当前位置:文档之家› 第八章细胞信号转导教案上课讲义

第八章细胞信号转导教案上课讲义

第八章细胞信号转导教案上课讲义
第八章细胞信号转导教案上课讲义

名师精编优秀教案

朝阳师范高等专科学校教案

课程名称:细胞生物学

任课教师:聂颖

开课系部:生化工程系

开课学年:2013~2014学年度

开课学期:第一学期

朝阳师范高等专科学校教案

年月日课题名称第八章细胞信号转导

课次第(1)次课课时 2

课型理论(√);实验();实习();、实务();习题课();讨论();其他()

教学目标掌握细胞通讯与细胞识别的概念和方式

教学重点与难点重点:细胞通讯与细胞识别的概念和方式。难点:细胞通讯的概念。

教学主要内容与教

学设计

一、概述

(一)细胞通讯

分别介绍细胞通讯概念、方式及信号分子和受体。

(二)信号转导系统及其特性

信号转导系统的基本组成与信号蛋白、细胞内信号蛋白的相互作用和信号转导系统的主要特性。

二、细胞内受体介导的信号转导

(一)细胞内核受体及其对基因表达的调节

(二)NO作为气体信号分子进入靶细胞直接与酶结合

三、G蛋白耦联受体介导的信号转导

(一)G蛋白耦联受体的结构与激活

(二)G蛋白耦联受体所介导的细胞信号通路

教学方法讲授法

教学手段讲演结合,启发式

课外学习安排比较G蛋白耦联受体介导的信号通路有何异同

参考资料

《细胞生物学》翟中和高等教育出版社《分子细胞生物学》韩贻仁高等教育出版社

学习效果评测通过练习检测教学目标实现程度

课外学习

指导安排

了解各种细胞通讯方式之间有何不同

(续)教学基本内容及进程(注:本部分是重点,要详细,对教学内容与教学方法要根据教学

大纲、教学对象进行设计,确定教学重点、难点、知识点的布控、教学方法的选择、教学

时间的分配等。

备注

一、概述

(一)细胞通讯

细胞通讯(cell communication)是指一个细胞发出的信息通过介质传递到另一个细胞并与靶细胞相应的受体相互作用,然后通过细胞信号转导产生胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。

1.细胞通讯的方式

(1)通过分泌化学信号的通讯(化学通讯)

化学通讯是间接的细胞通讯,指细胞分泌一些化学物质(如激素)至细胞外,作为信号分子作用于靶细胞,调节其功能。

①内分泌(endocrine):内分泌细胞分泌的激素随血液循环输至全身,作

用于靶细胞。特点:低浓度;全身性;长时效。

②旁分泌(paracrine):细胞分泌的信号分子通过扩散作用于邻近的细胞。包括:各类细胞因子;气体信号分子(如:NO)。

③自分泌(autocrine):信号发放细胞和靶细胞为同类或同一细胞,常见

于病理状态下,如肿瘤细胞。

④通过化学突触传递神经信号(neuronal signaling):神经递质(如乙酰胆碱)由突触前膜释放,经突触间隙扩散到突触后膜,作用于特定的靶细胞。

(2)细胞间接触依赖性通讯

细胞间直接接触,通过与质膜结合的信号分子影响其他细胞。包括细胞-细胞黏着、细胞-基质黏着。

细胞识别(cell recognition):是指细胞通过其表面信号分子(受体)与

另一细胞表面的信号分子(配体)选择性地相互作用,最终产生细胞应答的过

程,也称膜表面分子接触通讯

(3)细胞间隙连接(gap junction)

动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连丝使细胞间相互

沟通,通过交换小分子来实现代谢耦联或电耦联。

2.信号分子与受体

信号分子是细胞信息的载体,种类繁多。

受体是一种能够识别和选择性结合某种配体(信号分子)的大分子。受体

多为糖蛋白,少数是糖脂、糖蛋白和糖脂复合物。根据靶细胞上受体存在的部

位,分为:离子通道耦联受体、G蛋白耦联受体、酶连受体。细胞通讯概念及方式

与图片结合进行讲解

(二)信号转导系统及其特性

1.信号转导系统的基本组成与信号蛋白

细胞表面受体介导的信号途径由以下4步骤组成:

(1)细胞表面受体特异性识别细胞外信号分子;

(2)细胞信号通过适当的分子开关实现信号跨膜导;

(3)信号传递到胞内效应器(蛋白),引发胞内信号放大的级联反应;

(4)由于信号分子失活,细胞反应终止或下调。

2.细胞内信号蛋白的相互作用

3.信号转导系统的主要特性

多细胞生物是一个繁忙而有序的细胞社会,这种社会性的维持不仅依赖于

细胞的物质代谢与能量代谢,还有赖于细胞通讯与信号传递,从而以不同的方

式协调他们的行为,诸如细胞生长、分裂、死亡、分化及其各种生理功能。

二、细胞内受体介导的信号转导

(一)细胞内核受体及其对基因表达的调控

细胞内受体的本质是激素激活的基因调控蛋白。在细胞内,受体与抑制性

蛋白(如Hsp90)结合形成复合物,处于非活化状态。配体(如皮质醇)与受体

结合,将抑制性蛋白从复合物上解离下来,从而使受体暴露出DNA结合位点而被激活。

这类受体一般都有3个结构域:位于C端的激素结合位点,位于中部富含Cys、具有锌指结构的DNA或Hsp90结合位点,以及位于N端的转录激活结构域。

(二)NO作为气体信号分子进入靶细胞直接与酶结合

NO是另一种可进入细胞内部的信号分子,能快速透过细胞膜,作用于邻近

细胞。

NO对血管的效应可以很好地解释硝化甘油的作用,早在100年前就使用硝化甘油处理心绞痛的病人(这种绞痛是由血液不适当地流向心肌引起的)。硝化甘油在体内转化成NO,它可以使血管松弛。减轻心脏的工作压力,减少心肌对

氧的需要。

三、G蛋白耦联受体介导的信号转导

(一)G蛋白耦联受体的结构与激活

1.定义:

三聚体GTP结合调节蛋白(trimeric GTP-binding regulatory protein):简称G蛋白,位于质膜内胞浆一侧。G蛋白在信号转导过程中起着分

子开关的作用。

2.组成:

三个亚基组成, 分别叫α、β、γ, 其中β、γ两亚基通常紧密结合在

一起, 只有在蛋白变性时才分开。

3.功能位点:

α亚基具有三个功能位点:①GTP结合位点; ②鸟苷三磷酸水解酶(GTPase)活性; ③ADP-核糖化位点。

(二)G蛋白耦联受体所介导的细胞信号通路

(续)

教学基本内容及进程备注

掌握反应

原理

掌握反应

方法

学生掌握教学内容,作业完成情况良好。

第七章 细胞信号转导异常与疾病-卢建

总字数:19,361 图:5 表:0 第七章细胞信号转导异常与疾病 第一节细胞信号转导系统概述 一、受体介导的细胞信号转导通路 二、细胞信号转导通路调节靶蛋白活性的主要方式 第二节信号转导异常发生的环节和机制 一、细胞外信号发放异常 二、受体或受体后信号转导异常 第三节与信号转导异常有关的疾病举例 一、胰岛素抵抗性糖尿病 二、肿瘤 三、心肌肥厚和心衰

第七章细胞信号转导异常与疾病 细胞信号转导系统(signal transduction system或cell signaling system)由能接收信号的特定受体、受体后的信号转导通路以及其作用的靶蛋白所组成。细胞信号转导系统具有调节细胞增殖、分化、代谢、适应、防御和凋亡等作用,它们的异常与疾病,如肿瘤、心血管病、糖尿病、某些神经精神性疾病以及多种遗传病的发生发展密切相关。受体和细胞信号转导分子异常既可以作为疾病的直接原因,引起特定疾病的发生;亦可在疾病的过程中发挥作用,促进疾病的发展。细胞信号转导异常可以局限于单一成分(如特定受体)或某一环节,亦可同时或先后累及多个环节甚至多条信号转导途径,造成调节信号转导的网络失衡。对信号转导系统与疾病关系的研究不仅有助于阐明疾病的发生发展机制,还能为新药设计和发展新的治疗方法提供思路和作用靶点。 第一节细胞信号转导系统概述 信号转导过程包括细胞对信号的接受,细胞内信号转导通路的激活和信号在细胞内的传递。激活的信号转导通路对其靶蛋白的表达或活性/功能的调节,如导致如离子通道的开闭、蛋白质可逆磷酸化反应以及基因表达改变等,导致一系列生物效应。 一、受体介导的细胞信号转导通路 细胞的信号包括化学信号和物理信号,物理信号包括射线、紫外线、光信号、电信号、机械信号(摩擦力、压力、牵张力以及血液在血管中流动所产生的切应力等)以及细胞的冷热刺激等。已证明物理信号能激活细胞内的信号转导通路,但是与化学信号相比,目前多数物理信号是如何被细胞接受和启动细胞内信号转导的尚不清楚。 化学信号又被称为配体(ligand),它们包括:①可溶性的化学分子如激素、神经递质和神经肽、细胞生长因子和细胞因子、局部化学介质如前列腺素、细胞

细胞生物学信号转导练习题

选择题:请在以下每题中选出正确答案,每题正确答案为1-6个,多选和少选均不得分 1. NO直接作用于 A.腺苷酸环化酶 B.鸟苷酸环化酶 C.钙离子门控通道 2. 以下哪一类细胞可释放NO A.心肌细胞 B.血管内皮细胞 C.血管平滑肌细胞 3. 硝酸甘油作为治疗心绞痛的药物是因为它 A.具有镇痛作用 B.抗乙酰胆碱 C.能在体内转换为NO 4. 胞内受体A.是一类基因调控蛋白 B.可结合到转录增强子上 C.是一类蛋白激酶 D.是一类第二信使 5. 受体酪氨酸激酶RTK A.为单次跨膜蛋白 B.接受配体后发生二聚化 C.能自磷酸化胞内段 D.可激活Ras 6. Sos属于 A.接头蛋白(adaptor) B.Ras的鸟苷酸交换因子(GEF) C.Ras的GTP酶活化蛋白(GAP) 7. 以下哪些不属于G蛋白 A.Ras B.微管蛋白β亚基 C.视蛋白 8. PKC以非活性形式分布于细胞溶质中,当细胞之中的哪一种离子浓度升高时,PKC转位到质膜内表面

A.镁离子 B.钙离子 C.钾离子 D.钠离子 9. Ca2+载体——离子霉素(ionomycin)能够模拟哪一种第二信使的作用 A.IP3 B.IP2 C.DG 10. 在磷脂酰肌醇信号通路中,质膜上的磷脂酶C(PLC-β)水解4,5-二磷酸磷脂酰肌醇(PIP2),产生哪两个两个第二信使 A.1,4,5-三磷酸肌醇(IP3) B.DAG C.4,5-二磷酸肌醇(IP2) 11. 在磷脂酰肌醇信号通路中,G蛋白的直接效应酶是 A.腺苷酸环化酶 B.磷脂酶C-β C.蛋白激酶C 12. 蛋白激酶A(Protein Kinase A,PKA)由两个催化亚基和两个调节亚基组成,cAMP能够与酶的哪一部分结合 A.催化亚基 B.调节亚基 13. 在cAMP信号途径中,环腺苷酸磷酸二酯酶(cAMP phosphodiesterase)的作用是 A.催化ATP生成cAMP B.催化ADP生成cAMP C.降解cAMP生成5’-AMP 14. 在cAMP信号途径中,G蛋白的直接效应酶是 A.蛋白激酶A B.腺苷酸环化酶 C.蛋白激酶C 15. 以下哪一种感觉不是由G蛋白偶联型受体介导的 A.听觉 B.味觉 C.视觉 D.嗅觉 16. G蛋白的GTP酶活化蛋白GAP(GTPase activating protein)可

细胞信号转导异常与疾病

细胞信号转导异常与疾病 【简介】 细胞通过受体感受胞外信号分子的刺激,经复杂的细胞内信号转导系统的转换而影响其生物学功能,该过程称为细胞信号转导。水溶性信号分子及某些脂溶性信号分子不能穿过细胞膜,通过与膜表面受体相结合而激活细胞内信号分子,经信号转导的级联反应将细胞外信号传递至胞浆或核内,调节靶细胞功能,该过程称为跨膜信号转导。脂溶性信号分子能穿过细胞膜,与位于胞浆或核内的受体相结合并激活之,活化的受体作为转录因子,改变靶基因的转录活性而诱导细胞特定的应答反应。在病理情况下,细胞信号转导途径中一个或多个环节异常,可导致细胞代谢及功能紊乱或生长发育异常。近年来,人们已经认识到大多数疾病与细胞外或细胞内的信号转导异常有关。信号转导治疗的概念进入了现代药物研究的最前沿。 【要求】 掌握细胞信号转导的概念、跨膜信号转导的概念,掌握细胞信号转导的主要途径 熟悉细胞信号转导障碍与疾病的关系 了解细胞信号转导调控与疾病防治措施 细胞信号转导系统具有调节细胞增殖、分化、代谢、适应、防御和凋亡等多方面的作用,它们的异常与疾病,如肿瘤、心血管病、糖尿病、某些神经精神性疾病以及多种遗传病的发生发展密切相关。受体和细胞信号转导分子异常既可以作为疾病的直接原因,引起特定疾病的发生;亦可在疾病的过程中发挥作用,促进疾病的发展。某些信号转导蛋白的基因突变或多态性虽然并不能导致疾病,但它们在决定疾病的严重程度以及疾病对药物的敏感性方面起重要作用。细胞信号转导异常可以局限于单一成分(如特定受体)或某一环节,亦可同时或先后累及多个环节甚至多条信号转导途径,造成调节信号转导的网络失衡。对信号转导系统与疾病关系的研究不仅有助于阐明疾病的发生发展机制,还能为新药设计和发展新的治疗方法提供思路和作用靶点。 第一节细胞信号转导系统概述 生物的细胞每时每刻都在接触着来自细胞内或者细胞外的各种各样信号。细胞通过位于胞膜或胞内的受体感受胞外信息分子的刺激,经复杂的细胞内信号转导系统的转换而影响其生物学功能,这一过程称为细胞信号转导(cell signal transduction)。典型的细胞信号转导过程通常包括①信号发放:细胞合成和分泌各种信号分子;②接受信号:靶细胞上的特异受体接受信号并启动细胞内的信号转导;③信号转导:通过多个信号转导通路调节细胞代谢、功能及基因表达;④信号的中止:信号的去除及细胞反应的终止。 一、信号以及细胞转导信号的要素 (一)细胞信号的种类 一般说来,能够介导细胞反应的各种刺激都称为细胞信号。细胞信号按照其形式不同可分为物理信号、化学信号和生物信号。生物细胞所接受的信号有多种多样,从这些信号的自然性质来说,可以分为物理信号、化学信号和生物学信号等几大类,它们包括光、热、紫外线、X-射线、离子、过氧化氢、不稳定的氧化还原化学物质、生长因子、分化因子、神经递质和激素等等。在这些信号中,最经常、最普遍、最广泛的信号应该说是化学信号。 化学信号种类繁多,包括激素(hormone)、神经递质(nerve mediator)、细胞因子

七细胞信号转导异常与疾病版

第七章细胞信号转导异常与疾病 一.选择题 (一).A型题 1.下列关于细胞信号转导的叙述哪项是不正确的? A.不同的信号转导通路之间具有相互联系作用 B.细胞受体分为膜受体和核受体 C.酪氨酸蛋白激酶型受体属于核受体 D.细胞信号转导过程是由细胞内一系列信号转导蛋白的构象、活性或功能变化来实现的E.细胞内信使分子能激活细胞内受体和蛋白激酶 2.下列关于细胞信号转导的叙述哪项是错误的? A.机体所有生命活动都是在细胞信号转导和调控下进行的 B.细胞通过受体感受胞外信息分子的刺激,经细胞内信号转导系统的转换而影响生物学功能 C.不溶性信息分子需要与膜表面的特殊受体相结合,才能启动细胞信号转导过程 D.脂溶性信息分子需与胞外或核内受体结合,启动细胞信号转导过程 E.G蛋白介导的细胞信号转导途径中,其配体以生长因子为代表 3.有关G蛋白叙述哪项是不正确的? A.G蛋白是指与鸟嘌呤核苷酸可逆性结合的蛋白质家族 B.G蛋白是由αβγ亚单位组成的异三聚体 C.Gα上的GTP被GDP取代,这是G蛋白激活的关键步骤 D.小分子G蛋白只具有G蛋白α亚基的功能 E.G蛋白偶联受体由单一肽链7次穿越细胞膜

4.信号转导通路对靶蛋白调节最重要的方式是 A.通过G蛋白调节B.通过可逆性磷酸化调节C.通过配体调节 D.通过受体数量调节E.通过受体亲和力调节 5.迄今发现的最大受体超家族是 A.GPCR超家族B.细胞因子受体超家族C.酪氨酸蛋白激酶型受体家族 D.离子通道型受体家族E.PSTK型受体家族 6.调节细胞增殖与肥大最主要的途径是 A. DG-蛋白激酶C途径 B. 受体酪氨酸蛋白激酶途径 C. 腺苷酸环化酶途径 D. 非受体酪氨酸蛋白激酶途径 E. 鸟氨酸环化酶途径 7.下列关于PI-3K-PKB通路的叙述错误的是 A.活化的PI-3K产物可激活磷脂酰肌醇依赖性激酶PKD1 B.在胰岛素调节糖代谢中发挥重要作用 C.在PI-3K-PKB通路中有PLCγ的激活 D.可促进细胞存活和抗凋亡 E.可参与调节细胞的变形和运动 8.下列关于信号转导异常原因的叙述哪项是不正确的? A.通过Toll样受体家族成员激活细胞内信号转导通路,在病原体感染引起的免疫和炎症反应中起重要作用 B.体内某些信号转导成分是致癌物作用的靶点 C.TSHR的失活性突变可造成TSH抵抗征,患者表现为甲状腺功能减退 D.常染色体显性遗传的甲亢患者常常伴有TSHR的失活性突变 E.自身免疫性受体病是由于患者体内产生了抗某种自身受体的抗体所致

第七章 细胞信号转导异常与疾病

第七章细胞信号转导异常与疾病 一、单选题 1.下列哪项不属于典型的膜受体 ( ) A.乙酰胆碱受体 B.异丙肾上腺素受体 C.胰岛素受体 D.γ干扰素受体 E.糖皮质激素受体 2.介导去甲肾上腺素作用的受体属于 ( ) A.离子通道受体 B.G蛋白偶联受体 C.受体酪氨酸蛋白激酶 D.核受体 E.细胞粘附受体 3.核受体本质是配体激活的 ( ) A.丝/苏氨酸蛋白激酶 B.酪氨酸蛋白激酶 C.离子通道受体 D.转录因子 E.效应器 4.信号转导系统对靶蛋白调节的最重要方式是通过 ( ) A.DNA的甲基化 B.蛋白质的糖基化 C.DNA的乙酰化 D.蛋白质可逆的磷酸化 E.蛋白质的磷酸化 5.激素抵抗综合征是由于 ( ) A.激素合成减少 B.激素降解过多 C.靶细胞对激素反应性降低 D.靶细胞对激素反应性过高 E.以上都不是 6.毒性甲状腺肿(Graves病)的主要信号转导异常是 ( ) A.促甲状腺素分泌减少 B.促甲状腺素受体下调或减敏 C.Gs含量减少 D.促甲状腺激素(TSH)受体刺激性抗体的作用 E.TSH受体阻断性抗体的作用 7.霍乱毒素对G蛋白的作用是 ( ) A.促进Gs与受体结合 B.刺激Gs生成 C.使Gs的GTP酶活性增高

D.使Gs的GTP酶活性抑制或丧失 E.抑制Gi与受体结合 8.下列哪项不是激活NF- KB的因素 ( ) A.TNF B.病毒 C.糖皮质激素 D.活性氧 E.内毒素 9.肿瘤中小G蛋白Ras最常见的突变可导致 ( ) A.Ras的表达减少 B.Ras的失活 C.Ras与GDP解离障碍 D.Ras自身的GTP酶活性降低 E.Ras激活ERK通路的能力降低 10.家族性肾性尿崩症发病的关键环节是 ( ) A.腺垂体合成和分泌ADH减少 B.肾髓质病变使肾小管上皮细胞对ADH反应性降低 C.基因突变使ADH受体介导的信号转导障碍 D.基因突变使腺苷酸环化酶含量减少 E.肾小管上皮细胞上的水通道增多 11.肿瘤的细胞信号转导异常有 ( ) A.生长因子分泌过多 B.生长因子受体过度激活 C.Ras持续激活 D.抑制细胞增殖的信号减弱 E.以上都是 12.死亡受体(如I型TNFa受体)介导细胞凋亡主要通过激活 ( ) A.蛋白激酶A(PKA) B.Ca2+/钙调素依赖性蛋白激酶 C.蛋白激酶C(PKC) D.NF-kB E.caspases 二、问答题 1.简述细胞信号转导系统的组成、生理作用及异常的病理意义。 2.试述信号转导通路的异常与肿瘤发生发展的关系。 3.何谓自身免疫性受体病,举例说明受体自身抗体的种类和作用。 4.试述激素抵抗综合征的发生机制。 5.信号转导障碍在疾病发生和发展中起什么作用? 6.简述糖皮质激素的抗炎机制。 7.试从激素、受体以及信号转导通路调节的靶蛋白这几个不同层次阐述尿崩症的发生机制。 8.简述受体调节的类型和生理病理意义。 9.试述信号转导改变在高血压心肌肥厚发生中的作 用。 10.以LPS的信号转导为例,简述信号转导与炎症启动和放大的关系。

第九章 细胞信号转导知识点总结

第九章细胞信号转导 细胞通讯:一个信号产生细胞发出的信息通过介质(又称配体)传递到另一个靶细胞并与其相应的受体相互作用,然后通过信号转导产生靶细胞内一系列的生理生化变化,最终表现为靶细胞整体的生物学效应。 信号传导:是指信号分子从合成的细胞中释放出来,然后进行传递。信号传导强调信号的产生、分泌与传送。 信号转导:是指信号的识别、转移与转换,包括配体与受体的结合、第二信使的产生及其后的级联反应等。信号转导强调信号的接收与接收后信号转换的方式与结果。 受体:是一类能够结合细胞外特异性信号分子并启动细胞反应的蛋白质。 第二信使:细胞外信号分子不能进入细胞,它作用于细胞表面受体,经信号转导,在细胞内产生非蛋白类小分子,这种细胞内信号分子称为第二信使。 分子开关:细胞信号传递级联中,具有关闭和开启信号传递功能的分子。 信号通路:细胞接受外界信号,通过一整套特定机制,将胞外信号转化为胞内信号,最终调节特定基因表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。 G蛋白偶联受体:指配体-受体复合物与靶细胞的作用是要通过与G蛋白的偶联,在细胞内产生第二信使,从而将细胞外信号跨膜传递到胞内影响细胞行为的受体。 cAMP信号通路:细胞外信号与细胞相应受体结合,导致细胞内第二信使cAMP 水平的变化而引起细胞反应的信号通路。 (磷脂酰肌醇信号通路)双信使系统:胞外信号分子与细胞表面G蛋白偶联受体结合,激活膜上的磷脂激酶C,使质膜上的PIP2分解成IP3和DAG两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激活两种不同的信号通路,即IP3-Ca2+和DAG-PKC途径,实现对胞外信号的应答,因此将这种信号通路称为“双信使系统”。 钙调蛋白:真核细胞中普遍存在的Ca2+应答蛋白。 Ras蛋白:Ras基因的产物,分布于质膜胞质侧,结合GTP时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。

第八章 细胞信号转导

第八章细胞信号转导 名词解释 1、蛋白激酶protein kinase 将磷酸基团转移到其他蛋白质上的酶,通常对其他蛋白质的活性具有调节作用。 2、蛋白激酶C protein kinase C 一类多功能的丝氨酸/苏氨酸蛋白激酶家族,可磷酸化多种不同的蛋白质底物。 3、第二信使second messenger 第一信使分子(激素或其他配体)与细胞表面受体结合后,在细胞内产生或释放到细胞内的小分子物质,如cAMP,IP3,钙离子等,有助于信号向胞内进行传递。 4、分子开关molecular switch 细胞信号转导过程中,通过结合GTP与水解GTP,或者通过蛋白质磷酸化与去磷酸化而开启或关闭蛋白质的活性。 5、磷脂酶C phospholipid C 催化PIP2分解产生1,4,5-肌醇三磷酸(IP3)和二酰甘油(DAG)两个第二信使分子。 6、门控通道gated channel 一种离子通道,通过构象改变使溶液中的离子通过或阻止通过。依据引发构象改变的机制的不同,门控通道包括电位门通道和配体门通道两类。 7、神经递质neurotransmitter 突触前端释放的一种化学物质,与突触后靶细胞结合,并改变靶细胞的膜电位。 8、神经生长因子nerves growth factor,NGF 神经元存活所必需的细胞因子 9、受体receptor 任何能与特定信号分子结合的膜蛋白分子,通常导致细胞摄取反应或细胞信号转导。10、受体介导的胞吞作用receptor mediated endocytosis 通过网格蛋白有被小泡从胞外基质摄取特定大分子的途径。被转运的大分子物质与细胞表面互补性的受体结合,形成受体-配体复合物并引发细胞质膜局部内化作用,然后小窝脱离质膜形成有被小泡而将物质吞入细胞内。 11、受体酪氨酸激酶receptor tyrosine kinase,RTK 能将自身或胞质中底物上的酪氨酸残基磷酸化的细胞表面受体。主要参与细胞生长和分化的调控。 12、调节型分泌regulated secretion 细胞中已合成的分泌物质先储存在细胞质周边的分泌泡中,在受到适宜的信号刺激后,才与质膜融合将内容物分泌到细胞表面。 13、细胞通讯cell communication 信号细胞发出的信息传递到靶细胞并与受体相互作用,引起靶细胞产生特异性生物学效应的过程。 14、细胞信号传递cell signaling 通过信号分子与受体的相互作用,将外界信号经细胞质膜传递到细胞内部,通常传递至细胞核,并引发特异性生物学效应的过程。 15、信号转导signal transduction 细胞将外部信号转变为自身应答反应的过程。 16、组成型分泌constitutivesecretion

病理生理学病理生理学试题-细胞信号传导与疾病考试卷模拟考试题

《病理生理学试题-细胞信号传导与 疾病》 考试时间:120分钟 考试总分:100分 遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。 1、G 蛋白偶联受体的结构特征为跨膜( ) A.4次 B.5次 C.6次 D.7次 E.8次 2、具有GTP 酶活性的G 蛋白是( ) A.G α B.G β C.G γ D.G S E.Gi 3、内皮素受体与G qa 结合后可激活( ) A.磷 脂 酶A B.磷 脂 酶B C.磷脂酶C D.磷脂酶。 E.磷脂酶E 4、三磷酸肌醇促进细胞内质网释出( ) A.H+ B.Na+ C.K+ D.Ca2+ E.Fe3+ 姓名:________________ 班级:________________ 学号:________________ --------------------密----------------------------------封 ----------------------------------------------线-------------------------

5、甘油二酯与钙协调促进下列何种蛋白激酶活化?() A.PKA B.PKB C.PKC D.PK E.PKE 6、Ras蛋白可激活() A.PLC B.PKC C.Raf D.IP3 E.DG 7、细胞外信号调节激酶(ERK)促进下列何种因子磷酸化?() A.Ap-1 B.NF- B C.表皮生长因子 D.血清反应因子 E.血小板源生长因子 8、干扰素的信号转导途径系通过() A.G蛋白介导途径 B.腺苷酸环化酶途径 C.受体酪氨酸蛋白激酶途径 D.非受体酪氨酸蛋白激酶途径 E.鸟氨酸环化酶途径 9、不能与热休克蛋白(HSP)结合的受体是() A.糖皮质激素受体 B.盐皮质激素受体 C.甲状腺素受体 D.雄激素受体 E.雌激素受体 10、家族性高胆固醇血症的发生是由于下列哪一种受体发生异常?() A.胆固醇受体 B.甘油三酯受体 C.低密度脂蛋白受体 D.高密度脂蛋白受体 E.低密度脂蛋白受体 11、甲状腺素抵抗综合征是由于下列何型甲状腺素受体突变所致?()

细胞生物学笔记-信号转导

细胞的信号转导 信号转导(signal transduction):指在信号传递中,细胞将细胞外的信号分子携带的信息转变为细胞内信号的过程 完整的信号传递程序: 1、合成信号分子; 2、细胞释放信号分子; 3、信号分子向靶细胞转运; 4、信号分子与特异受体结合; 5、转化为细胞内的信号,以完成其生理作用; 6、终止信号分子的作用; 第一节、细胞外信号 1、由细胞分泌的、能够调节机体功能的一大类生物活性物质。如:配体 2、配体的概念: 指细胞外的信号分子,或凡能与受体结合并产生效应的物质。 3、配体的类型:1)水溶性配体:N 递质、生长因子、肽类激素 2)脂溶性配体:甲状腺素、性激素、肾上腺激素 4、第一信使:指配体,即细胞外来的信号分子。 第二节、受体 一、受体的概念:细胞膜上或细胞内一类特殊的蛋白质,能选择性地和细胞外环境中特定的活性物质结合,从而引起细胞内的一系列效应。 二、受体的类型:细胞表面受体胞内受体(胞浆和核内) 1、细胞表面受体类型 1) 离子通道偶联受体: 特点:本身既有信号结合位点又是离子通道 组成:几个亚单位组成的多聚体,亚单位上配体的结合部位,中间围成离子通道,通道的“开”关受细胞外配体的调节。 2) 酶偶联受体:或称催化受体、生长因子类受体,既是受体,又是“酶”。 特点:N 端细胞外区有配体结合部,C 端细胞质区含特异酪氨酸蛋白激酶(TPK )的活性。 组成:一条肽链一次跨膜的糖蛋白。 3、 G 蛋白偶联受体:是N 递质、激素、肽类配体的受体。 1)特点:指配体与细胞表面受体结合后激活偶联的G 蛋白,活化的G 蛋白再激活第二信使的酶类。通过第二信使引起生物学效应。 2)组成:由一条350-400个氨基酸残基组成的多肽链组成,具有高度的同源性和保守性。 3)G 蛋白偶联受体作用特点:分布广,转导慢, 敏感,灵活,类型多。 G 蛋白(由G 蛋白偶联受体介导的信号转导) 1)、G 蛋白的概念:指鸟苷酸结合蛋白配体—G 蛋白 2)、G 蛋白的结构特征: ① 由α、β、γ3个不同的亚单位构成异三聚体(异聚体),β、γ二个亚单位极为相似且结合为二聚体,共同发挥作用。 ② α-亚单位上有GDP 或GTP 结合位点。在未受刺激状态下,α与GDP 结合,无活性。一旦配体与受体结合(受刺激),α即与GTP 结合并与β、γ分离,此时是功能状态,能激活效应器。当α亚单位 与β、 γ复合物重新结合,即信号关闭。 ③ G 蛋白本身的构象改变可进一步激活效应蛋白,使效应蛋白活化,并引起细胞生物学效应。 3)G 蛋白类型:① Gs :对效应蛋白起刺激和激活作用,相应的为刺激性受体(Rs )。 ② Gi :对效应蛋白起抑制作用,相应的为抑制性受体(Ri )。 G 蛋白偶联受体:

细胞信号转导异常与疾病

第七章细胞信号转导异常与疾病 【参考答案】 一、单选题 1.E 2. B 3. D 4. D 5. C 6. D 7. D 8. C 9.D 10.C 11. E 12.E 二、问答题 1. 细胞信号转导系统由受体或能接受信号的其他成分(如离子通道和细胞粘附分子)以及细胞内的信号转导通路组成。受体接受细胞信号后,能激活细胞内的信号转导通路,通过对靶蛋白的作用,调节细胞增殖、分化、代谢、适应、防御和凋亡等。不同的信号转导通路间具有相互联系和作用,形成复杂的网络。信号转导的异常与疾病,如肿瘤、心血管病、糖尿病、某些神经精神性疾病以及多种遗传病的发生发展密切相关。 2. 肿瘤细胞信号转导的改变是多成分、多环节的。肿瘤早期的信号转导异常与肿瘤细胞的高增殖、低分化、凋亡减弱有关。而晚期则是控制细胞粘附和运动性的信号转导异常,导致肿瘤细胞具有转移性。其中可引发肿瘤过度增殖的信号转导异常为:①促细胞增殖的信号转导通路过强,如自分泌或旁分泌的生长因子产生增多、某些生长因子受体过度表达或受体组成型激活、细胞内的信号转导成分如小G蛋白Ras的突变导致Ras自身GTP酶活性下降等; ②抑制细胞增殖的信号转导过弱等,如TGF 信号转导障碍,结果导致肿瘤增殖失控。 3. 自身免疫性受体病是由于患者体内产生了抗某种受体的自身抗体所致。 抗受体抗体分为刺激型和阻断型。刺激型抗体可模拟信号分子或配体的作用,激活特定的信号转导通路,使靶细胞功能亢进。如刺激性促甲状腺激素(TSH)受体抗体与甲状腺滤泡细胞膜上的TSH受体结合后,能模拟TSH的作用,导致甲状腺素持续升高从而引起自身免疫性甲状腺功能亢进(Graves病)。 阻断型抗体与受体结合后,可阻断受体与配体的结合,从而阻断受体介导的信号转导通路和效应,导致靶细胞功能低下。如阻断型TSH受体抗体能阻断TSH对甲状腺的兴奋作用,导致甲状腺功能减退(桥本病)。在重症肌无力患者体内也发现有阻断性的抗N型乙酰胆碱受体(nAChR)的抗体。 4. 激素抵抗综合征是指因靶细胞对激素的反应性降低或丧失而引起的一系列病理变化,临床出现相应激素的作用减弱的症状和体征。其发生机制比较复杂,可由于受体数量减少、受体功能缺陷、受体阻断型抗体的作用或受体后信号转导蛋白的缺陷(如失活性突变等),使靶细胞对相应激素的敏感性降低或丧失。属于这类疾病的有雄激素抵抗征,胰岛素抵抗性糖尿病等。 5.细胞信号转导分子异常既可以作为疾病的直接原因,引起特定疾病的发生,如基因突变所致的LDL受体质和量的改变能引起家族性高胆固醇血症;亦可在疾病的过程中发挥作用,促进疾病的发展,如高血压导致的信号转导异常与高血压心肌肥厚的发生有关。某些信号转导

细胞信号转导

细胞信号转导 细胞通讯:一个信号产生细胞发出的信息通过介质(又称配体)传递到另一个靶细胞并与其相应的受体相互作用,然后通过信号转导产生靶细胞内一系列的生理生化变化,最终表现为靶细胞整体的生物学效应。 信号传导:是指信号分子从合成的细胞中释放出来,然后进行传递。信号传导强调信号的产生、分泌与传送。 信号转导:是指信号的识别、转移与转换,包括配体与受体的结合、第二信使的产生及其后的级联反应等。信号转导强调信号的接收与接收后信号转换的方式与结果。 受体:是一类能够结合细胞外特异性信号分子并启动细胞反应的蛋白质。 第二信使:细胞外信号分子不能进入细胞,它作用于细胞表面受体,经信号转导,在细胞内产生非蛋白类小分子,这种细胞内信号分子称为第二信使。 分子开关:细胞信号传递级联中,具有关闭和开启信号传递功能的分子。 信号通路:细胞接受外界信号,通过一整套特定机制,将胞外信号转化为胞内信号,最终调节特定基因表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。 G蛋白偶联受体:指配体-受体复合物与靶细胞的作用是要通过与G蛋白的偶联,在细胞内产生第二信使,从而将细胞外信号跨膜传递到胞内影响细胞行为的受体。 cAMP信号通路:细胞外信号与细胞相应受体结合,导致细胞内第二信使cAMP水平的变化而引起细胞反应的信号通路。 (磷脂酰肌醇信号通路)双信使系统:胞外信号分子与细胞表面G蛋白偶联受体结合,激活膜 上的磷脂激酶C,使质膜上的PIP 2分解成IP 3 和DAG两个第二信使,将胞外信号转导为胞内信号, 两个第二信使分别激活两种不同的信号通路,即IP 3 -Ca2+和DAG-PKC途径,实现对胞外信号的应 答,因此将这种信号通路称为“双信使系统”。 钙调蛋白:真核细胞中普遍存在的Ca2+应答蛋白。 Ras蛋白:Ras基因的产物,分布于质膜胞质侧,结合GTP时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。 受体酪氨酸激酶(RTK):能将自身或者胞质中底物上的酪氨酸残基磷酸化的细胞表面受体,主要参与细胞生长和分化的调控。 细胞膜表面受体主要有三类,即离子通道偶联受体、G蛋白偶联受体和酶联受体。 信号分子也统称为配体,可分为疏水性信号分子、亲水性信号分子和气体性信号分子。 由G蛋白介导的信号通路主要包括 cAMP-PKA信号通路和磷脂酰肌醇信号通路。 Ras蛋白在RTK介导的信号通路中起着关键作用,具有GTPase活性,当结合GTP时为活化状态,当结合GDP时为失活状态。(GTP酶活性) G蛋白由三个亚基组成,β和γ亚基以异二聚体的形式存在,G α 亚基本身具有GTPase活性,是 分子开关蛋白。当配体与受体结合,三聚体G蛋白解离,并发生GDP与GTP交换,游离的G α - GTP处于活化的开启状态,当G α-GTP水解形成G α -GDP时,则处于失活的关闭状态。 细胞转导系统的的主要特性:特异性、放大效应、网络化与反馈调节、整合作用。

细胞信号转导及疾病

细胞信号转导及疾病 细胞的各项生物学功能包括生长、发育、代谢、死亡、适应、防御等均受生物信号分子所携带的信息在细胞内的传递,即信号转导通路(signal transduction pathway)的调控。精细调节的信号转导是正常生命活动的前提,而信号转导异常可以导致各种病理过程。已有证据表明,人类疾病,特别是一些重大疾病,如肿瘤、心血管病、糖尿病以及老年性痴呆,均与控制细胞各项生理功能的信号转导通路障碍有关。阐明细胞信号转导的调控机制不仅有助于深入认识各种疾病的发病机理,而且为临床诊断和治疗技术提供新的靶位。但是我们也发现,很多科研工作者可能非常熟悉复杂的TGF-β信号转导通路及大量的相互作用分子和靶基因,但是他们并不了解TGF-β在心血管病中担当脂调节的护卫士,或者在神经损伤中起到诱导神经干细胞分化的作用。相反的,很多临床医师可能非常熟悉使用硝酸甘油治疗心绞痛,或者使用伟哥治疗男性勃起障碍,但是他们并不了解这两种药物都是通过调节NO通路达到舒解血管紧张度的治疗效果。因此本课程(信号转导异常与疾病)是一门跨越现代生物学和现代医学的多学科交叉领域型课程,课程的开设可同时针对基础及临床各专业的研究生。 因为细胞信号转导是一个整体,没有一个信号通路能够或者可以被看做是完全独立的,同时,每一种疾病的发生、发展又是由多个信号通路或生物过程综合调节的,因此,我们将重点介绍在一些常见疾病中发挥重要作用的目前研究最热门的几种信号蛋白及转导通路:如

胚胎发育及肿瘤发生中的Wnt、Notch、SHH信号传导通路、心血管和各种代谢异常性疾病中的mTOR信号通路、糖尿病中的胰岛素受体IR 与IRS激酶的下游信号转导通路、变态反应中的细胞因子信号转导和JAK-STAT蛋白通路,神经性及精神疾病中的PI3K、MAPK-JNK、BMP 通路以及肿瘤分子机制中的Ras-MAPK通路、小GTPases、交换因子p53、Rb及TGF-β通路等。课程的形式引进国外先进的授课方式,采用启发、互动式教学,将主讲者授课(lecture)与学生文献演示(presentation)相结合,在介绍具体信号转导途径的基础上,瞄准该领域的科研进展和热点,从深度和广度上系统探讨细胞信号转导研究的发展趋势和研究方法。此外,通过揭示信号转导通路在人类疾病中的调控机制和临床应用,启发学生深入认识各种疾病的发病机理,学以致用,为临床诊断和治疗技术提供新的靶位。届时我们将邀请长江学者特聘教授复旦大学的李保界教授、德国Albert-Ludwig大学Peter C. Heinrich教授及新加坡国立大学的曹新民教授等国际知名科学家结合其科研的前沿课题讲授相关领域的重要信号转导通路及临床实践。 Cell Signaling and Diseases Various biological functions including cell growth, development, metabolism, death, adaptation, defense, etc. are regulated by transmission of information in the cell carried by biological signaling molecules, ie. signal transduction

细胞信号转导与疾病

细胞信号转导与疾病 一、基本要求 1.掌握细胞信号转导得概念 2.熟悉细胞信号转导不同环节得异常与疾病得关系 3.了解细胞信号转导异常性疾病防治得病理生理基础 二、知识点纲要 (一)细胞信号转导得概念 指细胞通过胞膜或胞内受体感受信息分子得刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能得过程。水溶性信息分子及前列腺素类(脂溶性)必须首先与胞膜受体结合,启动细胞内信号转导得级联反应,将细胞外得信号跨膜转导至胞内;脂溶性信息分子可进入胞内,与胞浆或核内受体结合,通过改变靶基因得转录活性,诱发细胞特定得应答反应。(二)细胞信号转导得主要途径 1。G蛋白介导得信号转导途径G蛋白可与鸟嘌呤核苷酸可逆性结合.由α、β与γ亚基组成得异三聚体在膜受体与效应器之间起中介作用。小G蛋白只具有G蛋白α亚基得功能,参与细胞内信号转导。信息分子与受体结合后,激活不同G蛋白,有以下几种途经:(1)腺苷酸环化酶途径通过激活G蛋白不同亚型,增加或抑制腺苷酸环化酶(AC)活性,调节细胞内cAMP浓度。cAMP可激活蛋白激酶A(PKA),引起多种靶蛋白磷酸化,调节细胞功能.(2) 磷脂酶途径激活细胞膜上磷脂酶C(PLC),催化质膜磷脂酰肌醇二磷酸(PIP2)水解,生成三磷酸肌醇(IP3)与甘油二酯(DG)。IP3促进肌浆网或内质网储存得Ca2+释放。Ca2+可作为第二信使启动多种细胞反应。Ca2+与钙调蛋白结合,激活Ca2+/钙调蛋白依赖性蛋白激酶或磷酸酯酶,产生多种生物学效应。DG与Ca2+能协调活化蛋白激酶C(PKC)。 2。受体酪氨酸蛋白激酶(RTPK)信号转导途径受体酪氨酸蛋白激酶超家族得共同特征就是受体本身具有酪氨酸蛋白激酶(TPK)得活性,配体主要为生长因子。RTPK途径与细胞增殖肥大与肿瘤得发生关系密切。配体与受体胞外区结合后,受体发生二聚化后自身具备(TPK)活性并催化胞内区酪氨酸残基自身磷酸化。RTPK得下游信号转导通过多种丝氨酸/苏氨酸蛋白激酶得级联激活:(1)激活丝裂原活化蛋白激酶(MAPK),(2)激活蛋白激酶C (PKC),(3)激活磷脂酰肌醇3激酶(PI3K),从而引发相应得生物学效应。 3.非受体酪氨酸蛋白激酶途径此途径得共同特征就是受体本身不具有TPK活性,配体主要就是激素与细胞因子。其调节机制差别很大.如配体与受体结合使受体二聚化后,可通过G蛋白介导激活PLC—β或与胞浆内磷酸化得TPK结合激活PLC—γ,进而引发细胞信号转导级联反应. 4。受体鸟苷酸环化酶信号转导途径一氧化氮(NO)与一氧化碳(CO)可激活鸟苷酸环化酶(GC),增加cGMP生成,cGMP激活蛋白激酶G(PKG),磷酸化靶蛋白发挥生物学作用。 5.核受体信号转导途径细胞内受体分布于胞浆或核内,本质上都就是配体调控得转录因子,均在核内启动信号转导并影响基因转录,统称核受体。核受体按其结构与功能分为类固醇激素受体家族与甲状腺素受体家族。类固醇激素受体(雌激素受体除外)位于胞浆,与热休克蛋白(HSP)结合存在,处于非活化状态。配体与受体得结合使HSP与受体解离,暴露DNA结合区.激活得受体二聚化并移入核内,与DNA上得激素反应元件(HRE)相结合或其她转录因子相互作用,增强或抑制基因得转录.甲状腺素类受体位于核内,不与HSP结合,配体与受体结合后,激活受体并以HRE调节基因转录. (三)细胞信号转导异常与疾病 1。信息分子异常指细胞信息分子过量或不足。如胰岛素生成减少,体内产生抗胰岛素抗体或胰岛素拮抗因子等,均可导致胰岛素得相对或绝对不足,引起高血糖. 2.受体信号转导异常指受体得数量、结构或调节功能改变,使其不能正确介导信息分子

第八章细胞信号转导教案上课讲义

名师精编优秀教案 朝阳师范高等专科学校教案 课程名称:细胞生物学 任课教师:聂颖 开课系部:生化工程系 开课学年:2013~2014学年度 开课学期:第一学期

朝阳师范高等专科学校教案 年月日课题名称第八章细胞信号转导 课次第(1)次课课时 2 课型理论(√);实验();实习();、实务();习题课();讨论();其他() 教学目标掌握细胞通讯与细胞识别的概念和方式 教学重点与难点重点:细胞通讯与细胞识别的概念和方式。难点:细胞通讯的概念。 教学主要内容与教 学设计 一、概述 (一)细胞通讯 分别介绍细胞通讯概念、方式及信号分子和受体。 (二)信号转导系统及其特性 信号转导系统的基本组成与信号蛋白、细胞内信号蛋白的相互作用和信号转导系统的主要特性。 二、细胞内受体介导的信号转导 (一)细胞内核受体及其对基因表达的调节 (二)NO作为气体信号分子进入靶细胞直接与酶结合 三、G蛋白耦联受体介导的信号转导 (一)G蛋白耦联受体的结构与激活 (二)G蛋白耦联受体所介导的细胞信号通路 教学方法讲授法 教学手段讲演结合,启发式 课外学习安排比较G蛋白耦联受体介导的信号通路有何异同 参考资料 《细胞生物学》翟中和高等教育出版社《分子细胞生物学》韩贻仁高等教育出版社 学习效果评测通过练习检测教学目标实现程度 课外学习 指导安排 了解各种细胞通讯方式之间有何不同 (续)教学基本内容及进程(注:本部分是重点,要详细,对教学内容与教学方法要根据教学 大纲、教学对象进行设计,确定教学重点、难点、知识点的布控、教学方法的选择、教学 时间的分配等。 备注

一、概述 (一)细胞通讯 细胞通讯(cell communication)是指一个细胞发出的信息通过介质传递到另一个细胞并与靶细胞相应的受体相互作用,然后通过细胞信号转导产生胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。 1.细胞通讯的方式 (1)通过分泌化学信号的通讯(化学通讯) 化学通讯是间接的细胞通讯,指细胞分泌一些化学物质(如激素)至细胞外,作为信号分子作用于靶细胞,调节其功能。 ①内分泌(endocrine):内分泌细胞分泌的激素随血液循环输至全身,作 用于靶细胞。特点:低浓度;全身性;长时效。 ②旁分泌(paracrine):细胞分泌的信号分子通过扩散作用于邻近的细胞。包括:各类细胞因子;气体信号分子(如:NO)。 ③自分泌(autocrine):信号发放细胞和靶细胞为同类或同一细胞,常见 于病理状态下,如肿瘤细胞。 ④通过化学突触传递神经信号(neuronal signaling):神经递质(如乙酰胆碱)由突触前膜释放,经突触间隙扩散到突触后膜,作用于特定的靶细胞。 (2)细胞间接触依赖性通讯 细胞间直接接触,通过与质膜结合的信号分子影响其他细胞。包括细胞-细胞黏着、细胞-基质黏着。 细胞识别(cell recognition):是指细胞通过其表面信号分子(受体)与 另一细胞表面的信号分子(配体)选择性地相互作用,最终产生细胞应答的过 程,也称膜表面分子接触通讯 (3)细胞间隙连接(gap junction) 动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连丝使细胞间相互 沟通,通过交换小分子来实现代谢耦联或电耦联。 2.信号分子与受体 信号分子是细胞信息的载体,种类繁多。 受体是一种能够识别和选择性结合某种配体(信号分子)的大分子。受体 多为糖蛋白,少数是糖脂、糖蛋白和糖脂复合物。根据靶细胞上受体存在的部 位,分为:离子通道耦联受体、G蛋白耦联受体、酶连受体。细胞通讯概念及方式 与图片结合进行讲解

细胞生物学知识点总结题库

细胞生物学目录 第一章绪论 第二章细胞生物的研究方法和技术 第三章质膜的跨膜运输 第四章细胞与环境的相互作用 第五章细胞通讯 第六章核糖体和核酶 第七章线粒体和过氧化物酶体 第八章叶绿体和光合作用 第九章内质网,蛋白质分选,膜运输 第十章细胞骨架,细胞运动 第十一章细胞核和染色体 第十二章细胞周期和细胞分裂 第十三章胚胎发育和细胞分化 第十四章细胞衰老和死亡

第一章绪论 1.原生质体:被质膜包裹在细胞内的所有的生活物质,包括细胞核和细胞质 细胞质:细胞内除核以外的原生质,即细胞中细胞核以外和细胞膜以内的原生质部分 原生质体:除去细胞壁的细胞 2.结构域:生物大分子中具有特异结构和独立功能的区域 3.装配模型:模板组装,酶效应组装,自组装 4.五级装配: 第一级,小分子有机物的形成 第二级,小分子有机物组装成生物大分子 第三级,由生物大分子进一步组装成细胞的高级结构 第四级,由生物大分子组装成具有空间结构和生物功能的细胞器 第五级,由各种细胞器组装成完整细胞 6.支原体:目前已知的最小的细胞 第二章细胞生物的研究方法和技术 1.显微镜技术:光镜标本制备技术、 2.光镜标本制备技术步骤:样品固定、包埋与切片、染色 3.电子显微镜种类:透射电子显微镜,扫描电镜,金属投影,冷冻断裂和冷冻石刻电镜,复染技术,扫描隧道显微镜 4.细胞化学技术:酶细胞化学技术,免疫细胞化学技术,放射自显影 5.细胞分选技术:流式细胞术 6.分离技术:离心技术,层析技术,电泳技术 第三章质膜的跨膜运输 1.细胞功能:外界与通透性障碍,组织和功能定位,运输作用,细胞间通讯,信号检测 2.膜化学组成:膜脂,膜糖,膜蛋白 3.膜脂的三个种类:磷脂,糖脂,胆固醇 4.脂质体用途:用作生物膜的研究模型,作为生物大分子与药物的运载体 5.膜糖功能:细胞与环境的相互作用,接触抑制,信号转导,蛋白质分选,保护作用。 6.膜蛋白类型:整合蛋白,外周蛋白,脂锚定蛋白 7.膜蛋白功能:运输蛋白,酶,连接蛋白,受体(信号接受和传递) 8.不对称性的研究方法:冰冻断裂复型,冰冻蚀刻 9.膜流动性研究方法:质膜融合,淋巴细胞的成斑成帽效应,荧光漂白恢复技术 10.膜流动性的重要性:酶活性,信号转导,物质运输,能量转换,细胞周期 11.影响膜脂流动性的因素:脂肪酸链,胆固醇,卵磷脂/鞘磷脂比值 12.影响膜蛋白流动的因素:整合蛋白,膜骨架,细胞外基因,相邻细胞,细胞外配体、抗体、药物大分子 13.膜骨架的主要蛋白:血影蛋白,肌动蛋白和原肌球蛋白,带4.1蛋白,锚定蛋白 14.转运蛋白质包括:载体蛋白,通道蛋白 15.协同运输的方向:同向协同,反向协同

细胞生物学名词解释

细胞生物学名词解释 1、细胞:由膜转围成的、能进行独立繁殖的最小原生质团,是生物体电基本的开矿结构和生理功能单位。其基本结构包括:细胞膜、细胞质、细胞核(拟核)。 2、病毒(virus):迄今发现的最小的、最简单的专性活细胞内寄生的非胞生物体,是仅由一种核酸(DNA或RNA)和蛋白质构成的核酸蛋白质复合体。 3、病毒颗粒:结构完整并具有感染性的病毒。 4、原核细胞:没有由膜围成的明确的细胞核、体积小、结构简单、进化地位原始的细胞。 5、原核(拟核、类核):原核细胞中没有核膜包被的DNA区域,这种DNA不与蛋白质结合。 6、细菌染色体(或细菌基因组):细菌内由双链DNA分子所组成的封闭环折叠而成的遗传物质,这样的染色体是裸露的,没有组蛋白和其他蛋白质结合也不形成核小体结构,易于接受带有相同或不同物种的基因的插入。 7、质粒:细菌细胞核外可进行自主复制的遗传因子,为裸露的环状DNA,可从细胞中失去而不影响细胞正常的生活,在基因工程中常作为基因重组和基因转移的载体。 8、芽孢:细菌细胞为抵抗外界不良环境而产生的休眠体。 9、细胞器:存在于细胞中,用光镜、电镜或其他工具能够分辨出的,具有一定开矿特点并执行特定机能的结构。 10、类病毒:寄生在高等生物(主要是植物)内的一类比任何已知病毒都小的致病因子。没有蛋白质外壳,只有游离的RNA分子,但也存在DNA型。 11、细胞体积的守恒定律:器官的总体积与细胞的数量成正比,而与细胞的大小无关。 1、分辨率:区分开两个质点间的最小距离。 2、细胞培养:把机体内的组织取出后经过分散(机械方法或酶消化)为单个细胞,在人工培养的条件下,使其生存、生长、繁殖、传代,观察其生长、繁殖、接触抑制、衰老等生命现象的过程。 3、细胞系:在体外培养的条件下,有的细胞发生了遗传突变,而且带有癌细胞特点,失去接触抑制,有可能无限制地传下去的传代细胞。 4、细胞株:在体外一般可以顺利地传40—50代,并且仍能保持原来二倍体数量及接触抑制行为的传代细胞。 5、原代细胞培养:直接从有机体取出组织,通过组织块长出单层细胞,或者用酶消化或机械方法将组织分散成单个细胞,在体外进行培养,在首次传代前的培养称为原代培养。 6、传代细胞培养:原代培养形成的单层培养细胞汇合以后,需要进行分离培养(即将细胞从一个培养器皿中以一定的比率移植至另一些培养器皿中的培养),否则细胞会因生存空间不足或由于细胞密度过大引起营养枯竭,将影响细胞的生长,这一分离培养称为传代细胞培养。 7、细胞融合:两个或多个细胞融合成一个双核细胞或多核细胞的现象。一般通过灭活的病毒或化学物质介导,也可通过电刺激融合。 8、单克隆抗体:通过克隆单个分泌抗体的B淋巴细胞,获得的只针对某一抗原

相关主题
文本预览
相关文档 最新文档