,一般r '=0.724~0.771r ;纲芯铝线取r '=0.95r ;若为分裂导线,r '应为导线的相应等值半径。m D 为几何均距。 1.3.5对地电钠 B= 610lg 58 .7-?eq m r D (S/km) B*=B B B S U 2 式中 m D ——几何均距,m D =ac bc ab D D D (mm 或cm,其单位应与eq r 的单位相同); eq r ——等值半径, eq r =n n m rD 1 -(其中r 为导线半径); 1.3.6零序对地电钠

常用统计分布

第八章常用统计分布 第一节超几何分布 超几何分布的数学形式?超几何分布的数学期望和方差?超几何分布的近似第二节泊松分布 泊松分布的数学形式?泊松分布的性质、数学期望和方差?泊松分布的近似 2 第三节卡方分布(分布) 2分布的数学形式,彳分布的性质、数学期望和方差?样本方差的抽样分 布 第四节F分布 F分布的数学形式?F分布的性质、数学期望和方差? F分布的近似 一、填空 1 ?对于超几何分布,随着群体的规模逐渐增大,一般当—<()时,可采用二 N 项分布来近似。 2?泊松分布只有一个参数(),只要知道了这个参数的值,泊松分布就确定了。 3 ?卡方分布是一种()型随机变量的概率分布,它是由()分布派生出来的。 4?如果第一自由度k i或第二自由度k2的F分布没有列在表中,但邻近的第一自由度 或第二自由度的F分布已列在表中,对于F a( & , k2)的值可以用()插值法得到。 5. ( )分布具有一定程度的反对称性。 6. ( )分布主要用于列联表的检验。 7. ( 分布用于解决连续体中的孤立事 件。 & 2分布的图形随着自由度的增加而渐趋()。 9?当群体规模逐渐增大,以致不回置抽样可以作为回置抽样来处理,这时(可采用二项分布来近似。 10. ()事件是满足泊松分布的。

二、单项选择 1 ?已知离散性随机变量X服从参数为2=2的泊松分布,则概率P (3;入)=(

A 4/3e 2 B 3/3e 2 C 4/3e 3 D 3/3e 3 2.当群体的规模逐渐增大,以至于不回置抽样可以作为回置抽样来处理时, ( ) 分布可以用 二项分布来近似。 2 A t 分布 B F 分布 C 2 分布 D 超几何分布 3.研究连续体中的孤立事件发生次数的分布,如某时间段内电话机被呼叫的次数的概 率分布,应选择( )。 A 二项分布 B 超几何分布 C 泊松分布 D F 分布 4.对于一个样本容量 n 较大及成功事件概 率 p 较小的二项分布,都可以用( )来 近似。 A 二 项分布 B 超几何分布 C 泊松分布 D F 分布。 5.与 F a ( k 1, k 2)的值等价的是( )。 A F 1-a( k 1 , k 2) B F 1- a ( k 2 , k 1) C 1/F a ( k 1, k 2) D 1/F 1- a ( k 2 , k 1 ) 6、只与 一 个自由度有关的是( ) A 2 2 分布 B 超几何分布 C 泊松分布 D F 分布 三、多项选择 1.属于离散性变量概率分布的是( )。 A 二项分布 B 超几何分布 C 泊松分布 D F 分布 2.属于连续性变量的概率分布的是( )。 2 A 分布 B 超几何分布 C 泊松分布 D F 分布 3.下列近似计算概率的正确方法是( )。 A 用二项分布的概率近似计算超几何分布的概率 B 用二项分布的概率近似计算泊松分布的概率 C 用泊松分布的概率近似计算超二项分布的概率 D 用正态分布的概率近似计算超二项分布的概率 E 用正态分布的概率近似计算 F 分布的概率 6.一般地,用泊松分布近似二项式分布有较好的效果是( 2 4. 2 分布具有的性质是( A 恒为正值 C 反对称性 E 可加性 5.F 分布具有的性质是( A 恒为正值 C 反对称性 E 可加性 )。 B 非对称性 D 随机变量非负性 )。 B 非对称性 D 随机变量非负性 )。

非参数统计检验方法的应用

论文投稿领域:数理经济与计量经济学 非参数统计检验方法的应用 阮曙芬1 程娇翼 1 张振中2 (1.中国地质大学数理学院,武汉 430074;2.中南大学数学科学与计算学院,长沙 410075) 摘要:本文对非参数统计中常用的三种假设检验方法进行了简单的介绍。运用 Kruskal-Wallis 检验方法对2002年前三季度的上海股市综合指数收益率数据进行了周末效应的检验,结果表明2002年上海股市综合指数收益率不具有周末效应。 关键字:符号检验;Wilcoxon 秩和检验;Kruskal-Wallis 检验 1引言 非参数统计是统计分析的重要组成部分。非参数假设检验是在总体分布未知或者总体分布不满足参数统计对总体所做的假定的时候,分析样本特点,寻找相应的非参数检验统计量。本文就是以此为出发点,介绍了非参数统计中假设检验常用的几个检验方法:符号检验、Wilcoxon 秩和检验和Kruskal-Wallis 检验,然后结合具体的问题和数据,在统计软件SAS 中作相应的非参数检验。 2非参数假设检验介绍 2.1 配对样本的符号检验 符号检验是根据正、负符号进行假设检验的方法。这种检验方法用于配对设计数值变量资料的假设检验,常常是差值不服从正态分布或者总体分布未知的情况下不能用t 检验的时候使用。其原理是对差值进行编制并冠以符号,然后对正负秩和进行比较检验。 设随机变量12,,...,n X X X 相互独立同分布,分布为()F x ,()F x 在0x =连续。假设检验问题 2.2 两独立样本的Wilcoxon 秩和检验 Wilcoxon 秩和检验的理论背景如下:有两个总体,一个总体的样本为12,,...,n X X X ,相互独立同分布,分布为()F x ;另一个样本为12,,...,n Y Y Y ,相互独立同分布,分布为()G x ,()F x , ()G x 连续。问随机变量Y 是否随机大于随机变量X ,即检验

张敏强《教育与心理统计学》【章节题库】(常用统计参数)【圣才出品】

第2章常用统计参数 一、单项选择题 1.数据11、11、11、11、14、14、14、17、17的中位数是()。 A.14.0 B.12.5 C.13.66 D.13.83 【答案】C 【解析】当一组数据的中间的数与它附近的数重复时,要根据重复的个数将其均等地分开。在本题中,数据个数是奇数,位于中间的数是第一个14,而l4有三个,此时要将l4均等的分为三部分,即第一个14是l3.5~l3.83(就是l3.66);第二个14是13.83~14.16(就是l3.99);第三个14是14.16~13.49(就是l4.32)。因为位于这组数据中间的数是第一个14,所以该组数据的中位数就是l3.66。 2.数据11、11、11、ll、14、14、14、17、17、18的中位数是()。 A.15.0 B.15.5 C.13.83 D.14.0 【答案】C

【解析】当一组数据的中间的数与它附近的数重复时,要根据重复的个数将其均等地分开。在本题中,数据个数是偶数,中位数应位于第一个l4和第二个14之间,而l4有三个,此时要将l4均等的分为三部分,即第一个14是l3.5~l3.83(就是l3.66);第二个14是13.83~14.16(就是l3.99);第三个14是14.16~13.49(就是l4.32)。因为第一个14和第二个l4的中间是13.83,所以该组数据的中位数就是l3.83。 3.现有一列数据,它们是3,3,5,3,5,5。这列数据的平均数、标准差和全距依次是( )。 A .4,1,2 B .4,6,2 C .4,6,1 D .4,1,1 【答案】A 【解析】根据平均数的公式i X X N ∑=,标准差的公式S ==(其中22X X ∑=∑(X-)),可以计算出平均数为4,标准差为1。根据全距的求法(最大值减最小值),该组数据的全距是2。 4.有一组数据:3,6,2,6,32,4,8,6,5。在进行计算这组数据的平均数之前,剔除了极端值,剔除极端值之后,该组数据的平均数是( )。 A .9 B .4.44

非参数统计

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 非参数统计是数理统计学的一个分支,它是针对参数统计而言的。所谓参数统计,简 单地说就是建立在总体具有明确分布形式,通常多为正态分布形式的假定基础之上,所建立 的统计理论和统计方法。而非参数统计是在不假定总体分布形式或在较弱条件下,例如总体 分布形式完全未知或分布形式是对称的,诸如这样一些宽泛条件下,尽量从数据本身获 得的信息,建立对总体相关统计特征进行分析和推断的理论、方法。 2.设计思路: 本课程是在已学数理统计基础上,通过非参数统计的学习,引导数学专业学生进一步增强对一般总体分析、推断的能力并加深对相关理论和方法的理解。 课程内容着重于基本知识点的理解,避免难度较大或较长定理的证明。目的是使学生对理论有一个基本的理解和在应用能力上的提高。课程内容包括以下四个方面: (1).非参数统计的基本概念:非参数统计方法的主要特点,次序统计量及其分布,U统计量, 秩统计量的概念,一些统计量的近似分布。 (2).非参数估计的方法:总体分位数的估计,对称中心的估计,位置差的估计。 (3).非参数检验的方法:总体p分位数的检验,总体均值检验,两样本的比较,随机性与 独立性检验,多总体的比较。 - 1 -

(4).总体分布类型的估计与检验:分布函数的估计与检验,概率密度估计。 3. 课程与其他课程的关系: 先修课程:《概率论》,《数理统计》,《多元统计分析》;并行课程:《应用回归分析》;后置课程:《统计软件》。 非参数统计是应用数学专业、信息与计算科学专业的选修课程,但对于今后从事统计研究和统计应用工作的学生来讲可以作为专业必修课学习。 二、课程目标 非参数统计具有应用性广,稳健性好等特点。通过本课程学习,要求学生了解或理解非参数统计的一些基本理论和方法,注重利用理论和方法、借助计算机解决问题的能力。开课学期结束时,要求学生能够做到: (1)理解非参数统计方法的主要特点及与参数统计方法的区别。掌握次序统计量及其分布;理解并掌握U统计量秩统计量的概念;理解一些常用统计量的近似分布。重点是次序统计量及其分布; U统计量构造,秩统计量; (2)掌握总体分位数估计、对称中心的估计、位置差估计的方法。 (3)理解各种检验的基本思想,掌握检验的一般步骤,掌握检验统计及其拒绝域。难点在于检验统计量的选取及概率分布。 (4)理解分布函数估计及检验的基步骤和过程。 (5)为更深入学习非参数统计学理论打下初步的基础。也为学习专业统计软件的作好准备。 三、学习要求 要完成所有的课程任务,学生必须: (1)按时上课,认真听讲,认真完成作业。其中有一些作业需要学生自编程序用机器完成。(2)按时完成并按时提交书面形式的作业。延期提交作业需要得到任课教师的许可。 (3)完成一定量的阅读文献和背景资料,可以以小组的形式讨论学习,促进同学间的心得交 - 1 -

相关参数计算方法及选用

相关参数计算方法及选用 1 粘度 1.1粘度单位 粘度分为动力粘度和运动粘度,习惯将动力粘度称为粘度。 (2) 动力粘度单位及与GGS 制粘度单位的关系 动力粘度单位为s Pa ?,与GGS 制单位泊(P )之间关系为 : 1P =24510/101m S N --??=0.1S N ?/m 2=0.1s Pa ? 即 1s Pa ?=10P 1s Pa ?=1000m s Pa ? 1m s Pa ?=1cp (厘泊) (2) 运动粘度单位及与动力粘度单位间关系 运动粘度单位为 s m 2 运动粘度与动力粘度间关系为 ρ η = v (1-1) 式中:v —某液体的运动粘度 ; η—某液体的动力粘度 ; ρ—某液体的密度 ; 单位换算:[][]s m m s k s m m k m k s p v g g g a //22 233=????=?= = ρ η 在GGS 制单位中运动粘度单位()stokes s t s m s cm s t /10/11242-== 1.2 液体粘度 (1) 已知某种液体2个温度下的粘度1u 和2u ,求第3个温度下的粘度μ : T B Ae /=μ 式中:μ—动力粘度;

T —热力学温度,K ; A 、B —常数 已知两个温度下的粘度,先求B A ,值 ()122121/ln T T T T B -= μμ (1-3) () 11 /exp T B A μ= (1-4) 应用式(1-1)可求第三个温度下的粘度。 (2)液体混合物粘度① 1) 公式: [] ∑=i i m x u μln exp (1-5) 式中 m μ—液体混合物粘度 ,s mPa ? ; i μ—液体混合物i 组分粘度 ,s mPa ? ; i x —液体混合物i 组分摩尔分数 ; 讨论:公式(1-5)用于原油、水混合粘度计算时,粘度偏小,是否适应于油水混合有待进一步验证。 2) 另一个油水混合液粘度计算式② 对油连续相(%64

相关主题
文本预览
相关文档 最新文档