当前位置:文档之家› 放大电路的瞬态分析与稳态分析

放大电路的瞬态分析与稳态分析

放大电路的瞬态分析与稳态分析
放大电路的瞬态分析与稳态分析

放大电路的瞬态分析与稳态分析

对放大电路的研究,目前有稳态分析法和瞬态分析法两种不同的分析方法。

稳态分析法:也就是已讨论过的频率响应分析法。该方法以正弦波为放大电路的基本信号,研究放大电路对不同频率信号的幅值和相位的响应(或叫做放大电路的频域响应)。其优点是分析简单,便于测试;缺点是不能直观地确定放大电路的波形失真。

瞬态分析法:是以单位阶跃信号为放大电路的输入信号,研究放大电路的输出波形随时间变化的情况,它又称为放大电路的阶跃响应或时域响应。此方法常以上升时间和平顶降落的大小作为波形的失真标志。其优点是可以很直观地判断放大电路的波形失真,并可利用脉冲示波器直接观测放大电路瞬态响应。

在工程实际中,这两种方法可以互相结合,根据具体情况取长补短地运用。单级放大电路的瞬态响应的上升

时间

放大电路的阶跃响应分析以阶跃电压作为放大电路的基本信号,图1表示一个阶跃电压,它表示为

图1

放大电路的阶跃响应主要由上升时间t r和平顶降落来表示。阶跃响应分析其目的是求出这两个参数,并可将它与稳态分析中参数相联系。

分析单级共射放大电路的阶跃响应时,可采用小信号等效电路,将阶跃电压可分为上升阶段和

平顶阶段并按其特

点对电路进行简化。

阶跃电压中上

升较快的部分,与

稳态分析中的高频

区相对应,可用RC

低通电路来模拟,

如图2(a)所示。由图可知

式中V S是阶跃信号平顶部分电压值。与时间的关系如图2(b)所示。

上式表示在上升阶段时输出电压v O随时间变化的关系。输入电压v S在t=0时是突然上升到最终值的,而输出电压是按指数规律上升的,需要经过一定时间,才能到达最终值,这种现象称为前沿失真。一般用输出电压从最终值的10%上升至90%所需的时间t r来表示前沿失真,t r称为上升时间。

由图2(b)经推导可得

图2

已知可得

可见,上升时间t r与上限频率f H成反比,f H越高,则上升时间愈短,前沿失真越小。

单级放大电路的瞬态响应的平顶降落阶跃电压的平顶阶段与稳态分析中的低频区相对应,所以可用如图1(a)所示RC 高通电路来模拟。

图1

由图可得

v O与时间t的关系如图1(b)所示。

由于电容C 的影响,,但输出电压是按指数规律下降的,这种现象称为平顶降落。

下面计算在某一时间间隔t p时的平项降落值。

在平顶阶段,时间常数,可得

考虑到,可得

由此可见,平顶降落与低频下限频率成正比,f L越低,平顶降落越小。

放大电路的瞬态分析与稳态分析方法比较瞬态分析法和稳态分析法虽然是两种不同的方法,但它们是有内在联系的,当放大电路的输入信号为阶跃电压时,在阶跃电压的上升阶段,放大电路的瞬态响应(上升时间)决定于放大电路的高频响应(f H);而在阶跃电压的平顶阶段,放大电路的瞬态响应(平顶降落)又决定于放大电路的低频响应(f L)。因此,一个频带很宽的放大电路,同时也是一个很好的方波信号放大电路。在实用上常用一定频率的方波信号去测试宽频带放大电路的频率响应,如它的方波响应很好,则说明它的频带较宽。

必须指出,稳态分析法在放大电路的分析中仍占主导地位,这是因为:①任何周期性的信号都可分解为一系列的正弦波,因此放大电路分析的重点是正弦信号;②关于电路的分析和综合方法,在频域中比在时域中一般要成熟得多;③在

瞬态计算极其复杂时,往往可根据稳态响应的研究来间接地对电路的瞬态响应得到一个定性的了解;④在反馈放大电路中,消除自激的补偿网络也是以频率响应为基础的。

多级放大电路及其耦合方式

在许多应用场合,要求放大器有较高的放大倍数及合适的输入电阻、输出电阻,如用单级放大器很难达到要求。因此,需要将多个不同组态的基本放大器级联起来,充分利用它们的特点,合理组合构成多级放大器,用尽可能少的级数,满足系统对放大倍数、输入电阻、输出电阻等动态指标的要求。

多级放大器中各级之间连接方式称为耦合方式。级间耦合时,一方面要确保各级放大器有合适的直流工作点,另一方面应使前级输出信号尽可能不衰减地加到后级的输入。常用的耦合方式有阻容耦合、直接耦合、变压器耦合和光电耦合等。

阻容耦合方式

连接方式框图

阻容耦合的连接方框图如图1所示。特点图1

放大电路的瞬态分析与稳态分析

放大电路的瞬态分析与稳态分析 对放大电路的研究,目前有稳态分析法和瞬态分析法两种不同的分析方法。 稳态分析法:也就是已讨论过的频率响应分析法。该方法以正弦波为放大电路的基本信号,研究放大电路对不同频率信号的幅值和相位的响应(或叫做放大电路的频域响应)。其优点是分析简单,便于测试;缺点是不能直观地确定放大电路的波形失真。 瞬态分析法:是以单位阶跃信号为放大电路的输入信号,研究放大电路的输出波形随时间变化的情况,它又称为放大电路的阶跃响应或时域响应。此方法常以上升时间和平顶降落的大小作为波形的失真标志。其优点是可以很直观地判断放大电路的波形失真,并可利用脉冲示波器直接观测放大电路瞬态响应。 在工程实际中,这两种方法可以互相结合,根据具体情况取长补短地运用。 单级放大电路的瞬态响应的上升时间 放大电路的阶跃响应分析以阶跃电压作为放大电路的基本信号,图1表示一个阶跃电压,它表示为 放大电路的阶跃响应主要由上升时间t r 和平顶降落来表示。阶跃响应分析其目的是求出这两个参数,并可将它与稳态分析中参数相联系。 分析单级共射放大电路的阶跃响应时,可采用小信号等效电路,将阶跃电压可分为上升阶段和平顶阶段并按其特点对电路进行简化。 图1 图 2

阶跃电压中上 升较快的部分,与 稳态分析中的高频 区相对应,可用RC 低通电路来模拟, 如图 2(a)所示。 由图可知 式中V S是阶跃 信号平顶部分电压 值。与时间 的关系如图2(b)所示。 上式表示在上升阶段时输出电压v O随时间变化的关系。输入电压v S在t=0 时是突然上升到最终值的,而输出电压是按指数规律上升的,需要经过一定时间,才能到达最终值,这种现象称为前沿失真。一般用输出电压从最终值的10%上升至90%所需的时间t r来表示前沿失真,t r称为上升时间。 由图2(b)经推导可得 已知可得 或 可见,上升时间t r与上限频率f H成反比,f H越高,则上升时间愈短,前沿失真越小。 单级放大电路的瞬态响应的平顶降落 阶跃电压的平顶阶段与稳态分析中的低频区相对应,所以可用如图1(a)所示RC 高通电路来模拟。

正弦稳态交流电路及谐振电路仿真实验

实验报告三 一、实验目的 1.通过仿真电路理解相量形式的欧姆定律、基尔霍夫定律。 2.通过仿真实验理解谐振电路工作特点。 二、实验内容 1. 建立仿真电路验证相量形式欧姆定律、基尔霍夫定律; 2. 建立仿真电路验证RLC 串联、并联谐振电路工作特点; 三、实验环境 计算机、MULTISIM 仿真软件 四、实验电路 2.3.1欧姆定律的向量形式仿真实验 1.实验电路 2.理论分析计算 由向量发和欧姆定律可知, ωω=+-≈∠Ω。1 1040.416Z R j L j C = =∠. . 。9.6116m V I A Z

= ≈13.59Rm V V ω= ≈0.43Lm V L V ω=≈1 4.33Cm V V C 3.实验结果 2.3.1欧姆定律的向量形式仿真实 1.实验电路

2.理论分析计算 (1)相量形式的基尔霍夫电压定律 由向量法和欧姆定律可知, ωω=+-1 Z R j L j C = =. . 0.329V I A Z = ≈32.91Rm V V ω= ≈10.34Lm V L V ω=≈1 104.72Cm V V C (2)相量形式的基尔霍夫电流定律: 1.实验电路

2.理论分析计算 . . . . R C L I I I I =++ . . . . R C L U U U U === ... //I U R U L U C ωω=++ 代入数据得: 假设: . 。0U U =∠ 则 1R I A = 3.183L I A = 0.314C I A = . 。。。0-9090=3.038R C L I I I I A =∠+∠+∠ 2.5.1 RLC 串联电路仿真 (R=1Ω): 1.实验电路

最新放大电路的瞬态分析与稳态分析

放大电路的瞬态分析与稳态分析 1 2 对放大电路的研究,目前有稳态分析法和瞬态分析法两种不同的分析方法。3 稳态分析法:也就是已讨论过的频率响应分析法。该方法以正弦波为放大电 路的基本信号,研究放大电路对不同频率信号的幅值和相位的响应(或叫做放4 5 大电路的频域响应)。其优点是分析简单,便于测试;缺点是不能直观地确定 6 放大电路的波形失真。 7 瞬态分析法:是以单位阶跃信号为放大电路的输入信号,研究放大电路的输 8 出波形随时间变化的情况,它又称为放大电路的阶跃响应或时域响应。此方法 9 常以上升时间和平顶降落的大小作为波形的失真标志。其优点是可以很直观地 10 判断放大电路的波形失真,并可利用脉冲示波器直接观测放大电路瞬态响应。 11 在工程实际中,这两种方法可以互相结合,根据具体情况取长补短地运用。 12 13 单级放大电路的瞬态响应的上升时间 放大电路的阶跃响应分析以阶跃电压作为放大 14 图1 15 电路的基本信号,图1表示一个阶跃电压,它表示 16 为 17 18 放大电路的阶跃响应主要由上升时间t r和平顶 降落来表示。阶跃响应分析其目的是求出这两个参数,并可将它与稳态分析中19 参数相联系。 20

分析单级共射放大电路的阶跃响应时,可采用小信号等效电路,将阶跃电压 21 22 可分为上升阶段和平顶阶段并按其特点对电路进行简化。 23 阶跃电压中上升 图 2 24 较快的部分,与稳 25 态分析中的高频区 26 相对应,可用RC低 通电路来模拟,如 27 图 2(a)所示。由 28 29 图可知 30 式中V S是阶跃信 31 号平顶部分电压值。与时间的关系如图2(b)所示。 32 上式表示在上升阶段时输出电压v O随时间变化的关系。输入电压v S在t=0时33 是突然上升到最终值的,而输出电压是按指数规律上升的,需要经过一定时间, 34 35 才能到达最终值,这种现象称为前沿失真。一般用输出电压从最终值的10%上升至90%所需的时间t r来表示前沿失真,t r称为上升时间。 36 由图2(b)经推导可得 37 38 已知可得 39 40 或

第9章 正弦稳态电路的分析(答案)

第9章 正弦稳态电路的分析 答案 例 如图所示正弦稳态电路,已知I1=I2=10A,电阻R 上电压的初相位为零,求相量? I 和 ? S U 。 解: 电路中电阻R 和电容C 并联,且两端电压的初相为0。由电阻和电容傻姑娘的电压与电流的相位关系可知:电阻电流?1I 与电压?R U 同相,电容电流?2I 超前电压? R U 相角90○ ,故 ο 0101∠=? I A ο90102∠=? I A 由KCL 方程,有 ()101021j I I I +=+=? ??A 由KVL 方程,有 ? ? ? ? ∠==++-=+=9010010010010010010101 j j I I j U S V 例 如图所示正弦稳态电路,R 1=R 2=1Ω。 (1)当电源频率为f 0时,X C2=1Ω,理想电压表读数V 1=3V ,V 2=6V ,V 3=2V,求I S 。 (2)电路中电阻、电容和电感的值不变,现将电源的频率提高一倍,即为2 f 0,若想维持V 1的读数不变,I S 问应变为多少

如果把电源的频率提高一倍,而维持V1的读数不变,即R1上的电压有效值U R1=3V,那么R1 上的电流的有效值I也不变,此时仍把? I设置为参考相量,故? ? ∠ =0 3 I A。由于L和C 1上的 电流? I不变,根据电感和电容上电压有效值与频率的关系,电源的频率提高一倍,电感上电 压表的读数增大一倍,而电容上电压表的读数降为原来的一半,故 电源得频率提高一倍,X C2也降为原来得一半,即 所以 例如图所示正弦稳态电路,已知I1=10A,I2=20A,R2=5Ω,U=220V,并且总电压 ? U与总 电流? I同相。求电流I和R,X2,X C的值。

CFD中稳态与瞬态的区别

闲谈CFD <3>——稳态与瞬态 稳态与瞬态的概念其实比较容易理解。这里之所以拿出来单独作为一个话题,主要是因为在实际工程应用中,用稳态还是瞬态常常很难选择。有一些情况,可以使用稳态计算,用瞬态计算似乎也可以。那么稳态计算与瞬态计算到底有什么区别,以及何时该用稳态计算何时该用瞬态计算呢? 稳态与瞬态的区别主要体现在控制方程是否存在时间项上。换句话说,其区别在于计算 结果是否是与时间相关。但是我们观察现实生活,似乎找不到什么现象是与时间无关的。于是我们可以这样理解:稳态是一种近似。还是不太好理解,我们来举个例子。假设雨滴从高空落下,其阻力与运动速度的平方成正比,比例系数为1。雨滴质量为1,重力加速度为g,假设 雨滴运动初速度为0,则依据牛顿定律很容易得出当阻力与重力平衡时,该雨滴将获得最大速度。学过物理的人都知道在0.32s时雨滴达到最大速度3.13m/s,阻力9.8与重力平衡后其将保持匀速运动。好了,我们可以将运动状态分为两部分,以t=0.32s为界,在此之前,运动速度与时间有关,在此之后,运动速度与时间无关。因此若要了解前0.32s内的运动速度变化规律,则必须使用瞬态,而要知道0.32s之后的状态,则利用稳态或瞬态均可。 上面的例子当然很简陋,现实中的问题很复杂,很多时候没办法估计稳定状态的临界时间,而且有一些问题是根本没办法达到稳定的。但是这个例子至少说明了一点:稳态其实是一种特殊的瞬态。也就是说,稳态计算完全可以用瞬态计算来替代。那么为什么还会存在稳态计算呢?主要原因在于存在一些从数学上分析一定能够达到稳定状态的模型(如密闭空间中的扩散过程、稳定入口的管流等等),再加上稳态模拟开销要小于瞬态计算。 稳态计算与初始值无关,很多CFD软件在稳态计算时要求进行初始化,这只是用于迭代计算,理论上是不会影响到最终的结果,但是不好的初始会值会影响到收敛过程。而瞬态计算则不同,其计算结果与初始状态紧密相关。还是上面的例子,若雨滴的初始速度不是0的话,则稳定时间会发生改变,稳定之前的速度值也会不同。所以在瞬态计算时,初始条件与边界条件一样重要,会影响计算结果的正确性。在瞬态计算的时候,常常使用稳态计算结果作初始值。

Multisim 10-正弦稳态交流电路仿真实验

暨南大学本科实验报告专用纸 课程名称电路分析CAI 成绩评定 实验项目名称正弦稳态交流电路仿真实验指导教师 实验项目编号05实验项目类型验证型实验地点计算机中心C305 学生姓学号 学院电气信息学院专业实验时间 2013 年5月28日 一、实验目的 1.分析和验证欧姆定律的相量形式和相量法。 2.分析和验证基尔霍夫定律的相量形式和相量法。 二、实验环境定律 1.联想微机,windows XP,Microsoft office, 2.电路仿真设计工具Multisim10 三、实验原理 1在线性电路中,当电路的激励源是正弦电流(或电压)时,电路的响应也是同频的正弦向量,称为正弦稳态电路。正弦稳态电路中的KCL和KVL适用于所有的瞬时值和向量形式。 2.基尔霍夫电流定律(KCL)的向量模式为:具有相同频率的正弦电流电路中的任一结点,流出该结点的全部支路电流向量的代数和等于零。 3. 基尔霍夫电压定律(KVL)的向量模式为:具有相同频率的正弦电流电路中的任一回路,沿该回路全部的支路电压向量的代数和等于零。 四、实验内容与步骤 1. 欧姆定律相量形式仿真 ①在Multisim 10中,搭建如图(1)所示正弦稳态交流实 验电路图。打开仿真开关,用示波器经行仿真测量,分别测

量电阻R、电感L、电容C两端的电压幅值,并用电流表测 出电路电流,记录数据于下表 ②改变电路参数进行测试。电路元件R、L和C参数不变, 使电源电压有效值不变使其频率分别为f=25Hz和f=1kHz 参照①仿真测试方法,对分别对参数改变后的电路进行相同 内容的仿真测试。 ③将三次测试结果数据整理记录,总结分析比较电路电源频 率参数变化后对电路特性影响,研究、分析和验证欧姆定律 相量形式和相量法。 暨南大学本科实验报告专用纸(附页) 欧姆定律向量形式数据 V Rm/V V Lm/V V Cm/V I/mA 理论计算值 仿真值(f=50Hz) 理论计算值 仿真值(f=25Hz) 理论计算值 仿真值(f=1kHz) 2.基尔霍夫电压定律向量形式 在Multisim10中建立如图(2)所示仿真电路图。 打开仿真开关,用并接在各元件两端的电压表经行 仿真测量,分别测出电阻R、电感L、电容C两端 的电压值。用窜连在电路中的电流表测出电路中流 过的电流I,将测的数记录在下表。 ②改变电路参数进行测试。电路元件R=300Ω、L=

三阶系统的瞬态响应及稳定性分析

实验四 三阶系统的瞬态响应及稳定性分析 一、实验目的 (1)熟悉三阶系统的模拟电路图。 (2)由实验证明开环增益K 对三阶系统的动态性能及稳定性的影响。 (3)研究时间常数T 对三阶系统稳定性的影响。 图8-16 三阶系统原理框图 图8-17 三阶系统模拟电路 图8-16为三阶系统的方框图,它的模拟电路如图8-17所示,对应的闭环传递函数为: 该系统的特征方程为: T 1T 2T 3S3+T 3(T 1+T 2)S2+T 3S+K=0 其中K=R 2/R 1,T 1=R 3C 1,T 2=R 4C 2,T 3=R 5C 3。 若令T 1=0.2S ,T 2=0.1S ,T 3=0.5S ,则上式改写为 用劳斯稳定判据,求得该系统的临界稳定增益K=7.5。这表示K>7.5时,系统为不稳定;K<7.5时,系统才能稳定运行;K=7.5时,系统作等幅振荡。 除了开环增益K 对系统的动态性能和稳定性有影响外,系统中任何一个时间常数的变化对系统的稳定性都有影响,对此说明如下: 令系统的剪切频率为 ωc ,则在该频率时的开环频率特性的相位为: ?(ωc )= - 90? - tg -1T 1ωc – tg -1T 2ωc 相位裕量γ=180?+?(ωc )=90?- tg -1T 1ωc- tg -1T 2ωc K )S T )(S T (S T K )S (U )S (U i o +1+1+=2130=100+50S +15S +S 23Κ

由上式可见,时间常数T 1和T 2的增大都会使γ减小。 四、思考题 (1)为使系统能稳定地工作,开环增益应适当取小还是取大? (2)系统中的小惯性环节和大惯性环节哪个对系统稳定性的影响大,为什么? (3)试解释在三阶系统的实验中,输出为什么会出现削顶的等幅振荡? (4)为什么图8-13和图8-16所示的二阶系统与三阶系统对阶跃输入信号的稳态误差都为零? (5)为什么在二阶系统和三阶系统的模拟电路中所用的运算放大器都为奇数? 五、实验方法 图8-16所示的三阶系统开环传递函数为: (1)按K=10,T 1=0.2S, T 2=0.05S, T 3=0.5S 的要求,调整图8-17中的相应参数。 (2)用慢扫描示波器观察并记录三阶系统单位阶跃响应曲线。 (3)令T 1=0.2S , T 2=0.1S , T 3=0.5S ,用示波器观察并记录K 分别为5、7.5和10三种情况下的单位阶跃响应曲线。 (4)令K=10,T 1=0.2S ,T 3=0.5S ,用示波器观察并记录T 2分别为0.1S 和0.5S 时的单位阶跃响应曲线。 六实验报告 (1)作出K=5、7.5和10三种情况下的单位阶跃响应波形图,据此分析K 的变化对系统动态性能和稳定性的影响。 (2)作出K=10,T1=0.2S ,T3=0.5S ,T 2分别为0.1S 和0.5S 时的单位阶跃响应波形图,并分析时间常数T 2的变化对系统稳定性的影响。 (3)写出本实验的心得与体会。 )1)(1()(213++=S T S T S T K S G

第九章正弦稳态电路的分析

第九章 正弦稳态电路的分析 本章重点: 1.阻抗,导纳及的概念 2.正弦电路的分析方法 3.正弦电路功率的计算 4.谐振的概念及谐振的特点 本章难点:如何求电路的参数 主要内容 §9-1阻抗和导纳 1.阻抗 (1)复阻抗:u i Z U U Z Z R jX I I ψψ?==-=∠=+&& 式中22U Z R X I ==+为阻抗的模; Z u i X arctg R ?ψψ=-=为阻抗角(辐角); R=Re[Z]cos z Z ?=称为电阻; X=Im[Z]=sin z Z ?称电抗。 (2)RLC 串联电路的阻抗: 1 U Z R j L I j c ωω==++ =&& 1 ()()L C Z R j L c R j X X R jX Z ωω?+- = ++=+=∠ 式中L X L ω=称为感抗;1C X c ω=- 称为容抗;1L C X X X L c ωω=+=- 可见,当X.>0,即1L c ωω>时,Z 是感性; 当X<0,即1L c ωω<时,Z 呈容性。 (3)阻抗三角形: 2.导纳 Z ?Z R X Z &U &+ — I &U &+ — C L

(1)复导纳:1i u Y I I Y Y G jB Z U U ψψ?===∠-=∠=+&& 式中I Y U = =称为导纳的模;arctan Y B G ψ=称为导纳角; Re[]cos Y G Y Y ψ==称为电导; Im[]sin Y B Y Y ψ==称为电纳。 (2)RLC 并联电路的导纳: 1111 ()I Y j c j c U R j L R L ωωωω==++=+-=&& ()C L Y G j B B G jB Y ψ++=+=∠ 式中1L B L ω=- 称为感纳;C B C ω=称为容纳;1C L B B B c L ωω=+=-;1 G R =。 可见,当0,B >即1c L ωω>时,Y 呈容性;当0,B <即1 ,c L ωω

电路基础-实验2 正弦稳态交流电路(操作实验)

实验二正弦稳态交流电路相量的研究 一、实验目的 1.研究正弦稳态交流电路中电压、电流相量之间的关系。 2.掌握日光灯线路的接线。 3.理解改善电路功率因数的意义并掌握其方法。 二、原理说明 1. 在单相正弦交流电路中,用交流电流表测得各支路的电流值,用交流电压表测得回路各元件两端的 电压值,它们之间的关系满足相量形式的基尔霍夫定律,即∑?=0和∑? =0. 2.图2-1所示的RC串联电路,在正弦稳态信号?的激励下, ?R与?C保持有900的相位差,即当R 阻值改变时,?R的相量轨迹是一个半圆。?、?R与?C三者形成一个直角形的电压三角形,如图2-2所示。R值改变时,可改变?角的大小,从而达到移相的目的。 图2-1 图2-2 3.日光灯线路如图2-3所示,图中A是日光灯管,L是镇流器,S是启辉器,C是补偿电容器,用以 Cos值)。有关日光灯的工作原理请自行翻阅有关资料。 改善电路的功率因数(? 图2-3 三、实验设备

四、实验内容 1、按图16-1接线。R 为220V 、15W 的白炽灯,电容器为4.7Uf/450V 。经指导教师检查后,接通实验电源,将自耦调压器输出(即U )调制220V 。记录U 、U R 、U C 值,验证电压三角形关系。 2、日光灯线路接线与测量。 按图2-4接线。经指导教师检查后接通实验台电源,调节自耦调压器的输出,使其输出电压缓缓增大, 直到日光灯刚启辉点亮为止,记下三表得指示值。然后将电压调节至220V ,测量功率P ,电流I ,电压U ,U L ,U A 等值,验证电压、电流向量关系。 图2-4

3、并联电路——电路功率因数的改善。按图2-5组成实验电路。 图2-5 经指导老师检查后,接通实验台电源,将自耦调压器输出调制220V,记录功率表、电压表读数。通过一只电流表和三个电流插座分别测得三条之路的电流,改变电容值,进行三次重复测量。数据计入下页表中。 五、实验注意事项 1、本实验用交流市电220V,务必注意用电合人身安全。 2、功率表要真确接入电路。 3、线路接线正确,日光灯不能启辉时,应检查启辉器及其接触是否良好。

放大电路的瞬态分析与稳态分析教学提纲

放大电路的瞬态分析与稳态分析

放大电路的瞬态分析与稳态分析 对放大电路的研究,目前有稳态分析法和瞬态分析法两种不同的分析方法。 稳态分析法:也就是已讨论过的频率响应分析法。该方法以正弦波为放大电路的基本信号,研究放大电路对不同频率信号的幅值和相位的响应(或叫做放大电路的频域响应)。其优点是分析简单,便于测试;缺点是不能直观地确定放大电路的波形失真。 瞬态分析法:是以单位阶跃信号为放大电路的输入信号,研究放大电路的输出波形随时间变化的情况,它又称为放大电路的阶跃响应或时域响应。此方法常以上升时间和平顶降落的大小作为波形的失真标志。其优点是可以很直观地判断放大电路的波形失真,并可利用脉冲示波器直接观测放大电路瞬态响应。 在工程实际中,这两种方法可以互相结合,根据具体情况取长补短地运用。 单级放大电路的瞬态响应的上升时间 放大电路的阶跃响应分析以阶跃电压作为放大 电路的基本信号,图1表示一个阶跃电压,它表 示为 放大电路的阶跃响应主要由上升时间t r和平顶降落来表示。阶跃响应分析其目的是求出这两个参数,并可将它与稳态分析中参数相联系。 分析单级共射放大电路的阶跃响应时,可采用小信号等效电路,将阶跃电压可分为上升阶段和平顶阶段并按其特点对电路进行简化。 图1 图 2

阶跃电压中上 升较快的部分,与 稳态分析中的高频 区相对应,可用 RC低通电路来模 拟,如图 2(a)所 示。由图可知 式中V S是阶跃 信号平顶部分电压 值。与时间的关系如图2(b)所示。 上式表示在上升阶段时输出电压v O随时间变化的关系。输入电压v S在t=0时是突然上升到最终值的,而输出电压是按指数规律上升的,需要经过一定时间,才能到达最终值,这种现象称为前沿失真。一般用输出电压从最终值的10%上升至90%所需的时间t r来表示前沿失真,t r称为上升时间。 由图2(b)经推导可得 已知可得 或 可见,上升时间t r与上限频率f H成反比,f H越高,则上升时间愈短,前沿失真越小。 单级放大电路的瞬态响应的平顶降落 阶跃电压的平顶阶段与稳态分析中的低频区相对应,所以可用如图1(a)所示RC 高通电路来模拟。

正弦稳态交流电路相量的研究

实验二 正弦稳态交流电路相量的研究 一、实验目的 1.掌握正弦交流电路中电压、电流相量之间的关系。 2.掌握功率的概念及感性负载电路提高功率因数的方法。 3.了解日光灯电路的工作原理,学会日光灯电路的连接。 4.学会使用功率表。 二、实验原理 1.R 、C 串联电路 在单相正弦交流电路中,用交流电流表测得各支路的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系应满足相量形式的基尔霍夫定律,即 ∑=0I 和 0=∑U 实验电路为RC串联电路,如图1(a )所示,在正弦稳态信号U 的激励下,则有: )(C C R jX R I U U U -?=+= U 、R U 与C U 相量图为一个直角电压三角形。当阻值R 改变时,R U 与C U 始终保持着 90°的相位差,所以R U 的相量轨迹是一个半圆,如图1(b )所示。从图中我们可知,改变C 或R 值可改变φ角的大小,从而达到移相的目的。 (a )原理图 (b )向量图 图(c )Multisim 仿真电路图 图1 RC 串联电路及相量图 C R U U I

2.日光灯电路及其功率因数的提高 日光灯实验电路如图3(a)所示,日光灯电路由灯管、镇流器和启动器三部分组成。 灯管是一根普通的真空玻璃管,管内壁涂上荧光粉,管两端各有一根灯丝,用以发射电子。管内抽真空后充氩气和少量水银。在一定电压下,管内产生弧光放电,发射一种波长很短的不可见光,这种光被荧光粉吸收后转换成近似日光的可见光。 镇流器是一个带铁芯的电感线圈,启动时产生瞬时高电压,促使灯管放电,点燃日光灯。在点燃后又限制了灯管的电流。 启动器(如图2(a)所示)是一个充有氖气的玻璃泡,其中装有一个不动的静触片和一个用双金属片制成的U形可动触片,其作用是使电路自动接通和断开。在两电极间并联一个电容器,用以消除两触片断开时产生的火花对附近无线电设备的干扰。 (a) (b) (c) 图2启动器示意图和日光灯灯点燃过程 日光灯的点燃过程如下:当日光灯刚接通电源时,灯管尚未通电,启动器两极也处于断开位置。这时电路中没有电流,电源电压全部加在启动器的两电极上,使氖管产生辉光放电而发热,可动电极受热变形,于是两触片闭合,灯管灯丝通过启动器和镇流器构成回路,如图2(b)所示。灯丝通电加热发射电子,当氖管内两个触片接通后,触片间不存在电压,辉光放电停止,双金属片冷却复原,两触片脱开,回路中的电流瞬间被切断。这时镇流器产生相当高的自感电动势,它和电源电压串联后加在灯管两端,促使管内氩气首先电离,氩气放电产生的热量又使管内水银蒸发,变成水银蒸气。当水银蒸气电离导电时,激励管壁上的荧光粉而发出近似日光的可见光。 灯管点燃后,镇流器和灯管串联接入电源,如图2(c)所示。由于电源电压部分降落在镇流器上,使灯管两端电压(也就是启动器两触片间的电压)较低,不足以引起启动器氖管再次产生辉光放电,两触片仍保持断开状态。因此,日光灯正常工作后,启动器在日光灯电路中不再起作用。 日光灯点燃后的等效电路如图3(b)所示,其中灯管相当于纯电阻负载R,镇流器可用 静触片

电路 第9章习题2 正弦稳态电路的分析

9-001、 已知图示正弦电路中,电压表的读数为V 1 :6V ;V 2 :2V ; U S =10V 。求: (1)、图中电压表V 3、V 4的读数; (2)、若A I 1.0=,求电路的等效复阻抗; (3)、该电路呈何性质 答案 (1)V U U U 32.62 2 214=+= V 4的读数为 ; 2322 1)(U U U U S -+= 64)(212 232=-=-U U U U s 832±=-U U 取 V U 10823=+=,所以V 3的读数为10 V 。 (2)、A I 1.0=,电路的等效复阻抗: Ω===1001 .010I U Z ?-=-=-=1.536 8 arctan arctan 132U U U ? Ω-=?-+?=)8060()1.53sin(1.53cos 100j j Z (3)、由于复阻抗虚部为负值,故该电路呈电容性。 9-002、 答案 V 1 - R V 3 L u V 2 + C V 4

9-003、 求图示电路的等效阻抗,已知ω=105 rad/s 。 例9 — 3 图解:感抗和容抗为: 所以电路的等效阻抗为 9-004、 例9-4图示电路对外呈现感性还是容性 例9 — 4 图解:图示电路的等效阻抗为:

所以 电路对外呈现容性。 9-005、3-9日光灯电源电压为V 220,频率为Hz 50,灯管相当于Ω300的电阻,与灯管串联的镇流器(电阻忽略不计)的感抗为Ω500,试求灯管两端电压与工作电流的有效值。 解:电路的总阻抗为 Ω≈+=58350030022Z 此时电路中流过的电流: A Z U I 377.0583 220=== 灯管两端电压为: V RI U R 113377.0300=?== 9-006、5、 与上题类似 今有一个40W 的日光灯,使用时灯管与镇流器(可近似把镇流器看作纯电感)串联在电压为220V ,频率为50Hz 的电源上。已知灯管工作时属于纯电阻负载,灯管两端的电压等于110V ,试求镇流器上的感抗和电感。这时电路的功率因数等于多少 解:∵P =40W U R =110(V) ω=314rad/s ∴36.0110 40=== =R L R U P I I (A) ∵U U U L R 2 22+= ∴5.1901102202222=-= -=U U U R L (V) ∴529 36.05.190=== I U X L L L (Ω) 69.1314 529 ===ωX L L (H) 这时电路的功率因数为: 5.0220 110 cos cos ===U U R ?

正弦稳态交流电路相量的研究含数据处理

实验十三正弦稳态交流电路相量的研究 专业 学号姓名实验日期 、实验目的 1. 2. 3?理解改善电路功率因数的意义并掌握其方法。 1?在单相正弦交流电路中,用交流电流表则得各支中的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系满足相量形式的基尔霍夫定律, ' i =0 2?如图13-1所示的RC串联电路,在正弦稳态信号 相位差,即当阻值R改变时,U R的相量轨迹是一个半圆 的电压三角形。R值改变时,可改变0角的大小, 图13-1 器,用以改善电路的功率因数(COS?值)。 有关日光灯的工作原理请自行翻阅有关资料。 U的激励下,U R与U c保持有90°的 ,U、U C与U R三者形成一个直角形3?日光灯线路如图13-2所示,图中A是日光灯管,1是镇流器,S是启辉器,C是补偿电容 图13-2

序号 名称型号与规格数量备注 1 单相交流电源0~220V 1 2 三相自耦调压器 1 3 交流电压表 1 4 交流电流表 1 5 功率因数表 1 DGJ-07 6 白炽灯组15W/220V 2 DGJ-04 7 镇流器与30W灯管配用 1 DGJ-04 8 电容器1uf,2.2uf, 4.7 〃450V DGJ-04 9 启辉器与30W灯管配用 1 DGJ-04 10 日光灯灯管30W 1 DGJ-04 11 电门插座 3 DGJ-04 四、实验内容 (1)用两只15W /220V的白炽灯泡和4.7^/450V电容器组成加图13-1所示的实验电路,经指导老师检查后,接通市电220V电源,将自藕调压器输出调至220V。记录U、U R、U C 值, 白炽灯盏数测量值计算值 U(V) U R(V) U C(V) U 'V) 0 2 220 200 84 217 22.8 1 220 213 45 218 11.9 图13-3 按图13-3组成线路,经指导教师检查后按下闭合按钮开关,调节自耦调压器的输出,使其 输出电压缓慢增大,直到日光灯刚启辉点亮为止,记下三表的指示值。然后将电压调至220 V,

电力系统稳态瞬态分析-答案一

电力系统分析(电力系统稳态与瞬态分析) 练习一答案 一、填空 1、10.5242;10.5254.1 2、230 kV 115 kV 37 kV 10.5 kV 0.4 kV 3、5%;-5%;10% 4. 三一不间断三短时中断 (双/多电源)(单电源)5. 单回路放射式单回路干线式单回路树状网络 二、单选题 1、B 2、A 3、D 4、B 5、B 6、B 7、B 8、B 9、A 10、C 三、简要回答下列问题 1. 发电机、变压器、电力线路、用电负荷设备等四种 1)发电机:利用电磁感应原理将机械能转化为电能的设备。 2)变压器:将一种电压和电流转化成另一种同频率的电压电流。 3)电力线路:电能输送。 4)用电设备:电能使用。 2. 电力系统运行的特点集中体现在下述3方面: 1)同时性:发电,输电,用电同时完成,电能不能大量储存; 2)瞬时性:电能以光速传输,任何运行状态的变化传播极快(“瞬时的”); 3)密切性:电力系统的安全稳定经济运行和可靠供电对国民经济、人们生活、 社会稳定影响极大,关系极为密切; 3、220kV线路因电压等级、从而运行电压高,要考虑对地充电功率影响,采用π等值电路;10kV线路因电压等级、从而运行电压低,对地充电功率影响可以忽略不计,因此其等值电路可以用简化的串联阻抗支路等效。 4、对电力系统的运行要求主要体现在如下四个方面:

1)供电可靠。其保障措施包括:a )严格运行操作,减少人为事故率;b )加强网络结构(包括用环网代替辐射网等);c )保证设备处于良好运行状态,减小设备故障率;d )负荷分级保电(一级负荷、二级负荷、三级负荷);e )实用安全自动装置。 2)运行灵活。其保障措施包括:a )合理地结线方式;b )充裕的电源保障和合理地电源布局等。 3)电能质量。电能质量包括波形质量、电压质量和频率质量,电压质量主要取决于电网的无功平衡,电压质量主要取决于电网的有功平衡,只要通过合理的调压、调频和无功补偿措施即可得到合格的电压质量和频率质量。波形可以通过相应的滤波等措施滤去谐波等干扰信号,保证良好的波形质量。 4)保证系统运行的经济性。优化设计方案,节约一次投资;优化运行调度,减小发电成本和网损;优化运行和生产管理,降低管理成本。 5)减少排放,保护环境。 四、计算题 1、计算同步发电机、变压器和线路的实际有名参数 发电机G : 125 156.25cos 0.8 N GN P S ?= == MV A 22 92.510.5 %0.65268 100156.25 GN G G GN U X X S =?=?=Ω 变压器T : 2 2 4.1 1000K N T N P U R S ==Ω 2 %68.325 100K N T N U U X S ==Ω 6 02 1.7101000T N P G S U -= =? 5 02 % 2.5610100N T N I S B S U -= =? 线路l : 640.10822023.760.4222092.42.6610220 5.85210l l l R X B S --=?=Ω =?=Ω =??=?

正弦稳态交流电路相量的研究实验报告

一、实验目的 1.研究正弦稳态交流电路中电压、电流相量之间的关系。 2. 掌握日光灯线路的接线。 3. 理解改善电路功率因数的意义并掌握其方法。 二、原理说明 1. 在单相正弦交流电路中,用交流电流表测得 各支路的电流值,用交流电压表测得回路各元件两 端的电压值,它们之间的关系满足相量形式的基尔 霍夫定律,即。 图4-1 RC 串联电路 2. 图4-1所示的RC 串联电路,在正弦稳态信 号U 的激励下,U R 与U C 保持有90o的相位差,即当 R 阻值改变时,U R 的相量轨迹是一个半园。U 、U C 与 U R 三者形成一个直角形的电压三角形,如图4-2所 示。R 值改变时,可改变φ角的大小,从而达到 移相的目的。 3. 日光灯线路如图4-3所示,图中 A 是日光灯管,L 是镇流器, S 是启辉器,C 是补偿电容器,用以改善电路的功率因数(cos φ值)。有关日光灯的工作原理请自行翻阅有关资料。 图4-3 日光灯线路 序号 名称 数量 备注 1 电源控制屏(调压器、日光灯管) 1 DG01或GDS-01 2 交流电压表 1 D36或GDS-11 3 交流电流表 1 D35或GDS-12 4 三相负载 1 DG08或GDS-06B 5 荧光灯、可变电容 1 DG09或GDS-09 6 起辉器、镇流器、电容、电门插座 DG09或GDS-09 7 功率表 1 D34或GDS-13 220V L S A C R jXc Uc U R I U R U U c I φ

四、实验内容 1. 按图4-1接线。R为220V、15W的白炽灯泡,电容器为4.7μF/450V。经指导教师检查后,接通实验台电源,将自耦调压器输出(即U)调至220V。记录 U、U R 、U C 值,验证电压三角形关系。 2. 日光灯线路接线与测量。 图4-4 (1)按图4-4接线。 (2)经指导教师检查后接通实验台电源,调节自耦调压器的输出,使其输 出电压缓慢增大,直到日光灯刚刚启辉点亮为止,记下三表的指示值。 (3)将电压调至220V,测量功率P,电流I,电压U,U L ,U A 等值,验证电压、电流相量关系。 测量值P(W)CosφI(A)U(V)U L (V)U A (V)启辉值 正常工作值48.80.540.393237.7184.7102.1 3. 并联电路──电路功率因数的改善。 测量值计算值 U(V)U R (V)U C (V) U′(与U R ,U C 组成Rt△) (U′=2 2 C R U U ) △U = U′-U (V) △U/U(%)240.3234.151.4 239.6 0.62 0.26

正弦稳态电路的分析

第九章 正弦稳态电路的分析 第一节 用相量法分析R 、L 、C 串联电路 — 阻抗 一、R 、L 、C 串联电路中电流与电压的大小、相位关系: 电路如图9-1-1。设)t (ISin 2)t (Sin I i i i m ?+ω=?+ω= 则电路中各元件的电压及总电压均为与电流同频率的正弦量。由KVL ,C L R u u u u ++= 用相量表示: 其中: )(I U I U I U Z z R x tg x R jx R )x x j R C 1L j R Z i u i u .. 122C L ?-?∠=?∠?∠= = ?∠=∠+=+=-+=ω-ω+=-或()( z 称为阻抗的模,?称为阻抗的幅角,由于阻抗本身不是正弦量,是一个纯复数,因此不用“.” 表示。?又称为阻抗角。 复阻抗与元件的参数和激励的角频率有关,而与电压、电流相量无关,阻抗角是由于储能元件L 、C 造成的。 当00x x 0x x 0x i u C L C L >?-?>?>>->,时即,电压超前电流一个角度?,电路 为感性; 当00x x 0x x 0x i u C L C L 0)为例,如图9-1-2。 .... . . C . L .R ..I Z I ]C 1 L j R [I C 1j I L j I R U C L R U U U U =ω-ω+=ω-ω+=++=)(量关系表达式 的电压、电流之间的相、、 带入

ANSYS稳态和瞬态分析步骤简述

ANSYS 稳态和瞬态热模拟基本步骤 基于ANSYS 9.0 一、 稳态分析 从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量: =0q q q +-流入生成流出 在稳态分析中,任一节点的温度不随时间变化。 基本步骤:(为简单起见,按照软件的菜单逐级介绍) 1、 选择分析类型 点击Preferences 菜单,出现对话框1。 对话框1 我们主要针对的是热分析的模拟,所以选择Thermal 。这样做的目的是为了使后面的菜单中只有热分析相关的选项。 2、 定义单元类型 GUI :Preprocessor>Element Type>Add/Edit/Delete 出现对话框 2 对话框2 (3-1)

点击Add,出现对话框3 对话框3 在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。对于三维模型,多选择SLOID87:六节点四面体单元。 3、选择温度单位 默认一般都是国际单位制,温度为开尔文(K)。如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units 选择需要的温度单位。 4、定义材料属性 对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。 GUI: Preprocessor>Material Props> Material Models 出现对话框4 对话框4 一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5. 对话框5

正弦稳态交流电路相量的研究(含数据处理)

实验十三 正弦稳态交流电路相量的研究 1.研究正弦稳态交流电路中电压、电流相量之间的关系 2.掌握日光灯线路的接线。 3.理解改善电路功率因数的意义并掌握其方法。 二、原理说明 1.在单相正弦交流电路中,用交流电流表则得各支中的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系满足相量形式的基尔霍夫定律,即 i =∑0 和 U =∑ 0 2.如图13-1 所示的RC 串联电路,在正弦稳态信号 U 的激励下,R U 与 U C 保持有90°的 相位差,即当阻值R改变时, U R 的相量轨迹是一个半圆, U 、 U C 与 U R 三者形成一个直角形的电压三角形。R值改变时,可改变φ角的大小,从而达到移相的目的。 图 13-1 3.日光灯线路如图13-2 所示,图中A是日光灯管,L是镇流器,S是启辉器,C是补偿电容 器,用以改善电路的功率因数(cos φ值)。 图 13-2 有关日光灯的工作原理请自行翻阅有关资料。

三、实验设备 四、实验内容 (1)用两只15W /220V的白炽灯泡和4.7μf/450V电容器组成加图13-1所示的实验电路,经指导老师检查后,接通市电220V电源,将自藕调压器输出调至220V。记录U、U R、U C 值,验证电压三角形关系。 (2)日光灯线路接线与测量 图13-3 按图13-3组成线路,经指导教师检查后按下闭合按钮开关,调节自耦调压器的输出,使其输出电压缓慢增大,直到日光灯刚启辉点亮为止,记下三表的指示值。然后将电压调至220V,

测量功率P,电流I,电压 U U U L A ,,等值,验证电压、电流相量关系。 (3)并联电路——电路功率因数的改善 按图13-4组成实验线路 图 13-4 经指导老师检查后,按下绿色按钮开关调节自耦调压器的输出调至220V,记录功率表,电压表读数,通过一只电流表和三个电流取样插座分别测得三条支路的电流,改变电容值,进行三次重复测量。 五、实验注意事项 1.本实验用交流市电220V ,务必注意用电和人身安全。 2.在接通电源前,应将自藕调压器手柄置在零位上。 3.功率表要正确接入电路,读数时要注意量程和实际读数的折算关系。 4..线路接线正确,日光灯不能启辉时,应检查启辉器及其接触是否良好。 七、实验报告 1.完成数据表格中的计算,进行必要的误差分析。 误差分析: 1、仪表精确度; 2、读数时存在误差 2.根据实验数据,分别绘出电压、电流相量图,验证相量形式的基尔霍夫定律。

正弦稳态电路的分析

x 第九章 正弦稳态电路 的分析 本章重点: 1. 阻抗,导纳及的概念 2. 正弦电路的分析方法 3. 正弦电路功率的计算 4. 谐振的概念及谐振的特点 本章难点:如何求电路的参数 主要内容 X arctg 为阻抗角(辐角); R 1 1 可见,当X.>0,即L 一时,Z 是感性; 当X<0,即卩L 一时,Z 呈容性。 c c (3)阻抗三角形: 1 ?阻抗 (1)复阻抗:Z § 9-1 阻抗和导纳 R jX R=Re[Z] Z cos z 称为电阻; X=Im[Z]= ⑵RLC 串联电路的阻抗: 称电抗。 Z sin z j( L j(X L 丄) c X C ) R jX 式中X L L 称为感抗;X C 称为容抗; X X L X C L — c 式中Z 为阻抗的模; Z R

2 ?导纳 x

1 (1)复导纳:丫 一 Z ⑵RLC 并联电路的导纳: (3)导纳三角形: 3.阻抗和导纳的等效互换 § 9-2 阻抗(导纳)的串联和并联 1. 阻抗串联: (1) 等效阻抗:Z e q 乙Z 2川Z n (2) 分压作用:U |K 互U, k 1,2,|||,n Z eq 2. 导纳并联 (1) 等效导纳:Y eq 丫1 丫2 |||Y n (2) 分流作用:|[ 丫M 〔, k 1,2,|||, n 3. 两个阻抗并联: 式中Y I 一 「.G 2 B 2称为导纳的模; B Y arCtan G 称为导纳角; G Re[Y] 丫 cos 丫称为电导; lm[Y] Y sin 丫称为电纳。 Y G jB 1 c 飞) j(B c B L ) G jB Y 式中B L —称为感纳; L L 可见,当B 0,即c —时, L B c C 称为容纳; B B c B L Y 呈容性;当B 0,即c 1 —,丫呈感性 (1)RLC 串联电路的等效导纳: ⑵RLC 并联电路的等效阻抗: Y R R 2 X 2 G j 一 G B G X J " R 2 X 2 B B B G Y

相关主题
文本预览
相关文档 最新文档