当前位置:文档之家› 工程传热学第次作业

工程传热学第次作业

工程传热学第次作业
工程传热学第次作业

工程传热学第一次作业

1.锅炉过热器合金钢管的内、外直径分别为32mm 和42mm ,导热系数

132.6W/(m K)λ=?,过热器钢管内、外壁面温度分别为1560C t =、2580C t =。试求:

(1)不积灰时每米管长的热流量l q ;(2)倘若管外积有1mm 厚的烟炱,其导热系数

20.06W /(m K )λ=?,如总温压保持不变,求此时每米管长的热流量l q '。

(教材习题8-8) 解:w2w1211

12580C 560C 15064.9W/m 10.042m ln ln 232.6W/(m K)0.032m l t t q d d πλπ=--==??? 2. 一单层玻璃窗,高1.2m ,宽1m 玻璃厚0.003m ,玻璃导热系数g 1.05W/(m K)λ=?,室内、外的空气温度分别为20℃和-5℃,室内、外空气与窗玻璃之间对流传热的表面传热系

数分别为215W/(m K)h =?、2220W/(m K)h =?,试求玻璃窗的散热损失及玻璃的导热热阻、

两侧的对流传热热阻。若其它天件不变,改用双层玻璃窗,双层玻璃间的空气夹层厚度为3mm ,夹层中的空气完全静止,空气的导热系数a 0.025W/(m K)λ=?。再求玻璃窗的散热损失。(教材习题8-9)

解: f1f212

()11t t A h h Φδλ-=++ 3.有一厚度300 mm δ=的房屋外墙,热导率b 0.5W/(m K)λ=?。冬季,室内空气温度120C t =,与墙内壁面之间对流传热的表面传热系数214W/(m K)h =?室外空气温度

23C t =-与外墙之间对流传热的表面传热系数228W/(m K)h =?。如果不考虑热辐射,(1)

试求通过墙壁的传热系数、单位面积的传热量和内外壁面温度;(2)若内墙表面增设厚10mm ,w 0.35W/(m K)λ=?的护墙板,其它条件不变,再求通过墙壁的传热系数、单位面积的传热量和内外壁面温度。教材习题(8-10)

4.将直径0.08m ,长0.2m ,初始温度为80℃的紫铜棒突然置于20℃的气流中,5分钟后紫铜棒的表面温度降到34℃。已知紫铜的密度为3

8954kg/ m ρ=、比热容为383.1J/(kg K)c =?、导热系数386W/(m K)λ=?,试求紫铜棒表面与周围环境介质对流表面

换热系数。教材习题(8-13)

解:设本题满足集总参数法使用条件,由集总参数法公式,有

(m)

校核Bi:

可以用集总参数法,上述计算有效。

传热学数值计算大作业2014011673

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

专升本《工程传热学》_试卷_答案

专升本《工程传热学》 一、 (共18题,共156分) 1. 说明得出导热微分方程所依据的基本定律。 (8分) 标准答案:能量守恒方程和傅利叶定律。 2. 写出肋效率的定义。对于等截面直肋,肋效率受哪些因素影响? (8分) 标准答案: 3. 在液体沸腾过程中一个球形汽泡存在的条件是什么?为什么需要这样的条件? (8分) 标准答案:在液体沸腾过程中一个球形汽泡存在的条件是液体必须有一定的过热度。这是因为从汽泡的力平衡条件得出 ,只要汽泡半径不是无穷大,蒸汽压力就大于液体压力,它们 各自对应的饱和温度就不同有 ;又由汽泡热平衡条件有 ,而汽泡存在必须保持其 饱和温度,那么液体温度,即大于其对应的饱和温度,也就是液体必须过热。 4. 什么是速度边界层?动量方程在热边界层中得到简化所必须满足的条件是什么?这样的简化有何好处? (8分) 标准答案:流体流过壁面时流体速度发生显著变化的一个薄层。 动量方程得以在边界层中简化,必须存在足够大的Re 数,也就是具有的数量级。 此时动量扩散项才能够被忽略。从而使动量微分方程变为抛物型偏微分方程,成为可求解的形式。 5. 在导热过程中产生了Bi 数,而在对流换热过程中产生了Nu 数,写出它们的物理量组成,并指出它们之间的差别是什么? (8分) 标准答案: 从物理量的组成来看,Bi 数的导热系数 为固体的值,而 Nu 数的则为流体的值;Bi 数的特征尺寸Ls 在固体侧定义,而Nu 数的Lf 则在流体侧定义。从物理意义上看,前者反映了导热系统同环境之间的换热性能与其导热性能的对比关系,而后者则反映了换热系统中流体与壁面地换热性能与其自身的导热性能的对比关系。 6. 外径为50mm ,表面温度为180 的圆筒,在它的外面用导热系数为0.14W/ 的保温材料 包扎起来,保温材料的厚度为 30mm 。要求外表面温度小于60,试计算每米管道的散热量。如 果将保温材料换成导热系数为0.034 W/的保温材料,导热量同上,其它条件也不变。试计算 新保温材料的厚度。 (12分) 标准答案: 7. 针对如下导热微分方程写出方程各项的含义,并说明得出导热微分方程所依据的基本定律? (8 分) 标准答案: 导热微分方程所依据的基本定律是傅里叶定律和导热微分方程。 8. 写出Bi 数的定义式并解释其意义。在Bi 0 的情况下,一初始温度为t0的平板突然置于温度为的流体中冷却(如图1 ),粗略画出τ=τ1>0和 时平板附近的流体和平板的温度分布。 (8分) 标准答案:反映了导热系统同环境之间的换热性能与其导热性能的对比关系。

传热学大作业报告 二维稳态导热

传热学大作业报告二维稳态计算 院系:能源与环境学院 专业:核工程与核技术 姓名:杨予琪 学号:03311507

一、原始题目及要求 计算要求: 1. 写出各未知温度节点的代数方程 2. 分别给出G-S 迭代和Jacobi 迭代程序 3. 程序中给出两种自动判定收敛的方法 4. 考察三种不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m ℃)) 6. 绘出最终结果的等值线 报告要求: 1. 原始题目及要求 2. 各节点的离散化的代数方程 3. 源程序 4. 不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m ℃)) 6. 计算结果的等温线图 7. 计算小结 二、各节点的离散化的代数方程 左上角节点 )(21 1,22,11,1t t t +=

右上角节点 )(2 15,24,15,1t t t += 左下角节点 C t ?=1001,5 右下角节点 )2(211,24,55,5λ λ x h t t x h t ?++?+= 左边界节点 C t i ?=1001,,42≤≤i 上边界节点 C t j ?=200,1,42≤≤j 右边界节点 )2(415,15,14,5,+-++= i i i i t t t t ,42≤≤i 下边界节点 )42()2(211,51,5,4,5∞+-?+++?+=t x h t t t x h t j j j j λλ ,42≤≤j 内部节点 )(2 1,1,11,1,,j i j i j i j i j i t t t t t +-+-+++= ,4,2≤≤j i 三、源程序 1、G-S 迭代法 t=zeros(5,5); t0=zeros(5,5); dteps=0.0001; for i=2:5 %左边界节点 t(i,1)=100; end for j=2:4 %上边界节点 t(1,j)=200; end t(1,1)=(t(1,2)+t(2,1))/2; t for k=1:100 for i=2:4 %内部节点 for j=2:4 t(i,j)=(t(i-1,j)+t(i+1,j)+t(i,j-1)+t(i,j+1))/4; end end t(1,5)=(t(1,4)+t(2,5))/2;%右上角节点 for i=2:4;%右边界节点 t(i,5)=(2*t(i,4)+t(i-1,5)+t(i+1,5))/4; end for j=2:4; %下边界节点

传热学第五版课后习题答案(1)

传热学习题_建工版V 0-14 一大平板,高3m ,宽2m ,厚,导热系数为45W/, 两侧表面温度分别为 w1t 150C =?及w1t 285C =? ,试求热流密度计热流量。 解:根据付立叶定律热流密度为: 2 w2w121t t 285150q gradt=-4530375(w/m )x x 0.2λλ??--??=-=-=- ? ?-???? 负号表示传热方向与x 轴的方向相反。 通过整个导热面的热流量为: q A 30375(32)182250(W)Φ=?=-??= 0-15 空气在一根内经50mm ,长米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m 2.k),热流密度q=5110w/ m 2, 是确定管壁温度及热流量?。 解:热流量 qA=q(dl)=5110(3.140.05 2.5) =2005.675(W) πΦ=?? 又根据牛顿冷却公式 w f hA t=h A(t t )qA Φ=??-= 管内壁温度为:

w f q5110 t t85155(C) h73 =+=+=? 1-1.按20℃时,铜、碳钢(%C)、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。 解: (1)由附录7可知,在温度为20℃的情况下, λ铜=398 W/(m·K),λ碳钢=36W/(m·K), λ铝=237W/(m·K),λ黄铜=109W/(m·K). 所以,按导热系数大小排列为: λ铜>λ铝>λ黄铜>λ钢 (2) 隔热保温材料定义为导热系数最大不超过 W/(m·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为: 膨胀珍珠岩散料:λ=+ W/(m·K) =+×20= W/(m·K); 矿渣棉: λ=+ W/(m·K) =+×20= W/(m·K);

计算传热学中国石油大学(华东)第四章大作业

取步长δx=0.02。已知x=0,Φ=0;x=1,Φ=1.令k=ρu/Γ计算结果图表: 程序及数据结果: 追赶法: #include #include #include #define N 49 void tdma(float a[],float b[],float c[],float f[],float x[]); void main(void) { int i; float x[49]; float k; printf("请输入k值:\n",k); scanf("%f",&k); static float a[N],b[N],c[N],f[N]; a[0]=0; a[48]=2+0.02*k; b[0]=4; b[48]=4; c[0]=2-0.02*k; c[48]=0; f[0]=0; f[48]=2-0.02*k; for(i=1;i

a[i]=2+0.02*k; b[i]=4; c[i]=2-0.02*k; f[i]=0; } tdma(a,b,c,f,x); for(i=0;i=0;i--) x[i]=P[i]*x[i+1]+Q[i]; return; } 结果: (1)k=-5 请输入k值: -5 x[0]=0.095880 x[1]=0.182628 x[2]=0.261114 x[3]=0.332126 x[4]=0.396375 x[5]=0.454504 x[6]=0.507098 x[7]=0.554683 x[8]=0.597736 x[9]=0.636688 x[10]=0.671931 x[11]=0.703818 x[12]=0.732667 x[13]=0.758770

生活中的传热学(问答题整理答案)

硕士研究生《高等工程热力学与传热学》作业 查阅相关资料,回答以下问题: 1、一滴水滴到120度和400度的板上,哪个先干?试从传热学的角度分析? 答:在大气压下发生沸腾换热时,上述两滴水的过热度分别是△ t=tw–ts=20℃和△t=300℃,由大容器饱和沸腾曲线,前者表面发生的是泡态沸腾,后者发生膜态沸腾。虽然前者传热温差小,但其表面传热系数大,从而表面热流反而大于后者。所以水滴滴在120℃的铁板上先被烧干。 2、锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成,为什么? 答:是因为木料是热的不良导体,以便在烹任过程中不烫手。 3、滚烫的砂锅放在湿地上易破裂。为什么? 答:这是因为砂锅是热的不良导体, 如果把烧得滚热的砂锅,突然放到潮湿或冷的地方,砂锅外壁的热就很快地被传掉,而壁的热又一下子传不出来,外壁冷却很快的收缩,壁却还很热,没什么收缩,加以瓷特别脆,所以往往裂开。 或者:烫砂锅放在湿地上时,砂锅外壁迅速放热收缩而壁温度降低慢,砂锅外收缩不均匀,故易破裂。 4、往保温瓶灌开水时,不灌满能更好地保温。为什么? 答:因为未灌满时,瓶口有一层空气,是热的不良导体,能更好地防止热量散失。

5、煮熟后滚烫的鸡蛋放入冷水中浸一会儿,容易剥壳。为什么? 答:因为滚烫的鸡蛋壳与蛋白遇冷会收缩,但它们收缩的程度不一样,从而使两者脱离。 6、用焊锡的铁壶烧水,壶烧不坏,若不装水,把它放在火上一会儿就烧坏了。为什么? 答:这是因为水的沸点在1标准大气压下是100℃,锡的熔点是232℃,装水烧时,只要水不干,壶的温度不会明显超过100℃,达不到锡的熔点,更达不到铁的熔点,故壶烧不坏.若不装水在火上烧,不一会儿壶的温度就会达到锡的熔点,焊锡熔化,壶就烧坏了。 7、冬壶里的水烧开后,在离壶嘴一定距离才能看见“白气”,而紧靠壶嘴的地方看不见“白气”。这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。 答:这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。 8、某些表演者赤脚踩过炽热的木炭,从传热学角度解释为何不会烫伤?不会烫伤的基本条件是什么? 答:因为热量的传递和温度的升高需要一个过程,而表演者赤脚接触炽热木炭的时间极短,因此在这个极短的时间传递的温度有限,不足以达到令人烫伤的温度,所以不会烫伤。 基本条件:表演者接触炽热木炭的时间必须极短,以至于在这段时间所传递的热量不至于达到灼伤人的温度

传热学习题及参考答案

《传热学》复习题 一、判断题 1.稳态导热没有初始条件。() 2.面积为A的平壁导热热阻是面积为1的平壁导热热阻的A倍。() 3.复合平壁各种不同材料的导热系数相差不是很大时可以当做一维导热问题来处理() 4.肋片应该加在换热系数较小的那一端。() 5.当管道外径大于临界绝缘直径时,覆盖保温层才起到减少热损失的作用。() 6.所谓集总参数法就是忽略物体的内部热阻的近视处理方法。() 7.影响温度波衰减的主要因素有物体的热扩散系数,波动周期和深度。() 8.普朗特准则反映了流体物性对换热的影响。() 9. 傅里叶定律既适用于稳态导热过程,也适用于非稳态导热过程。() 10.相同的流动和换热壁面条件下,导热系数较大的流体,对流换热系数就较小。() 11、导热微分方程是导热普遍规律的数学描写,它对任意形状物体内部和边界都适用。( ) 12、给出了边界面上的绝热条件相当于给出了第二类边界条件。 ( ) 13、温度不高于350℃,导热系数不小于0.12w/(m.k)的材料称为保温材料。 ( ) 14、在相同的进出口温度下,逆流比顺流的传热平均温差大。 ( ) 15、接触面的粗糙度是影响接触热阻的主要因素。 ( ) 16、非稳态导热温度对时间导数的向前差分叫做隐式格式,是无条件稳定的。 ( ) 17、边界层理论中,主流区沿着垂直于流体流动的方向的速度梯度零。 ( ) 18、无限大平壁冷却时,若Bi→∞,则可以采用集总参数法。 ( ) 19、加速凝结液的排出有利于增强凝结换热。 ( ) 20、普朗特准则反映了流体物性对换热的影响。( ) 二、填空题 1.流体横向冲刷n排外径为d的管束时,定性尺寸是。 2.热扩散率(导温系数)是材料指标,大小等于。 3.一个半径为R的半球形空腔,空腔表面对外界的辐射角系数为。 4.某表面的辐射特性,除了与方向无关外,还与波长无关,表面叫做表面。 5.物体表面的发射率是ε,面积是A,则表面的辐射表面热阻是。 6.影响膜状冷凝换热的热阻主要是。

西安交通大学传热学大作业---二维温度场热电比拟实验

二维导热物体温度场的数值模拟

一、物理问题 有一个用砖砌成的长方形截面的冷空气通道,其截面尺寸如下图1-1所示,假设在垂直于纸面方向上用冷空气及砖墙的温度变化很小,可以近似地予以忽略。在下列两种情况下试计算: 砖墙横截面上的温度分布;垂直于纸面方向的每米长度上通过砖墙的导热量。 第一种情况:内外壁分别均匀维持在0℃及30℃; 第二种情况:内外壁均为第三类边界条件,且已知: K m K m W h C t K m W h C t ?=?=?=?=?=∞∞/35.0/93.3,10/35.10,302 22211λ砖墙导热系数 二、数学描写 由对称的界面必是绝热面,可取左上方的四分之一墙角为研究对象,该问题为二维、稳态、无内热源的导热问题。 控制方程: 02 222=??+??y t x t 边界条件: 第一种情况: 由对称性知边界1绝热: 0=w q ; 边界2为等温边界,满足第一类边界条件: C t w ?=0; 边界3为等温边界,满足第一类边界条件: C t w ?=30。 第一种情况: 由对称性知边界1绝热: 0=w q ; 边界2为对流边界,满足第三类边界条件: )()( 2f w w w t t h n t q -=??-=λ; 边界3为对流边界,满足第三类边界条件: )()(2f w w w t t h n t q -=??-=λ。 1 -1图2 -1图

三、方程离散 用一系列与坐标轴平行的间隔0.1m 的二维网格线将温度区域划分为若干子区域,如图1-3所示。 采用热平衡法,利用傅里叶导热定律和能量守恒定律,按照以导入元体(m,n )方向的热流量为正,列写每个节点代表的元体的代数方程, 第一种情况: 边界点: 边界1(绝热边界): 5~2)2(4 1 1,11,12,1,m =++= +-m t t t t m m m , 11~8)2(4 1 1,161,16,15,16=++=+-n t t t t n n n n , 边界2(等温内边界): 7,16~7;7~1,6,0,=====n m n m t n m 边界3(等温外边界): 12,16~2;12~1,1,30,=====n m n m t n m 内节点: 11 ~8,15~6;11~2,5~2)(41 1,1,,1,1,====+++= -+-+n m n m t t t t t n m n m n m n m n m 第二种情况 边界点: 边界1(绝热边界): 5~2)2(4 1 1,11,12,1 ,m =++=+-m t t t t m m m , 11~8)2(4 1 1,161,16,15,16=++=+-n t t t t n n n n , 边界2(内对流边界): 6~1) 2(2221 11,61,6,5,6=++++= ??-+n Bi t Bi t t t t n n n n , 3 -1图

武汉科技大学2019年工程传热学(A卷答案)

姓名 : 报 考 专 业 : 准考 证号码 : 密 封 线 内 不 要 写 题 2019年全国硕士研究生招生考试初试自命题试题 科目名称:工程传热学( A 卷□B 卷)科目代码:849 考试时间:3 小时 满分150分 可使用的常用工具:□无 √计算器 □直尺 □圆规(请在使用工具前打√) A 卷答案 一、填空题(共8小题,每小题2分,共16分) 1. (2分) 三种基本的热传递方式是热传导、 和 。 答:热对流、热辐射。 (2分) 2. (2分) 大多数纯金属的热导率随温度的升高而 ,大部分合金的热导率随温度的升高而 。 答:减小、增大。 (2分) 3. (2分) 对多层等厚度圆筒壁传热,通过每层的热流密度 ,通过每层单位管长的热流密度 。 答:不相等、相等。 (2分) 4. (2分) 发生相变的传热过程可分为_______传热和________传热。 答:(蒸汽)凝结、(液体)沸腾。 (2分) 5. (2分) 牛顿冷却定律适用于 传热,兰贝特余弦定律适用于 传热。 答:对流、辐射。 (2分) 6. (2分) 导热和对流传热的传热速率与温度差的 次方成正比,而热辐射的传热速率与温度差的 次方成正比。 答:一、四。 (2分) 7. (2分) 可见光的光谱一般为 微米,太阳光的光谱一般为 微米。 答:0.38-0.76、0.2-3。 (2分) 8. (2分) 土壤温度场具有的两种特性为: 和 。 答:衰减、延迟。(2分) 二、名词解释(共4小题,每小题5 分,共20分) 1、(5分)综合温度 工程上把室外空气与太阳辐射两者对围护结构的共同作用,用一个假想的温度来衡量,这个温度就叫综合温度。 2、(5分)定向辐射强度 在某给定辐射方向上,单位时间、单位可见辐射面积、在单位立体角内所发射全部波长的能量称为定向辐射强度。 3、(5分)灰体 假如某种物体的光谱发射率不随波长发生变化,则这种物体称为灰体。

西安交通大学传热学大作业

《传热学》上机大作业 二维导热物体温度场的数值模拟 学校:西安交通大学 姓名:张晓璐 学号:10031133 班级:能动A06

一.问题(4-23) 有一个用砖砌成的长方形截面的冷空气通道,形状和截面尺寸如下图所示,假设在垂直纸面方向冷空气和砖墙的温度变化很小,差别可以近似的予以忽略。在下列两种情况下计算:砖墙横截面上的温度分布;垂直于纸面方向上的每米长度上通过墙砖上的导热量。 第一种情况:内外壁分别维持在10C ?和30C ? 第二种情况:内外壁与流体发生对流传热,且有C t f ?=101, )/(2021k m W h ?=,C t f ?=302,)/(422k m W h ?=,K m W ?=/53.0λ

二.问题分析 1.控制方程 02222=??+??y t x t 2.边界条件 所研究物体关于横轴和纵轴对称,所以只研究四分之一即可,如下图: 对上图所示各边界: 边界1:由对称性可知:此边界绝热,0=w q 。 边界2:情况一:第一类边界条件 C t w ?=10 情况二:第三类边界条件

)()( 11f w w w t t h n t q -=??-=λ 边界3:情况一:第一类边界条件 C t w ?=30 情况二:第三类边界条件 )()( 22f w w w t t h n t q -=??-=λ 三:区域离散化及公式推导 如下图所示,用一系列和坐标抽平行的相互间隔cm 10的网格线将所示区域离散化,每个交点可以看做节点,该节点的温度近似看做节点所在区域的平均温度。利用热平衡法列出各个节点温度的代数方程。 第一种情况: 内部角点:

工程传热学课后题答案word资料17页

第一章作业 1-1对于附图所示的两种水平夹层,试分析冷、热表面间热量交换的方式有何不 同?如果要通过实验来测定夹层中流体的导热系数, 应采用哪一种布置? 解:(a )中热量交换的方式主要有热传导和热辐射。 (b )热量交换的方式主要有热传导,自然对流 和热辐射。 所以如果要通过实验来测定夹层中流体的导热系数, 应采用(a )布置。 1-7一炉子的炉墙厚13cm ,总面积为20m 2,平均导 热系数为1.04w/m ·k ,内外壁温分别是520℃及50℃。 试计算通过炉墙的热损失。如果所燃用的煤的发热量是2.09×104kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式 每天用煤 1-9在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度t w =69℃,空气温度t f =20℃,管子外径d=14mm ,加热段长80mm ,输入加热段的功率8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式 1-14宇宙空间可近似的看作0K 的真空空间。一航天器在太空中飞行,其外表面平均温度为250K ,表面发射率为0.7,试计算航天器单位表面上的换热量? 解:航天器单位表面上的换热量 2484241/155)250(1067.57.0)(m w T T Q =???=-=-εσ 1-27附图所示的空腔由两个平行黑体表面组 成,孔腔内抽成真空,且空腔的厚度远小于其高度与宽度。其余已知条件如图。表面2是厚δ=0.1m 的平板的一侧面,其另一侧表面3被高 温流体加热,平板的平均导热系数λ=17.5w/m ? K ,试问在稳态工况下表面3的t w3温度为多少? 解: 表面1到表面2的辐射换热量=表面2到表面3的导热量 第二章作业 2-4一烘箱的炉门由两种保温材料A 和B 做成, 且δA =2δB (见附图)。已知λA =0.1 w/m ?K ,λB =0.06 w/m ?K 。烘箱内空气温度 t f1=400℃,内壁面的总表面传热系数h 1=50 w/m 2?K 。为安全起见,希望烘箱炉门 的外表面温度不得高于50℃。设可把炉门导热作为一维导热问题处理,试决定所需保温材料的厚度。环境温度t f2=25℃,外表面总表面传热系数h 2=9.5 w/m 2?K 。 解:按热平衡关系,有: 由此得,δB =0.0396m δA =2δB =0.0792 m t w3 ε=1.0 t w2=127℃ t w1=27℃ δ h 1 t f1 h 2 t f2 t δA δ B

传热学第五版课后习题答案

如对你有帮助,请购买下载打赏,谢谢! 传热学习题_建工版V 0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45W/(m.K), 两侧表面温度分别为w1t 150C =?及w1t 285C =? ,试求热流密度计热流量。 解:根据付立叶定律热流密度为: 负号表示传热方向与x 轴的方向相反。 通过整个导热面的热流量为: 0-15 空气在一根内经50mm ,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m2.k),热流密度q=5110w/ m2, 是确定管壁温度及热流量?。 解:热流量 又根据牛顿冷却公式 管内壁温度为: 1-1.按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。 解: (1)由附录7可知,在温度为20℃的情况下, λ铜=398 W/(m·K),λ碳钢=36W/(m·K), λ铝=237W/(m·K),λ黄铜=109W/(m·K). 所以,按导热系数大小排列为: λ铜>λ铝>λ黄铜>λ钢 (2) 隔热保温材料定义为导热系数最大不超过0.12 W/(m·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为: 膨胀珍珠岩散料:λ=0.0424+0.000137t W/(m·K) =0.0424+0.000137×20=0.04514 W/(m·K); 矿渣棉: λ=0.0674+0.000215t W/(m·K) =0.0674+0.000215×20=0.0717 W/(m·K); 由附录7知聚乙烯泡沫塑料在常温下, λ=0.035~0. 038W/(m·K)。由上可知金属是良好的导热材料,而其它三种是好的保温材料。 1-5厚度δ为0.1m 的无限大平壁,其材料的导热系数λ=100W/(m·K),在给定的直角坐标系中,分别画出稳态导热时如下两种情形的温度分布并分析x 方向温度梯度的分量和热流密度数值的正或负。 (1)t|x=0=400K, t|x=δ=600K; (2) t|x=δ=600K, t|x=0=400K; 解:根据付立叶定律 无限大平壁在无内热源稳态导热时温度曲线为直线,并且 x x 02121t t t t t dt x dx x x 0 δ δ==--?===?-- x x 0x t t q δλ δ==-=- (a ) (1) t|x=0=400K, t|x=δ=600K 时 温度分布如图2-5(1)所示 图2-5(1)

武汉理工工程热力学和传热学作业

工程热力学和传热学 第二章基本概念 一.基本概念 系统: 状态参数: 热力学平衡态: 温度: 热平衡定律: 温标: 准平衡过程: 可逆过程: 循环: 可逆循环: 不可逆循环: 二、习题 1.有人说,不可逆过程是无法恢复到起始状态的过程,这种说法对吗? 2.牛顿温标,用符号°N表示其温度单位,并规定水的冰点和沸点分别为100°N和200°N,且线性分布。(1)试求牛顿温标与国际单位制中的热力学绝对温标(开尔文温标)的换算关系式;(2)绝对零度为牛顿温标上的多少度? 3.某远洋货轮的真空造水设备的真空度为0.0917MPa,而当地大气压力为0.1013MPa,

当航行至另一海域,其真空度变化为0.0874MPa,而当地大气压力变化为0.097MPa。试问该真空造水设备的绝对压力有无变化? 4.如图1-1所示,一刚性绝热容器内盛有水,电流通过容器底部的电阻丝加热 水。试述按下列三种方式取系统时,系统与外界交换的能量形式是什么。 (1)取水为系统;(2)取电阻丝、容器和水为系统;(3)取虚线内空间为系统。 图 1-1 5.判断下列过程中那些是不可逆的,并扼要说明不可逆原因。 (1)在大气压力为0.1013MPa时,将两块0℃的冰互相缓慢摩擦,使之化为0℃的水。 (2)在大气压力为0.1013MPa时,用(0+dt)℃的热源(dt→0)给0℃的冰加热使之变为0℃的水。 (3)一定质量的空气在不导热的气缸中被活塞缓慢地压缩(不计摩擦)。 (4)100℃的水和15℃的水混合。 6.如图1-2所示的一圆筒容器,表A的读数为 360kPa;表B的读数为170kPa,表示室I压力高于 室II的压力。大气压力为760mmHg。试求: (1)真空室以及I室和II室的绝对压力; (2)表C的读数; (3)圆筒顶面所受的作用力。 图1-2 第三章热力学第一定律

《传热学》第四版课后习题答案

《传热学》 第一章 思考题 1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。 答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。 导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。 2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。试写 出这三个公式并说明其中每一个符号及其意义。 答:① 傅立叶定律: dx dt q λ -=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率, “-”表示热量传递的方向是沿着温度降低的方向。 ② 牛顿冷却公式: ) (f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度; f t -流体的温度。 ③ 斯忒藩-玻耳兹曼定律:4 T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐 射物体的热力学温度。 3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关? 答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。这三个参数中,只有导热系数是物性参数,其它均与过程有关。 4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一 个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。试分析引入传热方程式的工程实用意义。 答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。 5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干后,水壶很快就烧 坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换

传热学作业

传热学的本质就是热传递,热传递现象无时不在,它的影响几乎遍及现代所有的工门,也渗透到农业,林业等许多技术部门中。可以所除了极个别的情况以外,很难发现一个行业,部门或者工业过程和传热完全没有任何关系。传热学不仅在传统工业领域有很大的应用空间,在许多诸如航空航天,何能,微电子,材料,生物医学工程,环境工程,新能源以及农业工程等徐国高新技术领域也都在不同程度上依赖于传热学的最新成果,从这些方面不难看出,传热学在各个领域的应用中起到了不可替代的作用。 在传统工业和农业领域的应用: 1.传热学辅助与能源动力工业,如核电站的反应堆要经受一定的温度,压力和 高通量的中字辐射。为了提高能源利用水平,必须不断强化炉内各传热表面 与燃气,烟气之间的换热。核反应堆中则要强化燃料体原件与载热剂之间的 换热。 2.在石油及化工,冶金,建筑领域,其主要工艺工程都涉及到加热或者冷却。 之所以我们国家的在这些行业里的能耗是发达国家的数倍的直接原因就是, 由于和传热有直接关系的因素存在缺陷,如设备陈旧,工艺落后,管理水平 低等。 3.在建筑和建材工业领域里,建筑物的节能,采光和通风等均与传热关系密切。 建筑擦材料像水泥,建筑砖瓦,玻璃和卫生陶瓷等,大量使用高温炉窑焙烧 工艺,能耗极高而能效很低。这些都是设备陈旧造成的。而这些设备必须用 传热原理进行改造和更新。 4.空调制冷和集中供热行业是传热学的主要领域分支。增大制冷剂的沸腾,凝 结表面传热系数,研究有关的强化传热技术和强化原件的制造工艺始终是提 高制冷机组性能的关键。从20世纪80年代初引进国外的先进技术和产品开 始,现在国内不少厂家已经掌握了多种用于各类制冷机组上的强化沸腾或强 化冷凝传热表面和元件的制造工艺,如多孔表面沸腾管,单面或双面强化冷 凝管,以及波纹板式紧凑型蒸发器、冷凝器等。特别值得提出,随着对大气 层和生态环境有害的氯氟烃类制冷剂的停产停用,对新制冷工质,尤其是混 合工质的传热性能的研究显得相对薄弱。集中供热以其高效率、可靠性和清 洁无污染赢得了越来越大的市场,供热管网的隔热保温材料和技术、高效换 热设备、防腐措施、流动减阻和独立热计量等问题变得日益突出。它们大多 数都与传热有很密切的关系。 5.在纺织业,不光种植的时候要用到传热学的原理,而且在加工的时候也要用 到传热学的原理。市场上琳琅满目的保暖衣物产品都是利用传热学原理进行 加工制造的。 6.在铸造、焊接、金属热处理等常规机械加工工艺过程中,存在大量的非稳态 导热、移动边界的固液相变传热以及各类对流换热问题。在精密机械和精密 仪器的制造和使用过程中,热应力和热变形量的预测、修正及控制也同样有 赖于传热原理的指导。 7.在土木水力工程领域也和传热学有直接的关系,比如在我们建筑水坝的时候, 浇筑水泥后的固化过程也是一个生热过程,掌握并控制水泥浇筑时的温度以 及随后固化过程中温度的变化,对消除坝体内的热应力,减少消除内部裂纹, 对保证工程的质量和大坝的长期安全有及其重要的意义。 在高新技术领域的应用: 1.多孔介质中的传热传质是当今传热学科中比较前沿的领域。这些由固体骨架 或固体颗粒堆积组成的多相体系,其中的质量,动量和热量的传递规律是揭开

传热学大作业

课程编号:13SD02010340 课程名称:传热学 上课时间:2014年春季 电子元器件散热方法研究 姓名: 学号: 班级: 所在学院: 任课教师:

摘要:随着电子器件的高频、高速以及集成电路技术的迅速发展和技术的进步,电子元器件的总功率密度大幅度增长而物理尺寸却越来越小,热流密度也随之增加,所以高温的 温度环境势必会影响电子元器件的性能,这就要求对其进行更加高效的热控制。因此,有 效解决电子元器件的散热问题已成为当前电子元器件和电子设备制造的关键技术。本文针 对电子元器件的散热与冷却问题,综述了当前应用研究中不同的散热和冷却方法,并进行 了适当的分析。 关键词热管理; 冷却; 电子器件 近些年来,电子技术的快速发展。电子器件的高频、高速以及集成电路的密集和小型化,使得单位容积电子器件的总功率密度和发热量大幅度地增长,从而使电子器件的冷却问题 变得越来越突出。如: 大型计算机的芯片热流量已达到了60 W/ cm2,到2000 年已经超过了,目前最高已达到200 W/ cm2。特别是由于MEMS技术突飞猛进,使得电子元器件的尺寸越来越小,已经从微米量级进入到了亚微米量级。尽管随着器件或系统尺寸的减小, 消耗功率也会有所减小, 但为了完成一定的任务,可减小的余地非常有限,这使得为系统内的热流密度非 常大, 据报道可达, 远远高出航天飞行器回归地球与大气摩擦时产生的惊人的高热流密度。在微系统中可能出现的高热流密度对于电子器件是致命的, 然而使用传统的冷却技术要使 如此高的热流密度在短时间内散去几乎是不现实的; 另一方面, 电子器件工作的可靠性对 温度十分敏感, 器件温度在70~80 水平上每增加1, 可靠性就会下降5%。因而电子产品的 开发、研制中必须要充分考虑到良好的散热手段, 才能保证产品的可靠性和表观。由于电 子元器件的小型化、微型化和集成化,所采用的散热和冷却手段必须要求具有紧凑性、可靠性、灵活性、高散热效率等特点。 1 电子元器件的散热或冷却方法 电子元器件的高效散热问题与传热学、流体力学等原理的应用密切相关。电子器件散 热的目的是对电子设备的运行温度进行控制,以保证其工作的稳定性和可靠性。这其中涉及了与传热有关的散热或冷却方式、材料等多方面内容。从应用的角度看,常用的方法主要有: 自然散热或冷却、强制散热或冷却、液体冷却、制冷方式、疏导方式、热隔离方式和PCM 温度控制方法等。 1.1 自然散热或冷却方法 自然散热或冷却方法是指不使用任何外部辅助能量的情况下,实现局部发热器件向周 围环境散热达到温度控制的目的,这其中通常都包含了导热、对流和辐射三种主要传热方式, 其中对流以自然对流方式为主。自然散热或冷却往往适用对温度控制要求不高、器件发热 的热流密度不大的低功耗器件和部件,以及密封或密集组装的器件不宜采用其它冷却技术 的情况下。有时,在对散热能力要求不高时也常常利用电子器件自身特点增强与邻近热沉的导热或辐射、通过结构设计强化自然对流,在一定程度上提高系统向环境散热能力。

传热学作业参考答案

第九章 4.一工厂中采用0.1MPa 的饱和水蒸气在—金属竖直薄壁上凝结,对置于壁面另一侧的物体进行加热处理。已知竖壁与蒸汽接触的表面的平均壁温为70 ℃,壁高1.2m ,宽300 mm 。在此条件下,一被加热物体的平均温度可以在半小时内升高30℃,试确定这一物体的平均热容量(不考虑散热损失)。 解:本题应注意热平衡过程,水蒸气的凝结放热量应等于被加热物体的吸热量。 P=0.1Mpa=105Pa,t s =100℃,r=2257.1kJ/kg, t m = 21( t s + t w )= 2 1 (100+70) ℃=85℃。 查教材附录5,水的物性为:ρ=958.4kg/m 3;λ=0.683 W /(m 2·℃);μ=282.5×10-6N·s/m 2 假设流态为层流: 4 1 3 2)(13.1? ? ? ???-=w s t t l r g h μλρ 41 6 3 3 2 )70100(2.1105.282102257683.081.94.95813.1?? ????-???????=- W /(m 2 ·℃) =5677 W /(m 2·℃) 3 6102257105.2822 .13056774)(4Re ??????=-= -r t t hl w s c μ=1282<1800 流态为层流,假设层流正确 Φ=ωl t t h w s )(- =5677×(100?70)×1.2×0.3W=61312W 凝结换热量=物体吸热量 Φ?τ=mc p ?t 61068.330 60 3061312?=??=?Φ?= t mc p τJ/℃ 16.当液体在一定压力下做大容器饱和沸腾时,欲使表面传热系数增加10倍,沸腾温 差应增加几倍?如果同一液体在圆管内充分发展段做单相湍流换热,为使表面传热系数增加10倍,流速应增加多少倍?维持流体流动所消耗的功将增加多少倍?设物性为常数。 解 ①由米洛耶夫公式: { 5 .033.22 25.033.211122.0122.0p t h p t h ?=?= 10)(33.21 212=??=t t h h 所以 69.21033.211 2 ==??t t 即当h 增大10倍时,沸腾温差是原来的2.69倍。 ②如为单相流体对流换热,由D-B 公式可知8 .0m u h ∝,即

传热学大作业

传热学大作业——二维物体热传导 问题的数值解法

1.二维热传导问题的物理描述: 本次需要解决的问题是结合给定的边界条件,通过二维导热物体的数值解法,求解出某建筑物墙角稳态下的温度分布t以及单位长度壁面上的热流量φ。 1.1关于边界条件和研究对象选取的物理描述:如图所示为本次作业需要求解的 建筑物墙壁的截面。尺寸如图中所标注。 1.2由于墙角的对称性,A-A,B-B截面都是绝热面,并且由于对称性,我们只需 要研究墙角的1/4即可(图中阴影部分)。假设在垂直纸面方向上不存在热量 的传递,我们只需要对墙角进行二维问题的研究即可。 1.3 关于导热量计算截面的物理描述:本次大作业需要解决对流边界条件和等温 边界条件下两类边界条件的问题。由于对称性,我们只需研究1/4墙角外表面和内表面的导热量再乘4,即是墙壁的总导热量。 2.二维热传导问题的数学描写: 本次实验的墙角满足二维,稳态无内热源的条件,因此: 壁面内满足导热微分方程: ?2t ?x2+?2t ?y2 =0。

在绝热面处,满足边界条件: ?λ(?t ?n )=0。在对流边界处满足边界条件: ?λ?t ?n w =?(t w?t f) 3.二维热传导问题离散方程的建立: 本次作业中墙角的温度场是一个稳态的连续的场。本次作业中将1/4墙角的温度场离散化,划分成若干小的网格,每个网格的节点看成以它为中心的一个小区域的代表。 通过这些节点,采用“热平衡法”,建立起相应的离散方程,通过高斯-赛德尔迭代法,得到最终收敛的温度场,从而完成对墙角温度场的数值解。 对1/4墙角的网格划分如下: 选取步长Δx=Δy=0.1m,为了方便研究,对导热物体的网格节点进行编码,编码规则如下: x,y坐标轴的方向如图所示,x,y轴的单位长度为步长Δx,取左下角点为(1,1)点,其他点的标号为其在x,y轴上的坐标。以此进行编码,进行离散方程的建立。 建立离散方程,要对导热物体中的节点根据其边界条件进行分类(特殊节点用阴影标出):首先以对流边界条件下的墙角为例

相关主题
文本预览
相关文档 最新文档