当前位置:文档之家› 2 导热基本定律和稳态导热

2 导热基本定律和稳态导热

第三章非稳态导热分析解法

第三章非稳态导热分析解法 本章主要要求: 1、重点内容: ① 非稳态导热的基本概念及特点; ② 集总参数法的基本原理及应用; ③ 一维及二维非稳态导热问题。 2 、掌握内容: ① 确定瞬时温度场的方法; ② 确定在一时间间隔内物体所传导热量的计算方法。 3 、了解内容:无限大物体非稳态导热的基本特点。 许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。因此,应确定其内部的瞬时温度场。钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。 §3—1 非稳态导热的基本概念 一、非稳态导热 1 、定义:物体的温度随时间而变化的导热过程称非稳态导热。 2 、分类:根据物体内温度随时间而变化的特征不同分: 1 2 )物体的温度随时间而作周期性变化 如图 3-1 所示,设一平壁,初值温度 t 0 ,令其左侧的表面温 度突然升高到 并保持不变,而右侧仍与温度为 的空气接触,试分 析物体的温度场的变化过程。 首先,物体与高温表面靠近部分的温度很快上升,而其余部分仍 保持原来的 t 0 。 如图中曲线 HBD ,随时间的推移,由于物体导热温度变化波及范 围扩大,到某一时间后,右侧表面温度也逐渐升高,如图中曲线 HCD 、 HE 、 HF 。 最后,当时间达到一定值后,温度分布保持恒定,如图中曲线 HG (若 λ=const ,则 HG 是直线)。 由此可见,上述非稳态导热过程中,存在着右侧面参与换热与不参 与换热的两个不同阶段。 ( 1 )第一阶段(右侧面不参与换热) 温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受 t 分布的影响较大,此阶段称非正规状况阶段。 ( 2 )第二阶段,(右侧面参与换热) 当右侧面参与换热以后,物体中的温度分布不受 to 影响,主要取决于边界条件及物性,此时,非稳态导热过程进入到正规状况阶段。正规状况阶段的温度变化规律是本章讨论的重点。 2 )二类非稳态导热的区别:前者存在着有区别的两个不同阶段,而后者不存在。 3 、特点; 非稳态导热过程中,在与热流量方向相垂直的不同截面上热流量不相等,这是非稳态导热区别于稳态导热的一个特点。

第二章 基本原理和定理

第2章基本原理和定理 2.1亥姆霍兹定理 亥姆霍兹定理:任一个矢量场由其散度、旋度以及边界条件所确定,都可以表示为一个标量函数的梯度与一个矢量函数的旋度之和。 定理指出,由于闭合面S 保卫的体积V 中任一点R 处的矢量场Fr 可分为用一标量函数的梯度小时的无旋场和用另一个适量函数的旋度表示的无散场两部分,即为 F A Φ=-?+?? 而式中的变量函数和适量函数分别于体积V 中矢量场的散度源和旋度源,以及闭合面S 上矢量场的法向分量和切向分量。 1()1()d d 44V S V Φπ π''''???''= -''--??F r n F r S r r r r 1()1()d d 44V S V π π''''???''= -''--??F r n F r A S r r r r 2.2唯一性定理 惟一性定理:给定区域V 内的源(ρ、J )分布的和场的初始条件以及区域V 的边界 S 上场的边界条件,则区域V 内的场分布是惟一的。 场、源;范围 —— 时间间隔、空间区域; 条件 —— 初始条件、边界条件。 有惟一解的条件: (1)区域内源分布是确定的(有源或无源),与区域外的 源分布无关; (2)初始时刻区域内的场分布是确定的; (3)边界面上或是确定的。

重要意义: (1)指出了获得惟一解所需给定的条件; (2)为各种求解场分布的方法提供了理论依据。 2.3镜像原理 镜像原理:等效源(镜像源)替代边界面的影响边值问题转换为无界空间问题;理论基础:惟一性定理 2.4等效原理 等效原理是基于唯一性定理建立的电磁场理论的另一个重要原理。考察某一有界区域,如果该去云内的源分布不变,而在该区域之外有不同分布的源,只要在该区域的边界上同时满足同样的边界条件,根据唯一性定理,就可以在该规定区域内产生同样的场分布。也就是说,在该区域外的这两种源的另一种源是另一种源的等效源。 基本思想:等效源替代真实源; 理论基础:惟一性定理。 1. 拉芙(Love)等效原理 将区域V1内的源和用分界面S上的等效源和来替代,且将区域V1内的场设为零,则区域V2内的场不会改变。 2Schelknoff 等效原理 (1)电壁+磁流源 在紧贴分界面S的内侧设置电壁,则 J不产生辐射场,区域内V2 的场由 S J产生。 2m S (2)磁壁+电流源 在紧贴分界面S的内侧设置电壁,则m J不产生辐射场,区域内V2 的场由 S J产生。 2 S

传热学 第3章-非稳态导热分析解法

第三章 非稳态导热分析解法 1、 重点内容:① 非稳态导热的基本概念及特点; ② 集总参数法的基本原理及应用; ③一维及二维非稳态导热问题。 2、掌握内容:① 确定瞬时温度场的方法; ② 确定在一时间间隔内物体所传导热量的计算方法。 3、了解内容:无限大物体非稳态导热的基本特点。 许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。因此,应确定其内部的瞬时温度场。钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。 §3—1 非稳态导热的基本概念 一、非稳态导热 1、定义:物体的温度随时间而变化的导热过程称非稳态导热。 2、分类:根据物体内温度随时间而变化的特征不同分: 1)物体的温度随时间的推移逐渐趋于恒定值,即:const t =↑τ 2)物体的温度随时间而作周期性变化 1)物体的温度随时间而趋于恒定值 如图3-1所示,设一平壁,初值温度t 0,令其左侧的 表面温度突然升高到1t 并保持不变,而右侧仍与温度为 0t 的空气接触,试分析物体的温度场的变化过程。 首先,物体与高温表面靠近部分的温度很快上升, 而其余部分仍保持原来的t 0 。 如图中曲线HBD ,随时间的推移,由于物体导热温 度变化波及范围扩大,到某一时间后,右侧表面温度也 逐渐升高,如图中曲线HCD 、HE 、HF 。 最后,当时间达到一定值后,温度分布保持恒定, 如图中曲线HG (若λ=const ,则HG 是直线)。 由此可见,上述非稳态导热过程中,存在着右侧面 参与换热与不参与换热的两个不同阶段。 (1)第一阶段(右侧面不参与换热) 温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受t 分布的影响较大,此阶段称非正规状况阶段。 (2)第二阶段,(右侧面参与换热) 当右侧面参与换热以后,物体中的温度分布不受to 影响,主要取决于边界条件及物性,此时,非稳态导热过程进入到正规状况阶段。正规状况阶段的温度变化规律是本章讨论的重点。

第2章动力学基本定律

第2章 动力学基本定律 习 题 2.1 用力F 推水平地面上一质量为M 的木箱,如图所示。设力F 与水平面的夹角为α,木箱与地面间的滑动摩擦系数和静摩擦系数分别为μk 和μs 。求: (1)要推动木箱,F 至少应多大?此后维持木箱匀速前进的力F 要多大? (2)证明当α角大于某一定值α0时,无论用多大的力F ,也不能使木箱前进,α0是多大? 2.2 设质量m =10kg 的小球挂在倾 角α=30°的光滑斜面上, 如图所示。求: (1)当斜面以加速度 g a 31= 沿图 所示的方向运动时,绳中的张力及小球对斜面的正压力各是多大? (2)当斜面的加速度至少为多大 时,小球对斜面的正压力为零? 2.3 如图所示,A 为定滑轮,B 为动滑轮,三个物体的质量分别为: m 1=200g ,m 2=100g ,m 3=50g 。求: (1)每个物体的加速度; (2)两根绳中的张力T 1和T 2,假定滑轮和绳的质量以及绳的伸长和摩擦力均忽略。 2.4 如图所示,物体A 和B 的质量分别为10kg 和5kg ,A 与桌面间摩擦系数为0.20,为防止A 移动,C 的最小质量是多少?如果撤去C ,试求此时系统 的加速度。滑轮的质量及摩擦不计。 2.5 如图所示,卡车从静止开始作匀加速直线运动。 在10s 内速率达到20m/s 。车上一质量为5kg 的木箱离卡车后缘S =3m ,当t =0 时,木箱开始滑动,木箱与车厢的摩擦系数为 0.15。求: (1)木箱相对地面的加速度; (2)木箱到达卡车后缘所经历的时间; (3)木箱落地时速度的水平分量。 2.6 质量为M 的三角形木块,放在光滑的水平面上,另一质量为m 的方木块放在斜面上,如图所示。如果两木块间的摩擦可忽略不计,求m 相对于M 的加速度。 2.7 在与速率成正比的阻力影响下,一个质点具有加速度a=-0.2v 。求需多长时间才能使质点的速率减小到原来速率的一半。 2.8 光滑的桌面上放置一固定的圆环带,半径为R 。一物体贴着环带内侧运动,如图所示。物体与环带间的滑动摩擦系数为μk 。设在某一时刻物体经过A 点时的速率为v 0。求此后t 时刻物体的速率和从A 点开始所经历的路程。 2.9 跳伞员与装备的质量共为m ,从伞塔上起跳时立即张伞,可粗略地认为张伞时速度为零,此后空气阻力与速率平方成正比,

综合讨论题1-绪论-导热基本定律

综合讨论题1 一、绪论 1.下列表述是否正确?(1)有温差就有传热;(2)对流必然伴随有导热;(3) 对流换热是一种基本的传热方式。 2.试用简练的语言说明导热、对流、辐射三种传热方式的联系和区别。 3.导热系数、对流换热系数及传热系数的单位各是什么?哪些是物性参数,哪 些与过程有关? 4.用铝制水壶烧开水时,尽管炉火很旺,但水壶仍安然无恙。而一旦壶内的水 烧干后水壶很快就被烧坏。试从传热学的观点分析这一现象。 5.有两个外形相同的保温杯A和B,注入同样温度、同样体积的热水后不久, A杯的外表面可以感到热,而B杯的外表面则感觉不到温度的变化,试问哪个保温杯的质量较好? 6.已知一个换热过程的温压为100o C,热流量为10kW,则其热阻为_______。 7.在一维稳态传热过程中,每一个环节的热阻分别为0.01K/W、5K/W、100K/W, 则热阻为_______的换热环节上采取强化传热措施效果最好。 8.一长、宽均为10mm的等温集成电路芯片安装在一块底板上,温度为20o C的 空气在风扇的作用下冷却芯片。芯片的最高允许温度为85o C,芯片与冷却气流间的平均对流换热系数为175W/(m·K)。试确定在不考虑辐射换热时芯片的最大允许功率。 9.有一台气体冷却器,气侧对流换热系数h1=95 W/(m2·K),壁面厚度δ=2.5mm, λ=46.5 W/(m·K),水侧对流换热系数h2=5800W/(m2·K)。设传热壁可以看作平壁,试计算从气到水的总传热系数。并指出,为了强化这一传热过程,应首先从哪一个环节着手? 二、导热基本定律 10.在同样的加热或冷却条件下,() A.物体内部各处温度差别愈小,则其导温系数a值愈大 B.物体内部各处温度差别愈大,则其导温系数a值愈大 C.导热系数λ及热容量ρc愈大,则a愈大 11.导热()

传热学第三章答案(精品资料).doc

【最新整理,下载后即可编辑】 第三章 思考题 1. 试说明集中参数法的物理概念及数学处理的特点 答:当内外热阻之比趋于零时,影响换热的主要环节是在边界上的换热能力。而内部由于热阻很小而温度趋于均匀,以至于不需要关心温度在空间的分布,温度只是时间的函数, 数学描述上由偏微分方程转化为常微分方程、大大降低了求解难度。 2. 在用热电偶测定气流的非稳态温度场时,怎么才能改善热电偶的温度响应特性? 答:要改善热电偶的温度响应特性,即最大限度降低热电偶的时间常数 hA cv c ρτ= ,形状 上要降低体面比,要选择热容小的材料,要强化热电偶表面的对流换热。 3. 试说明”无限大平板”物理概念,并举出一二个可以按无限大平板处理的非稳态导热问题 答;所谓“无限大”平板,是指其长宽尺度远大于其厚度,从边缘交换的热量可以忽略 不计,当平板两侧换热均匀时,热量只垂直于板面方向流动。如薄板两侧均匀加热或冷却、 炉墙或冷库的保温层导热等情况可以按无限大平板处理。

4.什么叫非稳态导热的正规状态或充分发展阶段?这一阶段在物 理过程及数学处理上都有些什么特点? 答:非稳态导热过程进行到一定程度,初始温度分布的影响就会消失,虽然各点温度仍 随时间变化,但过余温度的比值已与时间无关,只是几何位置(δ/x)和边界条件(Bi数) 的函数,亦即无量纲温度分布不变,这一阶段称为正规状况阶段或充分发展阶段。这一阶段的数学处理十分便利,温度分布计算只需取无穷级数的首项进行计算。 5.有人认为,当非稳态导热过程经历时间很长时,采用图3-7记算 所得的结果是错误的.理由是:这个图表明,物体中各点的过余温度的比值与几何位置及Bi有关,而与时间无关.但当时间趋于无限大时,物体中各点的温度应趋近流体温度,所以两者是有矛盾的。你是否同意这种看法,说明你的理由。 答:我不同意这种看法,因为随着时间的推移,虽然物体中各点过余温度的比值不变 但各点温度的绝对值在无限接近。这与物体中各点温度趋近流体温度的事实并不矛盾。 6.试说明Bi数的物理意义。o Bi→及∞ Bi各代表什么样的换热 → 条件?有人认为, ∞ → Bi代表了绝热工况,你是否赞同这一观点,为什么?

第二章 基本定理 第二讲 解的延拓

第二讲 解的延拓(3学时) 教学目的:讨论解的延拓定理。 教学要求:理解解的延拓定理,并用解的延拓定理研究方程的解 教学重点:解的延拓定理条件及其证明 教学难点:应用解的延拓定理讨论解的存在区间。 教学方法:讲练结合教学法、启发式相结合教学法。 教学手段:传统板书与多媒体课件辅助教学相结合。 教学过程: 解的存在唯一性定理的优点是:在相当广泛的条件下,给定方程:),(y x f dx dy =有满足初值条件00)(y x y =的唯一解存在,但也有缺点,即它是局部的,它只能肯定这种解在0x x =附近的一个区间), min(,||0m b a h h x x =≤-上存在,有时所得的区间很小,因而相应的微分曲线也只是很短的一段,如初值问题 22(3.1)(0)0dy x y dx y ?=+???=? 当定义域为R:11≤≤-x 时,解存在的唯一区间.21}21 ,1min{||= =≤h x 当定义域为R:21≤≤-x 时,解的顾在唯一区间.4 1}41 ,1min{||==≤h x 这样随着),(y x f 的定义域的增大,解存在的唯一区间反而缩小,这显然是我们不想看到的,而且实际要求解存在下载向尽量大,这就促使我们引进解的延拓概念.扩大解存在不在此区间. 1. 局部利普希茨(Lipschitz )条件. 若函数),(y x f 在区域G 内连续且对G 内的每一点P,有以P 为中心完全含于G 内的闭矩形Rp 存在,在Rp 上),(y x f 在G 内关于y 满足Lipschitz 条件,(对不同的点,域Rp 的大小和常数L 尽可能不同),则称 ),(y x f 在G 内对y 满足局部Lipschitz 条件. 2. 解的延拓定理. 如果方程( 3.1)在奇函数),(y x f 在有界区域G 中连续,且在G 内关于y 满足局部Lipschitz 条件,那么方程(3.1)的通解过G 内任何一点(00,y x )的解)(x e y =可以延拓.直到点))(,,(x x ?任意接近G 的边界.以向X 增大的一方延拓来说,如果)(x y ?=它的延拓到区间m x x ≤≤0时.则当m x →时,))`(,(x x ?趋于区间G 的边界.

传热学---导热基本定律

传热学 (Heat Transfer ) 材料成型教研室 第一节导热基本定律 导热基本定律及稳态导热 ?第一节导热基本定律?第四节通过肋片的导热 ?第二节导热微分方程式 ?第三节通过平壁,圆筒壁,球壳 和其它变截面物体的导热第一节导热基本定律和空间的函数,即:稳态温度场 非稳态温度场t = f ( r, )τ0() t f r =第一节导热基本定律 (,)t f r τ=1)按时间划分 2)按时间划分三维温度场 一维温度场 二维温度场 ) ,(y x f t =第一节导热基本定律 (1) 温度不同的等温面或等温线彼此不能相交 同一时刻、温度场中所有温度相同的点连接起来所构成的面。等温线:用一个平面与 各等温面相交,在这个平面上得到一个等温线簇。 等温面与等温线的特点: (2) 在连续的温度场中,等温面或等温线不会中断,它 们或者是物体中完全封闭的曲面(曲线),或者就终止与物体的边界上。 第一节导热基本定律(3)物体的温度场通常用等温面或等温线表示第一节导热基本定律 3.温度梯度(Temperature gradient) t t n s ΔΔ≠ΔΔ温度的变化率沿不同的方向一般是不同的。温度沿某一方向x变化率在数学 上可以以用该方向上温度对坐标的偏导数来表示,即 温度梯度是用以反映温度场在 空间的变化特征的物理量。

第一节导热基本定律直角坐标系:Cartesian coordinates ) 温度梯度是向量;正向朝着温度增加的方向 t t t t i j k x y z ???=+ +???u r r r 第一节导热基本定律 二、导热基本定律(Fourier’s law) 垂直导过等温面的热流密度,正比于该处的温度梯度, 方向与温度梯度相反。 热导率(导热系数)W (m C)????? o :λ负号——表示热流密度与温度梯度的方向的方向相反 n——是该点等温线上的法向单位矢量,指向温度升高的方向q——热流密度矢量 第一节导热基本定律直角坐标系中: 热流密度矢量:等温面上某点,以通过该点处最大热流 密度的方向为方向、数值上正好等于沿该方向的热流密度不同方向上的热流密度的大小不同 q θ q θ x y z q i q j q k ++u r uu r uu r c o s q θ =r ?? 第一节导热基本定律 注:傅里叶定律只适用于各向同性材料 各向同性材料:热导率在各个方向是相同的 t ?u u r u u r x y z x y z ???第一节导热基本定律热导率的数值:就是物体中单位温度梯度、单位时 间、通过单位面积的导热量影响热导率的因素:物质的种类、材料成分、温度、湿 度、压力、密度等 热导率的数值表征物质导热能力大小。实验测定-g r a d t ; λλλλλ>>>金属非金属固相液相气相 W (m C )?????o 第一节导热基本定律 不同物质热导率的差异:构造差别、导热机理不同气体的导热:由于分子的热运动和相互碰撞时发生的能 0.0244W (m C) ;λ=空气20: 0.026W (m C) C λ=空气

第2章_动力学基本定律

第2章 动力学基本定律题目无答案 一、选择题 1.牛顿第一定律告诉我们, [ ] (A) 物体受力后才能运动 (B) 物体不受力也能保持本身的运动状态 (C) 物体的运动状态不变, 则一定不受力 (D) 物体的运动方向必定和受力方向一致 2. 下列说法中正确的是 [ ] (A) 运动的物体有惯性, 静止的物体没有惯性 (B) 物体不受外力作用时, 必定静止 (C) 物体作圆周运动时, 合外力不可能是恒量 (D) 牛顿运动定律只适用于低速、微观物体 3. 下列诸说法中, 正确的是 [ ] (A) 物体的运动速度等于零时, 合外力一定等于零 (B) 物体的速度愈大, 则所受合外力也愈大 (C) 物体所受合外力的方向必定与物体运动速度方向一致 (D) 以上三种说法都不对 4. 一个物体受到几个力的作用, 则 [ ] (A) 运动状态一定改变 (B) 运动速率一定改变 (C) 必定产生加速度 (D) 必定对另一些物体产生力的作用 5. A 、B 两质点m A >m B , 受到相等的冲量作用, 则 [ ] (A) A 比B 的动量增量少 (B) A 与B 的动能增量相等 (C) A 比B 的动量增量大 (D) A 与B 的动量增量相等 6. 物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的 [ ] (A) 速度逐渐减小, 加速度逐渐减小 (B) 速度逐渐减小, 加速度逐渐增大 (C) 速度继续增大, 加速度逐渐减小 (D) 速度继续增大, 加速度逐渐增大 7. 对一运动质点施加以恒力, 质点的运动会发生什么变化? [ ] (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性 (C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化 T2-1-6图

第2章动力学基本定律

第2章动力学基本定律题目无答案 一、选择题 1.牛顿第一定律告诉我们, [ ] (A) 物体受力后才能运动 (B) 物体不受力也能保持本身的运动状态 (C) 物体的运动状态不变, 则一定不受力 (D) 物体的运动方向必定和受力方向一致 2. 下列说法中正确的是 [ ] (A) 运动的物体有惯性, 静止的物体没有惯性 (B) 物体不受外力作用时, 必定静止 (C) 物体作圆周运动时, 合外力不可能是恒量 (D) 牛顿运动定律只适用于低速、微观物体 3. 下列诸说法中, 正确的是 [ ] (A) 物体的运动速度等于零时, 合外力一定等于零 (B) 物体的速度愈大, 则所受合外力也愈大 (C) 物体所受合外力的方向必定与物体运动速度方向一致 (D) 以上三种说法都不对 4. 一个物体受到几个力的作用, 则 [ ] (A) 运动状态一定改变 (B) 运动速率一定改变 (C) 必定产生加速度

(D) 必定对另一些物体产生力的作用 5. A 、B 两质点m A >m B , 受到相等的冲量作用, 则 [ ] (A) A 比B 的动量增量少 (B) A 与B 的动能增量相等 (C) A 比B 的动量增量大 (D) A 与B 的动量增量相等 6. 物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的 [ ] (A) 速度逐渐减小, 加速度逐渐减小 (B) 速度逐渐减小, 加速度逐渐增大 (C) 速度继续增大, 加速度逐渐减小 (D) 速度继续增大, 加速度逐渐增大 7. 对一运动质点施加以恒力, 质点的运动会发生什么变化? [ ] (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性 (C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化 8. 一物体作匀速率曲线运动, 则 [ ] (A) 其所受合外力一定总为零 (B) 其加速度一定总为零 (C) 其法向加速度一定总为零 (D) 其切向加速度一定总为零 9. 牛顿第二定律的动量表示式为t m F d )d(v =, 即有t m t m F d d d d v v +=.物体作怎样 的运动才能使上式中右边的两项都不等于零, 而且方向不在一直线上? [ ] (A) 定质量的加速直线运动 (B) 定质量的加速曲线运动 (C) 变质量的直线运动 (D) 变质量的曲线运动 10. 质量相同的物块A 、B 用轻质弹簧连结后, 再用细绳悬吊着, 当系统平衡后, 突然将细绳剪断, 则剪断后瞬间 [ ] (A) A 、B 的加速度大小均为g (B) A 、B 的加速度均为零 (C) A 的加速度为零, B 的加速度大小为2g (D) A 的加速度大小为2g , B 的加速度为零 11. 用细绳系一小球使之在竖直平面内作圆周运动, 小球在任意位置 [ ] (A) 都有切向加速度 F T2-1-6图 T2-1-10图

第三章非稳态导热分析解法

第三章非稳态导热分析解法 本章主要要求: 1、重点内容:①非稳态导热的基本概念及特点; ②集总参数法的基本原理及使用; ③一维及二维非稳态导热问题。 2 、掌握内容:①确定瞬时温度场的方法; ②确定在一时间间隔内物体所传导热量的计算方法。 3 、了解内容:无限大物体非稳态导热的基本特点。 许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。因此,应确定其内部的瞬时温度场。钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。 §3—1 非稳态导热的基本概念 一、非稳态导热 1 、定义:物体的温度随时间而变化的导热过程称非稳态导热。 2 、分类:根据物体内温度随时间而变化的特征不同分: 1 )物体的温度随时间的推移逐渐趋于恒定值,即: 2 )物体的温度随时间而作周期性变化 如图 3-1 所示,设一平壁,初值温度 t 0 ,令其左侧的表面温 度突然升高到 并保持不变,而右侧仍和温度为 的空气接触,试分 析物体的温度场的变化过程。 首先,物体和高温表面靠近部分的温度很快上升,而其余部分仍 保持原来的 t 0 。 如图中曲线 HBD ,随时间的推移,由于物体导热温度变化波及范 围扩大,到某一时间后,右侧表面温度也逐渐升高,如图中曲线 HCD 、 HE 、 HF 。

最后,当时间达到一定值后,温度分布保持恒定,如图中曲线 HG (若λ=const ,则 HG 是直线)。 由此可见,上述非稳态导热过程中,存在着右侧面参和换热和不参 和换热的两个不同阶段。 ( 1 )第一阶段(右侧面不参和换热) 温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受 t 分布的影响较大,此阶段称非正规状况阶段。 ( 2 )第二阶段,(右侧面参和换热) 当右侧面参和换热以后,物体中的温度分布不受 to 影响,主要取决于边界条件及物性,此时,非稳态导热过程进入到正规状况阶段。正规状况阶段的温度变化规律是本章讨论的重点。 2 )二类非稳态导热的区别:前者存在着有区别的两个不同阶段,而后者不存在。 3 、特点; 非稳态导热过程中,在和热流量方向相垂直的不同截面上热流量不相等,这是非稳态导热区别于稳态导热的一个特点。 原因:由于在热量传递的路径上,物体各处温度的变化要积聚或消耗能量,所以,在热流量传递的方向上。 二、非稳态导热的数学模型 1 、数学模型 非稳态导热问题的求解规定的 { 初始条件,边界条件 } 下,求解导热微分方程。 2 、讨论物体处于恒温介质中的第三类边界条件问题 在第三类边界条件下,确定非稳态导热物体中的温度变化特征和边界条件参数的关系。 已知:平板厚 2 、初温 to 、表面传热系数 h 、平板导热系数,将 其突然置于温度为的流体中冷却。 试分析在以下三种情况:<<1/h 、>>1/h 、=1/h 时,平板中温度场 的变化。 1 ) 1/h<< 因为 1/h 可忽略,当平板突然被冷却时,其表面温度就被冷却到,随着时

第二章 基本定理 第三讲 奇解包络

第三讲 奇解与包络(4课时) 目的要求:了解包络和奇解的定义,掌握包络和奇解的之间的关系,掌握奇解的求法。 重点:包络和奇解的求法。 难点:奇解及其求法。 教学方法:讲练结合法、启发式与提问式相结合教学法。 教学手段:传统板书与多媒体课件辅助教学相结合。 教学过程: 本节讨论常微分方程的奇解以及奇解的求法。 2.4.1奇解 在本章2.2节的例2中,我们已经看到方程2 33dy y dx =的通解是3()y x C +,还有一解0y =,除解0y =外,其余解都满足唯一性,只有解0y =所对应的积分曲线上的点的唯一性都被破坏. 这样的解在许多方程中存在. 例1 求方程 dy dx = 的所有解. 解 该方程的通解是 sin()y x C =+ 此外还有两个特解1y =和1y =-。由于该方程右端函数的根号前只取+号,故积分曲线如图2-13所示, 图 2-13 显然解1y =和1y =-所对应的积分曲线上每一点,解的唯一性均被破坏。 本节主要讨论一阶隐式方程 (,,)0F x y y '= (1.8)

和一阶显式方程 (,)dy f x y dx = (1.9) 的解唯一性受到破坏的情形,显然这样的解只能存在于方程不满足解的存在唯一性定理条件的区域内。 对于方程(1.9),由定理2.2,这样的区域可用f y ??无界去检验,而对于隐式方程(1.8),一般来说,若能解出几个显式方程 (,),1,2,,i dy f x y i k dx == 那么对每一个方程,应用定理2.2即可。 其次对于方程(1.8),如果函数(,,)F x y y '对所有变量连续且有连续偏导数,并且在 000 (,,)x y y '的邻域内有 000 000 (,,)0(,,)0y F x y y F x y y ''=??''≠? 成立,那么应用数学分析中的隐函数定理,可解得 (,)y f x y '= 其中函数(,)f x y 是连续的且有连续偏导数,特别有 y y F f y F ' '?=- '? 这样一来,对方程(1.8)初值解的存在唯一性定理的条件也就清楚了。 因此,我们 可以就方程(1.8)或(1.9)给出奇解的定义。 定义2.3 如果方程存在某一解,在它所对应的积分曲线上每点处,解的唯一性都被破坏,则称此解为微分方程的奇解。奇解对应的积分曲线称为奇积分曲线。 由上述定义,可见2.2节例2中的解0y =是方程2 33dy y dx =的奇解,而例1中的解1y =和1y =- 是方程 dy dx =的奇解。 2.4.2 不存在奇解的判别法 假设方程(1.9)的右端函数(,)f x y 在区域2D R ?上有定义,如果(,)f x y 在D 上连续且(,)y f x y '在D 上有界(或连续),那么由本章定理2.2,方程的任一解是唯一的,从而在D 内一定不存在奇解。 如果存在唯一性定理条件不是在整个(,)f x y 有定义的区域D 内成立,那么奇解只

非稳态导热习题

第三章 非稳态导热习题 例一腾空置于室内地板上的平板电热器,加在其上的电功率以对流换热和辐射换热的方式全部损失于室内。电热器表面和周围空气的平均对流换热系数为h ,且为常数,室内的空气温度和四壁、天花板及地板的温度相同,均为t f 。电热器假定为均质的固体,密度为ρ,比热为c ,体积为V , 表面积为A ,表面假定为黑体,因其导热系数足够大,内部温度均布。通电时其温度为t 0。试写出该电热器断电后温度随时间变化的数学描述。 [解] 根据题意,电热器内部温度均布,因此可用集中参数分析法处理。 电热器以辐射换热方式散失的热量为: 44r f ()A T T σΦ=- (1) 以对流换热方式的热量为: c f ()hA T T Φ=- (2) 电热器断电后无内热源,根据能量守恒定律,散失的热量应等于电热器能量的减少。若只考虑电热器的热力学能 ( r c d d T cV ρτ -Φ-Φ= (3) 因此,相应的微分方程式为: 44f f d ()()d T A T T hA T T cV σρτ -+-=- (4) 初始条件为: τ=0, t =t 0 (5) 上述两式即为该电热器断电后温度随时间变化的数学描述。 例 电路中所用的保险丝因其导热系数很大而直径很小可视为温度均布的细长圆柱体,电流的热效应可视为均匀的内热源。如果仅考虑由于对流换热的散热量,保险丝表面和温度为t f 的周围空气之间的平均对流换热系数为h ,且为常数。试求该保险丝通电后温度随时间的变化规律。 [解] 根据题意,保险丝内部温度均布,因此可用集中参数分析法处理。 保险丝表面以对流换热方式散失的热量为: * c f ()hA T T Φ=- (1) 保险丝的内热源为: Q 0=IR 2 (2) 式中:I ——保险丝通过的电流,(A ); R ——保险丝的电阻,Ω。 根据能量守恒,散失的热量与内热源所转变成的热量的和应等于保险丝能量的变化。若只考虑保险丝的热力学能

传热学知识点总结材料

第一章 §1-1 “三个W” §1-2 热量传递的三种基本方式 §1-3 传热过程和传热系数 要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。作为绪论,本章对全书的主要容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。 本章重点: 1.传热学研究的基本问题 物体部温度分布的计算方法 热量的传递速率 增强或削弱热传递速率的方法 2.热量传递的三种基本方式 (1).导热:依靠微观粒子的热运动而产生的热量传递。传热学重点研究的是在宏观温差作用下所发生的热量传递。 傅立叶导热公式: (2).对流换热:当流体流过物体表面时所发生的热量传递过程。 牛顿冷却公式: (3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。 黑体热辐射公式: 实际物体热辐射: 3.传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。 最简单的传热过程由三个环节串联组成。 4.传热学研究的基础 傅立叶定律 能量守恒定律+ 牛顿冷却公式+ 质量动量守恒定律 四次方定律 本章难点 1.对三种传热形式关系的理解 各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。2.热阻概念的理解 严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。 思考题: 1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。为什么? 2.试分析室暖气片的散热过程。

第二章-基本定理---第三讲-奇解包络

第三讲 奇解与包络(4课时) 目的要求:了解包络和奇解的定义,掌握包络和奇解的之间的关系,掌握奇解的求法。重点:包络和奇解的求法。 难点:奇解及其求法。 教学方法:讲练结合法、启发式与提问式相结合教学法。 教学手段:传统板书与多媒体课件辅助教学相结合。 教学过程: 本节讨论常微分方程的奇解以及奇解的求法。 2.4.1奇解 在本章2.2节的例2中,我们已经看到方程的通解是,还有一233dy y dx =3()y x C +解,除解外,其余解都满足唯一性,只有解所对应的积分曲线上的点0y =0y =0y =的唯一性都被破坏. 这样的解在许多方程中存在. 例1 求方程 dy dx =的所有解. 解 该方程的通解是 sin() y x C =+此外还有两个特解和。由于该方程右端函数的根号前只取+号,故积1y =1y =-分曲线如图2-13所示, 图 2-13 显然解和所对应的积分曲线上每一点,解的唯一性均被破坏。 1y =1y =- 本节主要讨论一阶隐式方程 (1.8)(,,)0F x y y '=

和一阶显式方程 (1.9)(,)dy f x y dx =的解唯一性受到破坏的情形,显然这样的解只能存在于方程不满足解的存在唯一性定理条件的区域内。 对于方程(1.9),由定理2.2,这样的区域可用 无界去检验,而对于隐式方程(1.8),f y ??一般来说,若能解出几个显式方程(,),1,2,,i dy f x y i k dx ==L 那么对每一个方程,应用定理2.2即可。 其次对于方程(1.8),如果函数对所有变量连续且有连续偏导数,并且在 (,,)F x y y '的邻域内有000 (,,)x y y '000000 (,,)0(,,)0y F x y y F x y y ''=??''≠?成立,那么应用数学分析中的隐函数定理,可解得 (,) y f x y '=其中函数是连续的且有连续偏导数,特别有 (,)f x y y y F f y F ' '?=-'?这样一来,对方程(1.8)初值解的存在唯一性定理的条件也就清楚了。 因此,我们可以就方程(1.8)或(1.9)给出奇解的定义。 定义2.3 如果方程存在某一解,在它所对应的积分曲线上每点处,解的唯一性都被破坏,则称此解为微分方程的奇解。奇解对应的积分曲线称为奇积分曲线。 由上述定义,可见2.2节例2中的解是方程的奇解,而例1中的解0y =233dy y dx =和是方程的奇解。1y = 1y =-dy dx =2.4.2 不存在奇解的判别法 假设方程(1.9)的右端函数在区域上有定义,如果在D 上连(,)f x y 2D R ?(,)f x y 续且在D 上有界(或连续),那么由本章定理2.2,方程的任一解是唯一的,从(,)y f x y '而在D 内一定不存在奇解。 如果存在唯一性定理条件不是在整个有定义的区域D 内成立,那么奇解只(,)f x y

第一章—导热理论基础

第一章 导热理论基础 本章重点:准确理解温度场、温度梯度、导热系数等基本概念,准确掌握导热基本定律及导热问题的基本分析方法。 物质内部导热机理的物理模型:(1)分子热运动;(2)晶格(分子在无限大空间里排列 成周期性点阵)振动形成的声子运动;(3)自由电子运动。 物质内部的导热过程依赖于上述三种机理中的部分项,这几种机理在不同形态的物质中 所起的作用是不同的。 导热理论从宏观研究问题,采用连续介质模型。 第一节 基本概念及傅里叶定律 1-1 导热基本概念 一、温度场(temperature field) (一)定义:在某一时刻,物体内各点温度分布的总称,称为即为温度场(标量场)。 它是空间坐标和时间坐标的函数。在直角坐标系下,温度场可表示为: ),,,(τz y x f t = (1-1) (二)分类: 1.从时间坐标分: ① 稳态温度场:不随时间变化的温度场,温度分布与时间无关, 0=??τ t ,此时,),,(z y x f t =。(如设备正常运行工况) 稳态导热:发生于稳态温度场中的导热。 ② 非稳态温度场:随时间而变化的温度场,温度分 布与时间有关,),,,(τz y x f t =。(设备启动和停车过程) 非稳态导热:在非稳态温度场中发生的导热。 2.从空间坐标分: ① 三维温度场:温度与三个坐标有关的温度场,???==稳态非稳态) ,,(),,,(z y x f t z y x f t τ

g ra d t ② 二维温度场:温度与二个坐标有关的温度场,???==稳态非稳态) ,(),,(y x f t y x f t τ ③ 一维温度场:温度只与一个坐标有关的温度场,? ??==稳态非稳态,)()(x f t x f t τ 二、等温面与等温线 1.等温面(isothermal surface):在同一时刻,物体内温度相同的点连成的面即为等温面。 2.等温线(isotherms):用一个平面与等温面相截,所得的交线称为等温线。 为了直观地表示出物体内部的温度分布,可采用图示法,标绘出物体中的等温面(线)。 3.等温面(线)的特点: ① 不同的等温面(线)之间是不可能相交的。图1-1所示的即为一维大平壁和一维圆筒 壁内的等温面(线)的示意图。 ② 在连续介质的假设条件下,等温面(线)可以是物体中闭合的曲面或曲线,或者终止 在物体的边界,不可能在物体中中断。。 ③ 等温线的疏密可直观反映出不同区域温度梯度的相对大小,若每条等温线间的温度间 隔相等时,即t ?相等,则等温线越疏,表明该区域热流密度越小;反之,越大。 ④ 沿等温面(等温线)无热量传递 三、温度梯度(temperature gradient) 从一个等温面上的某点出发,到达另一个等温面,可以有不同的路径,不同路径上的温 度变化率是不同的,温度变化率最大的路径位于该点的法线方向上。为了表示沿等温面法线方向的温度变化率,引入温度梯度的概念。 梯度(最大的方向导数):指向变化最剧烈的方向。(向量) 温度变化率是标量,温度梯度是矢量。 温度梯度:定义沿法线方向的温度变化率(沿等温面法线方向上的温度增量与法向距离 比值的极限)为温度梯度,以gradt 表示。 n n t n n t grad n t ??=??=→?→0lim (1-2) 式中,n ——等温面法线方向的单位矢量; n t ??——温度在等温面法线方向的导数。 温度梯度的方向(正向):是沿等温面法线由低温指向高温。

第二章基本原理和定理

第2章基本原理和定理 亥姆霍兹定理 亥姆霍兹定理:任一个矢量场由其散度、旋度以及边界条件所确定,都可以表示为一个标量函数的梯度与一个矢量函数的旋度之和。 定理指出,由于闭合面S 保卫的体积V 中任一点R 处的矢量场Fr 可分为用一标量函数的梯度小时的无旋场和用另一个适量函数的旋度表示的无散场两部分,即为 F A Φ=-?+?? 而式中的变量函数和适量函数分别于体积V 中矢量场的散度源和旋度源,以及闭合面S 上矢量场的法向分量和切向分量。 1 ()1 () d d 44V S V Φπ π''''???''= -''--??F r n F r S r r r r 1()1()d d 44V S V π π''''???''= -''--??F r n F r A S r r r r 唯一性定理 惟一性定理:给定区域V 内的源(ρ、J )分布的和场的初始条件以及区域V 的边界 S 上场的边界条件,则区域V 内的场分布是惟一的。 场、源;范围 —— 时间间隔、空间区域; 条件 —— 初始条件、边界条件。 有惟一解的条件: (1)区域内源分布是确定的(有源或无源),与区域外的 源分布无关; (2)初始时刻区域内的场分布是确定的; (3)边界面上或是确定的。

重要意义: (1)指出了获得惟一解所需给定的条件; (2)为各种求解场分布的方法提供了理论依据。 镜像原理 镜像原理:等效源(镜像源)替代边界面的影响边值问题转换为无界空间问题;理论基础:惟一性定理 等效原理 等效原理是基于唯一性定理建立的电磁场理论的另一个重要原理。考察某一有界区域,如果该去云内的源分布不变,而在该区域之外有不同分布的源,只要在该区域的边界上同时满足同样的边界条件,根据唯一性定理,就可以在该规定区域内产生同样的场分布。也就是说,在该区域外的这两种源的另一种源是另一种源的等效源。 基本思想:等效源替代真实源; 理论基础:惟一性定理。 1. 拉芙(Love)等效原理 将区域V1内的源和用分界面S上的等效源和来替代,且将区域V1内的场设为零,则区域V2内的场不会改变。 2Schelknoff 等效原理 (1)电壁+磁流源 在紧贴分界面S的内侧设置电壁,则 J不产生辐射场,区域内V2 的场由 S J产生。 2m S (2)磁壁+电流源 在紧贴分界面S的内侧设置电壁,则m J不产生辐射场,区域内V2 的场由 S J产生。 2 S

非稳态导热习题

第三章 非稳态导热习题 例3.1一腾空置于室内地板上的平板电热器,加在其上的电功率以对流换热和辐射换热的方式全部损失于室内。电热器表面和周围空气的平均对流换热系数为h ,且为常数,室内的空气温度和四壁、天花板及地板的温度相同,均为t f 。电热器假定为均质的固体,密度为ρ,比热为c ,体积为V , 表面积为A ,表面假定为黑体,因其导热系数足够大,内部温度均布。通电时其温度为t 0。试写出该电热器断电后温度随时间变化的数学描述。 [解] 根据题意,电热器内部温度均布,因此可用集中参数分析法处理。 电热器以辐射换热方式散失的热量为: 44r f ()A T T σΦ=- (1) 以对流换热方式的热量为: c f ()hA T T Φ=- (2) 电热器断电后无内热源,根据能量守恒定律,散失的热量应等于电热器能量的减少。若只考虑电热器的热力学能 r c d d T cV ρτ -Φ-Φ= (3) 因此,相应的微分方程式为: 44f f d ()()d T A T T hA T T cV σρτ -+-=- (4) 初始条件为: τ=0, t =t 0 (5) 上述两式即为该电热器断电后温度随时间变化的数学描述。 例 3.2 电路中所用的保险丝因其导热系数很大而直径很小可视为温度均布的细长圆柱体,电流的热效应可视为均匀的内热源。如果仅考虑由于对流换热的散热量,保险丝表面和温度为t f 的周围空气之间的平均对流换热系数为h ,且为常数。试求该保险丝通电后温度随时间的变化规律。 [解] 根据题意,保险丝内部温度均布,因此可用集中参数分析法处理。 保险丝表面以对流换热方式散失的热量为: c f ()hA T T Φ=- (1) 保险丝的内热源为: Q 0=IR 2 (2) 式中:I ——保险丝通过的电流,(A ); R ——保险丝的电阻,Ω。 根据能量守恒,散失的热量与内热源所转变成的热量的和应等于保险丝能量的变化。若只考虑保险丝的热力学能 c 0d d T Q cV ρτ -Φ+= (3)

相关主题
文本预览
相关文档 最新文档