当前位置:文档之家› 土壤酸碱性和氧化还原反应

土壤酸碱性和氧化还原反应

土壤酸碱性和氧化还原反应
土壤酸碱性和氧化还原反应

第九章土壤酸碱性和氧化还原反应

土壤H+的来源:

1水的解离

2碳酸解离

3有机酸解离

4酸雨

5其他无机酸:如硝化细菌活动产生硝酸

6土壤中铝的活化:H+进入土壤中吸收复合体后,随着阳离子交换作用的进行,土壤盐基饱和度逐渐下降,而氢饱和度渐渐提高。当土壤有机矿质复合体或铝酸盐粘粒矿物表面吸附的H+超过一定限度时,这些胶粒的晶体结构就会遭到破坏,有些铝八面体被解体,使铝离子脱离了八面体晶格的束缚,变成活性铝离子,被吸附在带负电荷的粘粒表面,转变为交换性Al3+,铝离子与水分解的OH-结合形成羟基铝离子,土壤溶液中的氢离子增加。

活性酸:指的是与土壤固相处于平衡状态的土壤溶液中的H+

潜性酸:指吸附在土壤胶体表面的交换性致酸离子(H+和Al3+),交换性氢离子和铝离子只有转移的溶液中,转变成溶液中的氢离子时,才显示酸性,故称为潜性酸。

土壤潜性酸是活性酸的主要后备来源,它们处于动态平衡之中,属于一个体系中的两种酸。

土壤碱性的成因:

形成碱性反应的主要机理是碱性物质的水解

1碳酸钙水解

2碳酸钠水解:碳酸钠在水中能发生碱性水解,使土壤呈强碱性反应。

3交换性钠的水解:交换性钠水解呈强碱反应,是碱化土的重要特征。

影响土壤碱化的因素:

1气候因素:土壤具有明显的季节性积盐和脱盐频繁交替的特点

2生物因素

3母质影响:母质是碱性物质的来源,风化体含较多的碱性成分。

注:从六大成土因素来回答:

影响土壤酸碱性的因素:

1气候影响:南方多雨,盐基淋失强烈,土壤盐基饱和度低,土壤多呈酸性。

西北雨量较少,盐基淋失较弱,盐基饱和度较高,土壤多呈现碱性。

2母质影响

3自然植被:一些耐盐、耐碱植物会选择性的富集盐基离子,其残体分解后会促进土壤碱性的发展。

4地形:地形高土壤盐基淋失较强烈,pH可能较低。低洼处土壤多接受盐基的淀积,pH可能较高。

5人类耕作活动

6盐基饱和度:一定范围内,盐基饱和度越高,pH越高

7氧化还原条件

土壤酸度的强度指标

土壤pH:土壤溶液中氢离子浓度的负对数

石灰位:将氢离子和钙离子数量联系起来。石灰位作为土壤酸度的强度指标,既反映土壤氢离子状况,更反映土壤钙离子有效度,更能全面反应土壤盐基饱和度和土壤酸度状况。

土壤酸的数量指标

土壤胶体上吸附的氢、铝离子所反映的潜性酸量,可用交换性酸或水解性度表示。

交换性酸:用中性溶液KCl或BaCl浸提,土壤胶体表面吸附的铝离子和氢离子大部分均被浸提剂的阳离子交换进入溶液,浸出液中的氢离子及铝离子水解产生的氢离子,用标准碱液滴定,根据消耗的碱量换算,为交换性氢和交换性铝的总量,即为交换性酸量。(包含活性酸)交换性酸量在进行调节土壤酸度,估算石灰用量,有重要参考价值。

水解性酸:用弱酸强碱的溶液浸提,再用NaOH标准液滴定浸出液,根据所消耗的NaOH的用量换算为土壤酸量。这样测的的潜性酸的量称为土壤的水解性酸。

注:交换程度比之用中性盐类溶液更为完全,土壤吸附性氢、铝离子的绝大部分可被钠离子交换。

水化氧化物表面的羟基和腐殖质的某些功能团上部分氢离子解离而进入浸提液被中和。

土壤总酸度=活性酸+潜性酸度。活性酸是土壤酸度的起源,代表土壤酸度的强度;潜在酸是土壤酸度的主体,代表土壤酸度的容量。

总碱度:是指土壤溶液或灌溉水中碳酸根、重碳酸根的总量

碱化度(钠碱化度,ESP)指土壤胶体吸附的交换性钠离子占阳离子交换量的百分率。

影响土壤酸度的因素

1盐基饱和度。盐基饱和度与土壤酸度关系密切,在一定范围内土壤pH随盐基饱和度增加而增高。

2土壤空气中的二氧化碳的分压

3土壤水分含量。土壤含水量影响离子在固相液相之间的分配,CaCO3等盐类溶解和解离,以及胶粒上吸附性离子的解离度,从而影响土壤pH。一般随土壤含水量的增加土壤pH一般随土壤含水量增加有升高的趋势。

4土壤氧化还原条件。淹水或施有机肥促进土壤还原的发展,对土壤pH有明显的影响。酸性土淹水后pH升高的原因主要是由于嫌气条件下形成的还原性碳酸铁、锰呈碱性,溶解度较大。硫化物可氧化为硫酸,使土壤pH值急剧下降。

土壤氧化还原反应

主要氧化剂是大气中的氧

土壤氧化还原体系的特点:

1土壤中氧化还原体系有无机体系和有机体系两类

2土壤中氧化还原反应虽有纯化学反应,但很大程度上是由生物参与的。

3土壤是一个不均匀的多相体系

4土壤中氧化还原平衡经常变动,不同时间、空间,不同耕作管理措施等都会改变Eh值

土壤氧化还原指标

土壤氧化还原电位:土壤溶液中氧化物质和还原物质的相对比例,决定着土壤的氧化还原状况。氧化态与还原态的比值越高,Eh值越高。

电子活度负对数:酸碱反应是质子在物质间的传递过程,氧化还原反应则是电子传递过程。在氧化体系中pe是正值,氧化性越大则pe值越大,还原体系中是负值,还原性越强,pe 的负值也越大。

土壤的氧化还原反应总有氢离子参与,质子活度对氧化还原平衡有直接的影响,同一氧化还原反应在碱性溶液中比在酸性溶液中容易进行。

影响土壤氧化还原的因素:

1土壤的通气性。通气性好,氧含量高,Eh高。

2微生物活动。微生物活动越旺盛,耗氧越多,使土壤溶液中的氧气分压减低,Eh降低

3易分解有机质的含量。有机质分解是耗氧的过程,在一定通气条件下,土壤中易分解的有机质越多,耗氧也越多,Eh就越低。

(4土壤中易氧化和还原的无机物的含量。土壤中氧化体和硝酸盐含量高时,可使Eh值下降得较慢。)

5植物根系的代谢作用。根系呼吸耗氧,植物根系一部分分泌物直接或间接参与根际土壤的氧化还原反应

6土壤pH值。Eh随pH增加而降低

土壤缓冲性

把酸或酸性盐、碱或碱性盐施入土壤后,在一定限度内,土壤具有抵抗这些物质改变土壤酸碱反应的能力,叫做土壤的缓冲性能或缓冲作用。广义:土壤是一个巨大、复杂的缓冲体系,对营养元素、污染物质、氧化还原等同样具有缓冲性,具有抗衡外界环境变化的能力。

土壤酸、碱缓冲作用的原理

1土壤溶液中弱酸或弱碱体系,如碳酸、硅酸、磷酸、腐殖酸及其盐类

2交换性阳离子体系

交换量愈大,缓冲性越强。不同的盐基饱和度表现出的酸碱缓冲能力是不同的

3活性铝体系

土壤Ph<4铝离子周围水分子解离出氢离子,中和加入OH-,土壤Ph>5,铝离子形成Al(OH)沉淀,失去缓冲能力。

3

4有机酸体系

土壤酸、碱缓冲容量和滴定曲线

土壤酸碱性缓冲容量:指改变一个单位pH所需要的酸或碱量,是土壤酸碱缓冲能力强弱的土壤指标

滴定曲线:在土壤悬液中连续加入标准酸或碱液,测定pH的变化,以纵坐标表示pH,横坐标表示加的酸或碱量,绘制滴定曲线,又称缓冲曲线。

影响土壤酸碱缓冲性的因素;

1土壤无机胶体:土壤的无机胶体种类不同,其阳离子交换量不同,缓冲性不同。土壤中阳离子交换量越大,缓冲性也越强。

2土壤质地:缓冲性:粘土>壤土>砂土,粘粒含量高,相应的阳离子交换量亦大

3土壤有机质:土壤有机质含量高,缓冲性强。腐殖质含有大量负电荷,对阳离子贡献大

土壤氧化还原缓冲性

土壤氧化还原缓冲性:指当少量的氧化剂和还原剂加入土壤后,其氧化还原电位不会发生剧烈变化,即土壤所具有的抗衡Eh变化的能力

生物对土壤酸碱性和氧化还原状况的适应性

1植物适宜的酸碱度

植物对土壤酸碱性的要求是长期自然选择的结果,大多数植物适宜生长在中性至微碱性的土壤上。

2土壤Eh值范围与植物生长

不同作物对Eh有不同的适应范围,特别是靠近根圈微域的Eh值变化对作物生长会产生直接影响。旱作植物在植物根域内的土壤Eh值教较根域外的低,水稻相反。

3土壤pH和Eh与土壤微生物活性

土壤细菌和放线菌适宜在中性和微碱性环境生活。真菌可在所有pH范围内活动,在强酸性土壤中以真菌占优势。

Eh值越大,微生物活性越强

土壤酸碱性对养分有效性的影响

土壤酸碱性是土壤重要的化学性质,对土壤微生物的活性、对矿物质和有机质的分解起重要作用,影响土壤养分元素的释放、固定和迁移等。植物必要营养元素的生物有效性与土壤pH的关系如下:

1土壤pH6.5左右,各种各种营养元素的有效度都较高,并适宜大多数作物生长

2pH在微酸性、中性、碱性土壤中,N、S、K的有效度较高

3pH在6-7的土壤中,磷的有效度最高。pH<5时,因土壤中活性铁、铝增加,易形成磷酸铁、铝沉淀。而在pH>7时,易形成磷酸钙沉淀。

4在强酸和强碱土壤中,有效性钙镁的含量低,在pH6.5-8.5的土壤中,有效度较高

5铁、锰、铜、锌等微量元素有效度,在酸性和强酸性土壤中高,在pH>7的土壤中,活性铁、锰、铜、锌离子明显下降,并常常出现铁、锰离子的供应不足。

6在强酸性土壤中,钼的有效度低。pH>6时,有效度增加。硼在pH6-7和pH>8.5碱性土壤中,有效度较高。

土壤氧化还原状况对养分有效性的影响

氧化还原状况主要影响土壤中变价元素的生物有效性。在还原条件下,高价铁、锰还原成溶解度较高的低价化合物,对植物的有效性增高。氧化还原状况影响养分存在形态,进而影响它的有效性。当Eh>480mV时以硝态氮为主,适合旱作物的吸收。当Eh<220mV时,以铵态氮为主,适合水稻作物的吸收。但易发生反硝化作用,造成氮的损失。

强酸性土壤的铝、锰胁迫与毒害

在Ph<5.5的强酸性土壤中,矿物结构中和有机络合态锰铝等均易被活化,交换性铝可占阳离子交换量的90%以上,易产生游离铝离子,施用石灰可排除铝害和锰害。

水田土壤大量施用绿肥等有机肥常常发生硫化氢的过量积累,使稻根发黑,土壤发臭变黑,影响地上部分的生长发育。

土壤酸度的调节

土壤酸度通常施用石灰或石灰粉来调节。以Ca2+代替土壤胶体吸附的交换性氢和铝离子,提高土壤盐基饱和度。

影响石灰用量的因素有:

1土壤潜性酸和pH、有机质含量、盐基饱和度、土壤质地等土壤性质。

2作物对酸碱度的适应性

3石灰种类和施用方法等。中和活性酸石灰用量较少,潜性酸石灰用量很大。

土壤酸碱度知识

土壤酸碱度知识 各种作物的正常生长需要适宜的酸碱条件,同时,土壤的酸碱度直接影响土壤养分的有效化,对作物的生长发育有重要的影响。因此,于克勇老师将常见作物适宜的酸碱度列于表中,以便参考。 名称pH名称pH名称pH 农作物果树类蔬菜类 水稻 6.0~7.5 苹果 5.4~6.8 马铃薯 5.0~6.0 小麦 6.0~7.5 梨 5.6~7.2 西瓜 5.0~6.8 大麦 6.5~7.8 桃 5.2~6.8 生姜 5.0~7.0 玉米 6.0~7.5 葡萄 5.8~7.5 大蒜 5.5~6.5 谷子 6.0~7.0 板栗 5.6~6.5 韭菜 5.5~6.5 荞麦 5.0~7.5 枣 5.2~8.0 百合 5.5~6.5 甘薯 5.0~6.0 柑橘 5.5~6.5 花椰菜 5.5~6.8 棉花 6.0~8.0 橙 6.0~7.0 番茄 5.5~6.8 亚麻 6.0~7.0 柿 5.0~6.8 茄子 5.5~6.8 油菜 6.0~7.5 无花果7.2~7.5 黄瓜 5.5~6.8 花生 5.5~7.0 樱桃 6.5~7.5 南瓜 5.5~6.8 芝麻 6.0~7.0 山楂 6.0~7.5 甘蓝 5.5~6.8 大豆 6.5~7.0 杨梅 4.0~5.0 甜椒 5.5~6.8 蚕豆 6.0~8.0 杏 6.8~7.9 胡萝卜 5.5~6.8 向日葵 6.0~7.5 菠萝 4.5~5.5 芋艿 5.5~7.0 甜菜7.0~8.0 香蕉 6.0~6.5 草莓 5.8~6.5 甘蔗 6.0~7.5 油梨 6.0~7.0 莴苣 6.0左右 烟草 5.5~7.0 芒果 5.5~7.5 洋葱 6.0~6.8 茶 5.0~5.5 椰子7.0左右豌豆 6.0~6.8 桑 6.0~7.5 荔枝 6.0~7.5 菠菜 6.0~6.8 核桃 6.5~7.5 大白菜 6.0~6.8 龙眼 5.4~6.5 甜瓜 6.0~6.8 香榧 5.0~6.5 毛豆 6.0~6.8 橄榄 4.5~5.0 芹菜 6.0~7.5 猕猴桃 4.9~6.7 豇豆 6.2~7.0 枇杷 6.6~7.0 菜豆 6.2~7.0 银杏 6.5~7.5 芦笋 6.5~7.0 腰果 6.0~7.5 黄花菜 6.5~7.5 7.0左右 大葱

SnO_2纳米棒的氧化还原特性

2010 Chinese Journal of Catalysis Vol. 31 No. 1 文章编号: 0253-9837(2010)01-0044-05 DOI : 10.3724/SP.J.1088.2010.90230 研究论文: 44~48 收稿日期: 2009-03-04. 联系人: 赵鹤云. Tel: (0871)5032331; Fax: (0871)5153832; E-mail: zhao_heyun999@https://www.doczj.com/doc/e014403384.html, 基金来源: 云南省科技厅应用基础研究项目 (2007E173M); 云南省教育厅自然科学重点研究项目 (07Z11021); 云南大学自然科学研究项目 (2007JN001). SnO 2 纳米棒的氧化还原特性 赵鹤云 1,2, 赵忠泽 3, 赵义芬 1, 柳清菊 1,2 1 云南大学材料科学与工程系, 云南昆明 650091 2 云南大学云南省高校纳米材料与技术重点实验室, 云南昆明 650091 3 云南师范大学商学院, 云南昆明 650106 摘要:利用室温固相反应在 NaCl-KCl 熔盐介质中, 通过焙烧含 SnO 2 纳米颗粒前驱体合成了 SnO 2 纳米棒, 并采用 X 射线衍射、扫描电镜、透射电镜、选区电子衍射和 X 射线光电子能谱对 SnO 2 纳米棒进行了表征. 结果表明, SnO 2 纳米棒是表面光滑、结晶完整的金红石结构单晶体, 直径为 10~20 nm, 长度为几百纳米到几个微米. 程序升温还原结果表明, SnO 2 纳米棒具有较好的氧化还原性能和催化活性. 探讨了 SnO 2 纳米棒的氧化还原机理. 关键词:二氧化锡; 纳米棒; 程序升温还原; 氧化还原特性; 催化活性; 氧化还原机理 中图分类号:O643 文献标识码:A The Redox Properties of SnO 2 Nanorods ZHAO Heyun 1,2,*, ZHAO Zhongze 3, ZHAO Yifen 1, LIU Qingju 1,2 1 Department of Materials Science and Engineering, Yunnan University, Kunming 650091, Yunnan, China 2 Yunnan Key Laboratory of Nanomaterials and Nanotechnology, Yunnan University, Kunming 650091, Yunnan, China 3 Business School, Yunnan Normal University, Kunming 650106, Yunnan, China Abstract: SnO 2 nanorods were successfully synthesized in molten NaCl-KCl salt through calcination of SnO 2 nanoparticles precursor pre-pared by solid state reaction at room temperature. The structure and morpho1ogy of SnO 2 nanorods were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, and X-ray photoelectron spectroscopy. The results showed that the SnO 2 nanorods with 10–20 nm diameter and several micrometers length were rutile structure. The results of H 2 temperature-programmed reduction demonstrated that the SnO 2 nanorods had good redox performance. The redox mechanism was discussed in detail. Key words: tin dioxide; nanorod; temperature-programmed reduction; redox property; catalytic activity; redox mechanism 由于纳米线和纳米棒等一维纳米材料的维度降低和结构特征尺寸减小, 量子效应、库仑阻塞效应以及多体关联和非线性光学效应越来越明显, 呈现出不同于传统材料的电、磁、光、热等物化特性, 因而在催化剂、光电材料、复合材料和传感器等领域有广阔的应用前景[1~4]. SnO 2 是一种重要的 n 型半导体材料, 可用作导电材料、传感元件材料、半导体元件材料、电极材料以及太阳能电池材料、薄膜电阻器材料、光电子器件材料等[5~8]. SnO 2 还是一种优良 的催化材料. 刘赵穹等[9~11]发现, SnO 2-TiO 2 固溶体对以 CO 为还原剂同时还原 SO 2 和 NO (SRSN) 反应具有较好的催化性能, 当 SnO 2 含量为 50% 时催化剂的活性和选择性最高. SnO 2 可以在低温催化 CO 完全氧化[12]、臭氧化[13]、富马酸基化以及甲基丙烯醛氢转移[14]等反应, V 2O 5-SnO 2 的还原温度比纯 V 2O 5 明显降低[15], 并且 SnO 2 因具有很好的水热稳定性可应用于 NO 选择催化还原 (SCR) 反应. SnO 2/TiO 2 复合半导体的光催化效率比纯 TiO 2 高一

Ce3+Ce4+氧化还原反应的循环伏安

Ce 3+/Ce 4+氧化还原反应的循环伏安测试实验 铈(Ce )是我国较丰富的稀土资源之一。Ce 在溶液中以Ce 3+、Ce 4+ 等不同价态的离子存在。Ce 3+/Ce 4+构成氧化还原对,其标准还原电位较高(E= 1.715 V )。从热力学的角度出发,铈的可溶盐的溶液可以作为高能氧化还原电池的正极材料。 有两个因素限制了铈在这方面的开发应用:(1)Ce 在水溶液中的溶解度较低;(2)与其相匹配的负极电解液的确定。对此,近来在国外已取得了一些突破。用甲基磺酸(MSA )配制铈的电解液已获得较为满意的溶解度。此外,用Zn ,Cr 2+,V 2+,Ti 3+ 作负极材料也显示可行。从我国的资源利用及技术可行性出发,尽快开展以铈为正极材料的研究开发具有重要的意义。 循环伏安法是一种经典的电化学研究方法, 其工作原理涉及电化学领域多方面的较为成熟的理论。这种测试对设备没有特殊要求,且实验操作简便。.测试结果可以提供有关反应机理和反应动力学的丰富的信息。 在本实验中,学生将在教师的指导下,运用循环伏安等方法研究Ce 3+/Ce 4+在电极上的氧化还原反应机理和动力学。通过实验工作,学生有机会运用电化学的基本理论知识,处理实际问题,并能亲身领略化学电源的前沿科研课题。 一、实验目的与要求 在第一部分实验中,学生运用循环伏安方法对快速、可逆反应: --+ N )(([ ?e ])C III Fe ])[Fe(II)(CN 36-46 进行测定,并作数据处理。初步掌握循环伏安方法的运用,从实验结果获取有关反应行为的信息, 巩固有关电极反应可逆性、反应速率、反应动力学等电化学基本概念。 在第二部分实验中,学生运用循环伏安方法研究Ce 3+/Ce 4+在电极上反应的动力学和机理;组装并测试电池的性能。初步掌握氧化还原电池的基本概念及结构,电池基本性能的测试方法。了解氧化还原概念与结构,以及国内外在这方面的最新进展。 要求: ① 学生复习电化学,循环伏安法的基本原理; ② 上网或通过其他途径,查阅有关稀土铈的物理化学性质,资源及应用现状; ③ 了解氧化还原电池的基本原理、基本结构以及研究开发的最新进展。 二、实验原理及步骤 在一个典型的循环伏安实验中,工作电极一般为浸在溶液中的固定电极。为了尽可能降低欧姆电阻,最好采用三电极系统。在三电极系统中,电流通过工作电极和对电极。工作电极电位是以一个分开的参比电极(如饱和甘汞电极,SCE )为基准的相对电位。在循环伏安测试实验中,工作电极的电位以10 mV/s 到 200 mV/s 的扫描速度随时间线性变化(Fig.1a),在此同时记录在不同电位下的电流(Fig.1b)。.

氧化还原电位(ORP)的重要作用

氧化还原电位(ORP)的重要作用 氧化还原电位(ORP)的重要作用 大家逐渐认识到氧化还原电位在水产养殖上的意义,可是这个指标对于学过(水)化学的来说,理解起来都有点费力气,更不用说咱们大多数养殖户朋友了。技术员到塘口跟养殖户说:咱们这个药是氧化型的药,能提高水体氧化还原电位,很不错!养殖户听的一头雾水,而实际上很多技术人员对氧化还原电位本身也不是很清楚。 1.那么什么是氧化还原电位 在水中,每种物质都有独立的氧化还原特性,可以简单理解为在微观上,每一种不同物质都有一定的氧化还原能力,这些氧化还原性不同的物质能够相互影响,最终构成一定的宏观氧化还原性。电位为正表示溶液显示出一定的氧化性,为负则表示溶液显示出一定的还原性。 2.哪些是氧化物质、那些是还原物质 ⑴水体中常见处于氧化态(直接点就是溶氧充足的状态)的物质有: O2(氧气当然是);硫酸根、硝酸根、磷酸根和铁离子、锰离子、铜离子、锌离子等; ⑵常见处于还原态(简单说就是缺氧状态存在的)的物质: 氯离子、氮气、氨氮、亚硝酸盐、硫化氢、甲烷、亚铁离子、多数有机化合物(包括我们的残饵、粪便、池底有机质淤泥)等。 氮在水体中存在的形式:一般未受污染的天然水域中,由于溶氧丰富,氮主要以硝酸根存在;在养殖池水中氮通常有4种存在形态:硝酸根、亚硝酸盐、氮气、氨氮。 3.为什么氧化还原电位很重要氧化还原电位怎么测 海水与淡水体系氧化还原电位实测值通常约为(400mv)(V 伏特,氧化还原电位的单位),好氧微生物一般生活在+100mV以上,以+300mV~+400mV为最适。 处于氧化态的物质在适当的条件(缺氧)下可以被还原,例如无毒的硝酸盐被还原成有毒的亚硝酸盐和氨氮;同样处于还原态的物质在适当条件(富氧)下被氧化,例如硫化氢被氧化成硫酸根。 随着氧化还原电的降低,出现铁锰呼吸,干塘晒塘时被氧化成三价的铁,此时逐渐被还原成二价铁,这个过程耗氧产酸,所以底泥pH值下降。氧化还原电位继续降低,当氧化还原电位环境为-200~-250mV,专性厌氧微生物出现生长,硫酸还原菌进行硫呼吸,原本存在的硫酸根被还原成硫化氢,硫化氢跟亚铁离子、锰离子反应,生成FeS、MnS,土壤变黑(见图2)。当氧化还原电位环境为-300~-400mV,底泥处于极度缺氧状况,专性厌氧产甲烷菌即开始分解底泥中的有机质产生甲烷。淤泥厚的池塘用竹竿捅了后水面冒气泡,这种气泡即是底泥产生的

实验一--土壤酸碱性测定

实验一土壤酸碱性测定 一、实验目标: 1、初步学会土壤取样测试的方法。 2、学会用PH试纸测定土壤酸碱度。 3、了解保护土壤资源的重要性,提出改良土壤酸碱性的建议。 二、实验器材: 木棍、废报纸、玻璃棒、试管、蒸馏水、PH试纸、窗纱、布袋。 三、实验过程: 1、选取有代表性的地块,如山坡、大田、森林、海洋、菜地等,确定3-4 个地块取样。 2、在取样地块上按一定间隔确定取样点位置,确定5—6个位置。(注意: 每个取样点要去掉表面的石块和动植物残体,取0—20厘米范围内的土壤各20克) 3、取1克左右土样放入试管中,加5毫升蒸馏水,震荡30秒后静置。 待土壤微粒下沉后,用玻璃棒蘸取上层清夜,滴在PH试纸上,将PH试纸呈现的颜色与标准比色卡比色,记下PH数值。 讨论: 1、当地主要农作物和常见乔木生长的土壤酸碱性如何?查阅资料,了解这样的酸碱性是否适宜这类植物的生长? 2、提出改良当地土壤酸碱性的建议。 实验二碱和盐的性质

一、实验目标: 1.用已学的碱的一些共性知识,指导对氢氧化钙性质的探究。 2.通过实验认识常见盐的一些性质。 3.学习含SO42-或含CL-的化合物的检验方法。 4.巩固试管和滴管的操作方法。 二、实验器材: 试管、玻璃棒、胶头滴管、多孔瓷板、澄清石灰水、石蕊试液、酚酞试液、稀硫酸、稀盐酸、稀硝酸、硫酸铜溶液、氯化铁溶液蒸馏水等。 三、实验过程: 选取有代表性的地块,如山坡、大田、森林、海洋、菜地等,确定3-4个地块取样。 三、在取样地块上按一定间隔确定取样点位置,确定5—6个位置。(注意: 每个取样点要去掉表面的石块和动植物残体,取0—20厘米范围内的土壤各20克) 四、取1克左右土样放入试管中,加5毫升蒸馏水,震荡30秒后静置。 待土壤微粒下沉后,用玻璃棒蘸取上层清夜,滴在PH试纸上,将PH试纸呈现的颜色与标准比色卡比色,记下PH数值。 讨论: 3、当地主要农作物和常见乔木生长的土壤酸碱性如何?查阅资料,了解 这样的酸碱性是否适宜这类植物的生长? 4、提出改良当地土壤酸碱性的建议。

氧化还原电位的重要作用

氧化还原电位(ORP)的重要作用 大家逐渐认识到氧化还原电位在水产养殖上的意义,可是这个指标对于学过(水)化学的来说,理解起来都有点费力气,更不用说咱们大多数养殖户朋友了。技术员到塘口跟养殖户说:咱们这个药是氧化型的药,能提高水体氧化还原电位,很不错!养殖户听的一头雾水,而实际上很多技术人员对氧化还原电位本身也不是很清楚。 1.那么什么是氧化还原电位? 在水中,每种物质都有独立的氧化还原特性,可以简单理解为在微观上,每一种不同物质都有一定的氧化还原能力,这些氧化还原性不同的物质能够相互影响,最终构成一定的宏观氧化还原性。电位为正表示溶液显示出一定的氧化性,为负则表示溶液显示出一定的还原性。 2.哪些是氧化物质、那些是还原物质? ⑴水体中常见处于氧化态(直接点就是溶氧充足的状态)的物质有: O2(氧气当然是);硫酸根、硝酸根、磷酸根和铁离子、锰离子、铜离子、锌离子等; ⑵常见处于还原态(简单说就是缺氧状态存在的)的物质: 氯离子、氮气、氨氮、亚硝酸盐、硫化氢、甲烷、亚铁离子、多数有机化合物(包括我们的残饵、粪便、池底有机质淤泥)等。 氮在水体中存在的形式:一般未受污染的天然水域中,由于溶氧丰富,氮主要以硝酸根存在;在养殖池水中氮通常有4种存在形态:硝酸根、亚硝酸盐、氮气、氨氮。 3.为什么氧化还原电位很重要?氧化还原电位怎么测? 海水与淡水体系氧化还原电位实测值通常约为(400mv)(V 伏特,氧化还原电位的单位),好氧微生物一般生活在+100mV以上,以+300mV~+400mV为最适。 处于氧化态的物质在适当的条件(缺氧)下可以被还原,例如无毒的硝酸盐被还原成有毒的亚硝酸盐和氨氮;同样处于还原态的物质在适当条件(富氧)下被氧化,例如硫化氢被氧化成硫酸根。 随着氧化还原电的降低,出现铁锰呼吸,干塘晒塘时被氧化成三价的铁,此时逐渐被还原成二价铁,这个过程耗氧产酸,所以底泥pH值下降。氧化还原电位继续降低,当氧化还原电位环境为-200~-250mV,专性厌氧微生物出现生长,硫酸还原菌进行硫呼吸,原本存在的硫

土壤学复习资料(4)-土壤酸碱性和缓冲性

第七章土壤酸碱性和缓冲性 主要教学目标:主要掌握土壤溶液的酸反应。它是土壤学最基本的内容,在生产和科研中应用十分广泛。从内容来看与第六章结合非常紧密。 主要内容 第一节土壤酸碱性 第二节土壤酸碱性调节 第三节土壤缓冲性 第一节土壤酸碱性 一、土壤酸度类型及来源 1、活性酸 土壤中的水分不是纯净的,含有各种可溶的有机、无机成分,有离子态、分子态,还有胶体态的,因此土壤中的水实际上是一种极为稀薄的溶液。盐碱土中土壤溶液的浓度比较高。由土壤溶液中游离的H+引起的,常用pH值表示,即溶液中氢离子浓度的负对数。土壤酸碱性主要根据活性酸划分:pH在6.6~7.4之间为中性。我国土壤pH一般在4—9之间,在地理分布上由南向北pH逐渐减小,大致以长江为界。长江以南的土壤为酸性和强酸性,长江以北的土壤多为中性或碱性,少数为强碱性。 2、潜性酸 土壤胶体上吸附的氢离子或铝离子,进入溶液后才会显示出酸性,称之为潜性酸,常用1000克烘干土中氢离子的厘摩尔数表示 潜性酸可分为两类: (1)代换性酸:用过量中性盐(氯化钾、氯化钠等)溶液,与土壤胶体发生交换作用,土壤胶体表面的氢离子或铝离子被侵提剂的阳离子所交换,使溶液的酸性增加。测定溶液中氢离子的浓度即得交换性酸的数量。 (2)水解性酸:用过量强碱弱酸盐(CH3COONa)浸提土壤,胶体上的氢离子或铝离子释放到溶液中所表现出来的酸性。CH3COONa水解产生NaOH,pH值可达8.5,Na+可以把绝大部分的代换性的氢离子和铝离子代换下来,从而形成醋酸,滴定溶液中醋酸的总量即得水解性酸度。 交换性酸是水解性酸的一部分,水解能置换出更多的氢离子。 要改变土壤的酸性程度,就必须中和溶液中和胶体上的全部交换性氢离子和铝离子。在酸性土壤改良时,可根据水解性酸来计算所要施用的石灰的量。 3、土壤酸的来源 (1)土壤中H+的来源。由CO2引起(土壤空气、有机质分解、植物根系和微生物呼吸);土壤有机体的分解产生有机酸,硫化细菌和硝化细菌还可产生硫酸和硝酸;生理酸性肥料(硫酸铵、硫酸钾等)。 (2)气候对土壤酸化的影响。在多雨潮湿地带,盐基离子被淋失,溶液中的氢离子进入胶体取代盐基离子,导致氢离子积累在土壤胶体上。东北地区的酸性土是在寒冷多雨的气候条件下产生的。北和西北地区的降雨量少,淋溶作用弱,导致盐基积累,土壤大部分为石灰性、碱性或中性土壤。 (3)铝离子的来源。粘土矿物铝氧层中的铝,在较强的酸性条件下释放出来,进入到土壤胶体表面成为代换性的铝离子,其数量比氢离子数量大得多,土壤表现为潜性酸。长江以南的酸性土壤主要是由于铝离子引起的。

高中化学 氧化还原反应配平电子的得失过程本质和特征

氧化还原反应的本质和特征 氧化还原反应的定义 ?氧化还原反应: 有电子转移(得失或偏移)的反应;(无电子转移(得失或偏移)的反应为非氧化还原反应) 反应历程: 氧化还原反应前后,元素的氧化数发生变化。根据氧化数的升高或降低,可以将氧化还原反应拆分成两个半反应:氧化数升高的半反应,称为氧化反应;氧化数降低的反应,称为还原反应。氧化反应与还原反应是相互依存的,不能独立存在,它们共同组成氧化还原反应。 ?氧化还原反应中存在以下一般规律: 强弱律:氧化性:氧化剂>氧化产物; 还原性:还原剂>还原产物。 价态律:元素处于最高价态,只具有氧化性;元素处于最低价态,只具有还原性; 处于中间价态,既具氧化性,又具有还原性。 转化律:同种元素不同价态间发生归中反应时,元素的氧化数只接近而不交叉,最多达到同种价态。 优先律:对于同一氧化剂,当存在多种还原剂时,通常先和还原性最强的还原剂反应。守恒律:氧化剂得到电子的数目等于还原剂失去电子的数目。

氧化还原性的强弱判定: 物质的氧化性是指物质得电子的能力,还原性是指物质失电子的能力。物质氧化性、还原性的强弱取决于物质得失电子的能力(与得失电子的数量无关)。从方程式与元素性质的角度,氧化性与还原性的有无与强弱可用以下几点判定: (1)从元素所处的价态考虑,可初步分析物质所具备的性质(无法分析其强 弱)。最高价态——只有氧化性,如H2SO4、KMnO4中的S、Mn元素;最低价态,只有还原性,如Cl-、S2-等;中间价态——既有氧化性又有还原性,如Fe、S、SO2等。 (2)根据氧化还原的方向判断:氧化性:氧化剂>氧化产物;还原性:还原剂>还原产物。 (3)根据反应条件判断:当不同的氧化剂与同一种还原剂反应时,如氧化产物中元素的价态相同,可根据反应条件的高、低进行判断,如是否需要加热,是否需要酸性条件,浓度大小等等。 ?电子的得失过程: 其过程用核外电子排布变化情况可表示为:

有机化学的氧化还原反应

有机化学氧化还原反应总结 一、氧化反应:有机物分子中加入O 原子或脱去H 原子的反应。 常见的氧化反应: ①醇的氧化 醇→醛 ②醛的氧化 醛→酸 ③有机物的燃烧氧化、与酸性高锰酸钾溶液的强氧化剂氧化。 ④醛类及其含醛基的有机物与新制Cu (OH )2悬浊液、银氨溶液的反应 常见的氧化剂有氧气、酸性高锰酸钾、二氧化锰、臭氧、银氨溶液和新制Cu (OH )2悬浊液 a. 能被酸性KMnO 4氧化的:烯、炔、二烯、油脂(含C==C 的)苯的同系物、酚、醛、葡萄糖等。 b. 能被银氨溶液或新制备的Cu(OH)2悬浊液氧化的:醛类、甲酸及甲酸酯、葡萄糖、麦芽糖。 1.高锰酸钾氧化 a.在稀、冷KMnO4(中性或碱性)溶液中生成邻二醇 b.在酸性高锰酸钾溶液中,继续氧化,双键位置发生断裂, 得到酮和羧酸的混合物,如: 炔烃与氧化剂(KMnO4或O3)反应,产物均为羧酸或CO2 2.臭氧化反应: CHR=CR 'R "+O3→RCH=O+R’C=OR” 3.醛的氧化:由于醛的羰基碳上有一个氢原子,所以醛比酮容易氧化,使用弱的氧化剂都能使醛氧化。利用两者氧化性能的区别,可以很迅速的鉴别醛或酮: a 费林试剂(Fehling):以酒石酸盐为络合剂的碱性氢氧化铜溶液(绿色),能与醛作用,铜被还原成红色的氧化亚铜沉淀。 坎尼扎罗(Cannizzaro )反应 不含 氢原子的醛在浓碱存在下可以发生歧化反应,即两个分子醛相互作用,其中一分子醛还原成醇,一个氧化成酸: CH 3 CH 2C=CHCH 3 CH 3 CH 3CH 2CCH 3O CH 3 COOH RCHO Ag(NH 3)2RCOONH 4O H 2NH 3HCHO HCOONa HCH 2OH

试述土壤酸碱性类型及其影响因素

1.试述土壤酸碱性类型及其影响因素。如何调节土壤的酸碱性。 答:酸性类型:(1)活性酸(2)潜在酸影响因素:(一)土壤胶体类型和性质①土壤胶体的极限PH值②土壤胶体上酸基的解离常数K 对PH值的影响(二)土壤盐基饱和度(三)土壤空气中的CO2的分压(四)土壤水分含量(五)土壤氧化还原条件酸性的调节:通常以施用石灰或石灰粉来调节改良。沿海地区可以用蚌壳灰、草木灰,它们既是良好的钾肥,同时也起中和酸性的作用;沿海的咸酸田在采用淡水洗盐的同时,也能把一些酸性物质除掉。土壤碱性的调节:(1)施用有机肥料(2)施用硫磺、硫化铁及废硫酸或黑矾(FeSO4)等。(3)对碱化土、碱土,可施用石膏、硅酸钙。 2.试述土壤氧化还原状况与植物生长的关系?如何调节土壤氧化还原状况? 答:(一)与植物生长的关系:旱地土壤的Eh值在400~700m V之间,多数作物可以正常发育,过高或过低对植物营养不利。水田土壤Eh 值变动较大,在排水种植旱作物期间,其Eh值可达500m V以上,在淹水期间,可低至-150m V以下。调节:以水稻来讲,水稻土的氧化还原的调节,通常通过排灌和施用有机肥等来实现的,在强氧化条件下,要解决水源问题,并增施有机肥料。反之,在强还原条件的土壤,则应采取开沟排水,降低地下水位等措施。对于一般水稻土,主要通过施用有机肥料和适当灌水,使土壤还原条件适度发展,然后根据水稻生长状况和土壤性质,采用排水、烤田等措施。 3.土壤有机质对土壤肥力的影响及其调控的基本途径与措施。 答:对土壤肥力的影响:土壤有机质可增强土壤的保肥性。调控的途径:(一)增加土壤有机质的途径(1)种植绿肥:种植绿肥是一个用来培肥土壤的有效措施。(2)增施有机肥料:表现在两个方面,一是改变或改善土壤的物理、化学和生物学性状;二是扩大土壤养分库,尤其是土壤有效养分库,从而改善土壤养分状况和提高对植物所需养分的供给力。(3)秸秆还田:一般是指将作物收获的秸秆切碎,不经堆腐直接翻入土壤。(二)调节土壤有机质的分解速率 4.试述土壤缓冲作用的机理及其影响机理及其影响因素。 答:缓冲作用的机理(1)土壤胶体的阳离子代换作用是土壤产生缓冲性的主要原因(2)土壤溶液中的弱酸及其盐类的存在(3)土壤中两性物质的存在(4)酸性土壤中铝离子的缓冲作用影响因素:(1)土壤无机胶体:土壤的无机胶体种类不同,其阳离子交换量不同,缓冲性不同。土壤胶体的阳离子交换量愈大,缓冲性也愈强。(2)土壤质地:从不同的土壤质地来看,黏土>壤土>砂土,这是因为前者黏粒含量高,相应的阳离子的交换量亦大。(3)土壤有机质:土壤有机质的含量虽仅占土壤的百分之几,但腐殖质含有大量的负电荷,对阳离子的交换量贡献大。通常表土的有机质含量较底土的高,缓冲性也是表土较底土强。 5.试述土壤水、气、热与植物生长及土壤肥力的关系。 答:(一)土壤水分与植物生长的关系(1)土壤水分是植物正常生命活动的重要因素(2)作物发芽出苗对水分的需求:土壤水分是作物发芽出苗的必需条件(3)不同作物对水分的要求:作物种类不同对水分的要求是不同的(4)作物不同生育期对土壤水分的需求(二)土壤水分与土壤肥力的关系(1)土壤水分对土壤形成有极其重要的作用(2)土壤水分影响土壤的养分状况(3)土壤水分直接影响土壤空气和热量状况(4)土壤水分影响土壤的物理机械性和耕性(三)土壤空气与植物生长及土壤肥力的关系(1)影响种子萌发(2)影响根系的生长发育和吸收功能(3)影响生物活性和养分状况(4)影响植物生长的土壤环境状况(四)土壤温度与植物生长发育及土壤肥力的关系(1)土温影响植物种子发芽出苗(2)土温影响植物根系生长(3)土温影响植物的生理过程(4)土温对土壤肥力的影响6.试述我国土壤资源存在哪些问题?结合实际情况谈谈如何保护好我国的土壤资源。 答:存在问题:1)耕地面积的快速减少2)土壤退化严重3)不同区域的主要土壤资源问题如何保护:1)加强法律法规建设,实施严格的的土壤资源保护措施2)提高粮食安全与生态环境安全方面的忧患意识3)提高土壤学的研究水平,提高土壤资源保护的科技含量4)增加土壤保护退化方面的投入。 1不同质地与不同质地剖面类型的肥力性状及其利用改良措施。 答:不同质地剖面的肥力特征:土壤质地剖面:土壤不同质地层次在土体中的排列状况。 质地剖面模式:一通体均一型二上粗下细型(农业最理想的模式)三上细下粗型四中间夹砂型和中间夹黏型 改良措施:(1)掺砂掺黏,客土调剂。(2)翻淤压砂或翻砂压淤。(3)引洪漫淤或引洪漫砂。(4)增施有机肥,改良土性。

高一化学氧化还原反应知识点及习题

氧化还原反应一、氧化还原反应有关概念判断 1、氧化还原反应的特征、判断和本质 (1)特征: (2)本质: (3)判断: 例:写出下列反应的化学方程式,并判断是否为氧化还原反应。 ①实验室制取氧气: ②实验室制取氢气: ③实验室制取二氧化碳: ④实验室制取氯气: ⑤实验室制取氯化氢气体: 2、氧化还原反应有关概念 具有发生生成 ——→ ——→ ——→ 具有发生生成 ——→——→ ——→ 例1:下列各式所示的转化中,下面划线的元素被氧化的是() A 、KBr →Br 2B 、CO 2→CO C 、Na 2SO 3→Na 2SO 4 D 、KMnO 4→K 2MnO 4 例2:下列氧化还原反应中,水作为氧化剂的是()

A、CO+H2O→CO2+H2 B、3NO2+H2O→HNO3+NO C、2F2+2H2O→4HF+O2 D、Cl2+H2O→HCl+HClO 例3:等物质的量的KClO3分别发生下述反应:①有MnO2催化剂存在时,受热分解得到氧气;②若不使用催化剂,加热至470℃左右,得到KClO4、KCl和O2。下列关于 ①和②的说法不正确的是() A、都属于氧化还原反应 B、发生还原反应的元素相同 C、发生氧化反应的元素不同 D、生成KCl的物质的量相同 3、氧化还原反应与四种基本类型反应的联系 a、置换反应氧化还原反应;如: b、复分解反应氧化还原反应;如: c、化合反应、分解反应氧化还原反应。 如: 4、元素的价态与氧化还原的关系 (1)处于最高价态的元素只具有,处于最低价态的元素只具有,处于的元素可能既表现出氧化性,又表现出还原性。 (2)一种元素若有几种化合物,含该元素高价态的物质可作,含该元素低价态的物质可作,含的物质既可作氧化剂,又可作还原剂。 (3)金属单质只具有,金属阳离子具有。 非金属单质既具有,也具有。 例1、下列物质中,只有氧化性、只有还原性,既有氧化性又有还原性的顺序排列的一组是() A.F2、K、HCl B.Cl2、Al、H2C.NO2、Na、Br2 D.O2、SO2、H2O

高级氧化工艺优缺点的比较

高级氧化工艺优缺点的 比较 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

高级氧化工艺优缺点的比较 常用的高级氧化Fenton氧化法,光催化氧化法,电催化氧化法,铁碳微电解氧化法等,现对这几种方案进行比较。 Fenton氧化法:Fenton(芬顿)试剂法是针对一些特别难降解的机有污染物如高COD,利用硫酸亚铁和双氧水的强氧化还原性,生成反应强氧化性的羟基自由基,与难降解的有机物生成自由基,最后有效的氧化分解(芬顿(Fenton)试剂反应机理)其化学反应机制如下: H 2O 2 +Fe2+→OH-+OH-+Fe3+→Fe(OH) 3 ↓ 随着研究的深入,又把紫外光(UV)、草酸盐(C2O42-)等引入Fenton试剂中,使其氧化能力大大增强。从广义上说,Fenton法是利用催化剂、或光辐射、或电化学作用,通过H2O2产生羟基自由基(·OH)处理有机物的技术。 光催化氧化法:光化学氧化法包括光激发氧化法(如O3/UV)和光催化氧化法(如TiO2/UV)。光激发氧化法主要以O3、H202、O2和空气作为氧化剂,在光辐射作用下产生羟基自由基HO·。光催化氧化法则是在反应溶液中加入一定量的半导体催化剂,使其在紫外光(UV)的照射下产生HO·,两者都是通过HO·的强氧化作用对有机污染物进行处理。其中,氧化效果较好的是紫外光催化氧化法,它的作用原理是让有机化合物中的C-C、C-N键吸收紫外光的能量而断裂,使有机物逐渐降解,最后以CO2的形式离开体系。 电催化氧化法:电化学氧化法是指通过阳极表面上放电产生的羟基自由基HO·的氧化作用,HO·亲电进攻吸附在阳极上的有机物而发生氧化反应,从而去除污染物。研究表明,在酸性介质和PbO2固定床电极反应器中,经过5h的降解,苯胺的去除率可达97%以上;在碱性介质中,苯胺和4-氯苯胺在Pb箔上的阳极氧化呈现出一级反应特征,在3h内,这类物质的去除率为99%,而且所有的中间产物也可被彻底氧化。含有卤代物和硝基化合物的废水通过电化学氧化处理,采用Ti、PbO2或碳纤维阳极,其去除率可达95%以上。 铁碳微电解氧化法:铁炭微电解是基于电化学中的原电池反应。在废水PH3-4的条件下,当铁和炭浸入电解质溶液中时,由于Fe和C之间存在1.2V的电极电位差,因而会形成无数的微电池系统,在其作用空间构成一个电场。阳极反应产生的新生态二价铁离子具有较强的还原能力,可使某些有机物还原,也可使某些不饱和基团(如羧基—COOH、偶氮基-N=N-)的双键打开,使部分难降解环状和长链有机物分解成易生物降解的小分子有机物而提高可生化性。此外,二价和三价铁离子是良好的絮凝剂,特别是新生的二价铁离子具有更高的吸附-絮凝活性,调节废水的pH可使铁离子变成氢氧化物的絮状沉淀,吸附污水中的悬浮或胶体态的微小颗粒及有机高分子,可进

氧化还原反应

氧化还原反应 考点一氧化还原反应、氧化剂、还原剂、氧化产物、还原产物 [例1](2008·茂名一模)金属钛(Ti)性能优越,被称为继铁、铝制后的“第三金属”。工业上以金红石为原料制取Ti的反应为: aTiO2+ bCl2+ cC aTiCl4+ c CO ……反应① TiCl4+2Mg Ti + 2MgCl2 ……反应② 关于反应①、②的分析不正确的是() ①TiCl4在反应①中是还原产物,在反应②中是氧化剂;②C、Mg在反应中均为还原剂,被还原; ③在反应①、②中Mg的还原性大于C,C的还原性大于TiCl4;④a=1,b=c=2; ⑤每生成19.2 g Ti,反应①、②中共转移4.8 mol e-。 A.①②④B.②③④C.③④D.②⑤ 考点二物质的氧化性强弱、还原性强弱的比较。 氧化性→得电子性,得到电子越容易→氧化性越强还原性→失电子性,失去电子越容易→还原性越强[例2]常温下,在下列溶液中发生如下反应 ①16H++10Z-+2XO4-=2x2++5Z2+8H2O ②2A2+ +B2=2A3++2B-③2B-+Z2=B2+2Z-由此判断下列说法错误的是() A.反应Z2+2A2+=2A3++2Z-可以进行。 B.Z元素在①③反应中均被还原 C.氧化性由强到弱的顺序是XO4-、Z2、B2、A3+ D.还原性由强到弱的顺序是A2+、B-、Z-、X2+ 考点三氧化还原反应方程式的配平方法 [例3].NaNO2是一种食品添加剂,它能致癌。酸性高锰酸钾溶液与亚硝酸钠的反应的离子方程式是:MnO-4+NO-2+―→Mn2++NO-3+H2O。下列叙述中正确的是() A.该反应中NO-2被还原B.反应过程中溶液的酸性增强 C.生成1 mol NaNO3需要消耗0.4 mol KMnO4 D.中的粒子是OH- 考点四电子转移守恒应用 [例4](2008·海南)锌与很稀的硝酸反应生成硝酸锌、硝酸铵和水。当生成1 mol硝酸锌时,被还原的硝酸的物质的量为() A.2mol B.1 mol C.0.5mol D.0.25mol 重点热点题型探究 热点1 氧化还原反应、氧化剂、还原剂、氧化产物、还原产物判断 [真题1](2006·广东)下列反应中,氧化剂与还原剂物质的量的关系为1∶2的是() A.O3+2KI+H2O=2KOH+I2+O2 B.2CH3COOH+C a(ClO)2=2HClO+(CH3COO)2Ca C.I2+2NaClO3=2NaIO3+Cl2 D.4HCl+MnO2=MnCl2+Cl2↑+2H2O 1.已知硫酸锰(MnSO4) 和过硫酸钾(K2S2O8)两种盐溶液在银离子催化下可发生氧化还原反应,生成高锰酸钾、硫酸钾和硫酸。 (1)请写出并配平上述反应的化学方程式。 (2)此反应的还原剂是,它的氧化产物是。 (3)此反应的离子反应方程式可表示为:

土壤酸碱度

如何鉴别土壤的酸碱度 1、如何鉴别酸性土壤和碱性土壤? 感官识别一般酸性过大的土壤潮湿时糊烂,干时则结成较大硬块,放少许入口中有苦涩味。在碱性过大的土壤中,雨后地表结皮,干时松散。将松散土壤放入水中搅混浊,澄清后取澄清液煮干,底层有少许霜状物。土色为红色或黄色的土壤通常为酸性,如黄泥土、红壤旱土、红壤荒地等。一般红壤pH值为 4.5- 6.0,黄壤酸性较大,一般pH值为 4.0- 5.5。 看指示植物识别观察野生植物中有无喜酸指示植物,凡是当地长有苦槠、毛栗、闹羊花、杨梅、茶树、马尾松、杉树、石松等耐酸性植物,说明土壤呈酸性;凡是长有南天竹、柏木、石苇、卷柏等植物,表示土壤呈碱性。 看水质识别灌溉用水后很快渗下,水比较混浊,甚至出现锈膜状物质,表明土壤酸性较强;浇水时冒出白泡,起白沫,多为碱性土壤。浇水后土壤松软为酸性;浇水后土壤板结,且干的快,土壤表面有一层白粉状物为碱性。 看石头识别在石英岩、砂岩和黄色页岩、红色页岩地区的土壤多是酸性;在石灰岩或钙质土地区,土壤多少带点碱性。 2、常用酸性土壤改良方式有哪些? 对酸性土壤,则需施用石灰性物质。化学改良必须结合水利、农业等措施,才能取得更好的效果。 土壤酸性过大,切忌只施石灰不施农家肥,这样,土壤反而会变黄变瘦。 3、酸性土壤有什么特征吗?

酸性土壤的特征是“酸”(PH值在6以下)、“瘦”(速效养分低,有机质低于1.5%,严重缺有效磷)、“粘”(土质粘重,耕性差)“深”(土色多为红、黄、紫色)。 在这些土壤上种植作物,不易全苗,常形成僵苗和老苗,产量低品质劣。 七种常用试验方法教你简单判断土壤酸碱性 一: 看土源: 一般采自山川,沟壑的腐殖土,多呈黑褐色,比较疏松,肥沃,通透性良好,是比较理想的酸性腐殖土。如: 松针腐殖土,草炭腐殖土等。 二: 看土色: 酸性土壤一般颜色较深,多为黑褐色,而碱性土壤颜色多呈白、黄等浅色。有些盐碱地区,土表经常有一层白粉状的碱性物质。 三: 看地表植物: 在野外采掘花土时,可以观察一下地表生长的植物,一般生长野杜鹃、松树、杉类植物的土壤多为酸性土;而生长柽柳、谷子、高梁等地段的土多为碱性土。四: 看质地: 酸性土壤质地疏松,透气透水性强;碱性土壤质地坚硬,容易板结成块,通气透水性差。 五:

氧化性和还原性及元素周期律

氧化性、还原性强弱的比较 1.元素的化合价与物质氧化性、还原性的关系对于可变价态的元素来说,它处于最高价态时,只具有氧化性,处于最低价态时,只具有还原性,处于中间价态时既有氧化性又有还原性。但特别注意,元素处于最高价态时,不一定具有强氧化性,处于最低价态时,不一定具有强还原性。 2.氧化性、还原性强弱的判断规律 (1)按金属活动性顺序 金属单质还原性看金属活动顺序表金属阳离子氧化性强弱看金属活动顺序表倒序 (2)按非金属活动性顺序 非金属单质氧化性顺序表:(氟、氯、氧、溴、碘、硫)非 金属元素阴离子还原性强弱 看非金属单质氧化性顺序表倒 序:(硫、碘、溴、氧、氯、氟) (3)按氧化还原反应的方向 同一氧化还原反应,氧化性:氧化剂>氧化产物,还原性:还原剂>还原产物 (4)按元素周期表 在同一周期内,从左到右,随着原子序数的递增,元素 单质的氧化性增强,说对应的阴离子的还原性减弱,元 素单质的还原性减弱,所对应的金属阳离子的氧化性增

强;在同一主族内,从上到下,随着原子序数的递增,单质的还原性增强,氧化性减弱,其所对应的金属阳离子的 氧化性减弱,非金属元素的阴离子的还原性增强。 (5)按氧化还原反应的程度 在相同条件下,不同氧化剂使同一种还原剂氧化程度大的,其氧化性强。 (6)按原电池和电解池中的放电顺序 电极参加反应的电池中,负极物质的还原性强于正极物 质,氧化性弱于正极物质。在电解池中,先放电的阳离 子的氧化性强,先放电的阴离子的还原性强。 (7)按反应条件的差异 反应对条件的要求越低,物质的氧化性或还原性就越强。 (8)按得电子时放出能量的高低或失电子时吸收能量的高低 金属原子失去电子时所需要吸收的能量越少,说明该金 属还原性越强;非金属原子得到电子时所放出的能量越多,说明该非金属单质氧化性越强。 元素周期律 元素周期律,指元素的性质随着元素的原子序数(即原子核外电子数或核电荷数)的增加呈周期性变化的规律。周期律的发现是化学系统化过程中的一个重要里程碑。 2基本概念

氧化还原反应笔记

氧化还原反应课堂笔记 一.氧化还原反应定义 1.特征:有化合价升降的反应叫做氧化还原反应。 2.本质:有电子得失(或共用电子对偏移)的反应叫做氧化还原反应。 二.四种基本反应类型与氧化还原反应的关系 1.化合反应:(两种或两种以上物质生成另一种物质的反应:A+B=AB) 有单质参加的化合反应一定是氧化还原反应 2.分解反应:(一种物质生成两种或两种以上其他物质的反应叫做分解反应:AB=A+B)有单质生成的分解反应一定是氧化还原反应 3.置换反应:(一种单质和一种化合物反应生成另一种单质和另一种化合物的反应叫置换 反应:A+BC=B+AC 置换反应一定是氧化还原反应 4.复分解反应:(两种化合物相互交换成分生成另外两种化合物的反应叫做复分解反应: AB+CD=AD+CB) 复分解反应一定不是氧化还原反应 判断:①有单质参加或生成的反应一定是氧化还原反应(错误) (例:3O2=放电=2O3) ②没有单质参加或生成的反应一定不是氧化还原反应(错误) (例:3NO2+H2O==2HNO3+NO)

三.氧化还原反应的表示方法(表示电子转移的方向和数目) 1.双线桥法 氧化剂+还原剂还原产物+氧化产物 升,失,氧 降,得,还 若说剂 正相反 说明:化合价升高;失去电子;被氧化、发生氧化反应、得到氧化产物;做还原剂化合价降低;得到电子;被还原,发生还原反应、得到还原产物;做氧化剂 3.单线桥表示法 氧化剂+还原剂还原产物+氧化产物 三.氧化还原反应的一般规律 1.守恒律:(得、失电子守恒) 得电子数=失电子数=转移电子数 2.强弱律 氧化性:氧化剂>氧化产物 还原性:还原剂>还原产物 3.价态律 高价氧化,低价还,中间价态两边转 注:元素的最高价态只有氧化性 元素的最低价态只有还原性 元素的化合价处于中间价态时既有氧化性,又有还原性 4.转移律 ①元素相邻价态间的转化最容易 ②同种元素不同价态之间的氧化反应,化合价的变化只靠近不交叉

掺铜TiO_2光催化剂光催化氧化还原性能的研究

第23卷 第5期感光科学与光化学Vo l.23 N o.5 2005年9月Pho tog raphic Science and P hotochemistr y Sept.,2005 研究论文 掺铜TiO2光催化剂光催化氧化 还原性能的研究 吴树新1,2,3,尹燕华2,何 菲1,秦永宁1 (1.天津大学化工学院,天津300072;2.第718研究所,河北邯郸056027; 3.唐山师范学院化学系,河北唐山063000) 摘 要:利用浸渍法制备了掺铜二氧化钛光催化剂,分别以乙酸降解和二氧化 碳还原反应为探针,研究了催化剂的光催化氧化光催化还原性能.结果表明,铜 掺杂能显著提高催化剂的光催化性能;结合光电子能谱、X光衍射分析等物理 表征结果,对铜掺杂改性机制进行了讨论. 关键词:光催化;乙酸;铜离子掺杂;XPS;TiO2;二氧化碳还原 文章编号:1000 3231(2005)05 0333 07 中图分类号:O64 文献标识码:A 纳米级二氧化钛具有合适的禁带宽度、较大的比表面积、较高的光化学稳定性、较强的氧化还原性及无毒、成本低等优点,被广泛用作光催化反应的催化剂,但从其光催化效率看,还存在半导体载流子复合率高等缺点[1].为提高光催化效率,必须有效抑制光生载流子的复合,为此,人们采用了多种手段如贵金属沉积、利用不同能级的半导体进行耦合以及金属离子掺杂等对纳米二氧化钛进行改性[2 4].其中过渡金属离子掺杂被认为是一种有效手段,但人们对掺杂改性的机理还未达成共识,而且掺杂催化剂的评价大多仅考察其光催化氧化性能[5,6]或光催化还原性能[7],而从氧化和还原两个方面同时考察掺杂催化剂的研究还少见报道.本文利用浸渍法制备了掺铜二氧化钛光催化剂,分别以乙酸降解和二氧化碳还原反应为探针,考察了催化剂的光催化氧化和光催化还原性能,并利用光电子能谱、X光衍射分析等物理表征手段,对铜掺杂改性机制进行了初步的探讨. 1 实验部分 1.1 催化剂的制备与表征 收稿日期:2005 03 07;修回日期:2005 06 03.通讯联系人:尹燕华. 作者简介:吴树新(1968 ),男,副教授,博士研究生,主要从事绿色化学和新型催化技术的研究,E mail:hdwushx @https://www.doczj.com/doc/e014403384.html,. 333

相关主题
文本预览
相关文档 最新文档