当前位置:文档之家› 不锈钢表面强化及摩擦学性能研究

不锈钢表面强化及摩擦学性能研究

不锈钢表面强化及摩擦学性能研究
不锈钢表面强化及摩擦学性能研究

不锈钢表面强化及摩擦学性能研究

不锈钢具有良好的耐腐蚀性、强韧性与易维护等特点,在航空航天、化工、冶金以及海洋等领域中应用广泛。表面强化技术是一种应用表面工程技术对零件表面进行改性或者涂覆镀层的技术,可以对不锈钢表面进行强化,从而提高其摩擦学性能,延长其使用寿命。

金属铬(Cr)具有硬度高和耐磨减摩性能好等特点。碳纳米管(CNT)和石墨烯(graphene)具有机械强度高和润滑性能好等特点,已成为表面强化中的典型纳米添加材料。

为了提高420不锈钢的耐磨减摩性能,本课题开发了酸化多壁碳纳米管(MWCNT)和氧化石墨烯(GOS)与六价Cr复合电镀新工艺,并利用复合电镀技术制备了Cr基碳纳米材料复合镀层,研究了它们的耐磨减摩性能。具体内容如下:1.分别采用改进的Hummers法和CNT酸化法制备GOS和酸化MWCNT,并利用扫描电子显微镜(SEM)、透射电子显微镜、拉曼光谱和傅里叶变换红外光谱对GOS和酸化MWCNT进行形貌和结构表征。

结果表明,GOS和酸化MWCNT表面存在含氧官能团。然后将它们分别加入到电镀溶液中,并采用超声分散的方法分别制备出含有GOS与酸化MWCNT的复合电镀溶液。

最后通过复合电镀技术将金属Cr分别与不同浓度的GOS和酸化MWCNT在不同电镀温度与电流密度条件下进行共沉积,制备出MWCNT-Cr与GOS-Cr复合镀层。

2.利用SEM对MWCNT-Cr与GOS-Cr复合镀层进行表征。

结果表明,在复合镀层表面可明显观察到酸化MWCNT或GOS,这说明金属Cr 与酸化MWCNT和GOS均实现了共沉积。3.对复合镀层的硬度及耐磨减摩性能进行

表征,研究了电流密度、电镀温度以及碳纳米材料浓度对复合镀层的硬度与耐磨减摩性能的影响。

研究结果表明:(1)纯Cr层、MWCNT-Cr与GOS-Cr复合镀层的硬度随着电流密度与碳纳米材料浓度的提高而提高,随着电镀温度的上升而降低,且复合镀层的硬度均比纯Cr层高;(2)纯Cr层、MWCNT-Cr与GOS-Cr复合镀层的摩擦系数随着电流密度、电镀温度以及碳纳米材料浓度的上升呈现先下降后上升的变化趋势,且复合镀层的摩擦系数均比纯Cr层低;(3)纯Cr层、MWCNT-Cr与GOS-Cr复合镀层的磨损量随着电流密度与碳纳米材料浓度的提高而下降,随电镀温度的下降而降低,且复合镀层的磨损量均比纯Cr层低。总之,Cr基碳纳米材料复合镀层的硬度比纯Cr层高,摩擦系数与磨损量比纯Cr层低,表明由于酸化MWCNT与GOS具有的高机械强度与超润滑性能,导致它们对复合镀层起到了良好的强化作用。

不锈钢的品质特性及其要求

不锈钢的品质特性及其要求 1不锈钢的品质特性: 2不锈钢的品质特性及其要求 各产品由于用途的不同,其加工工艺和原料的品质要求也不同 (1)材质: ①DDQ(deep drawing quality)材:是指用于深拉(冲)用途的材料,也就是大家所说的的软料,这种材料的主要特点是延伸率较高(≧53%),硬度较低(≦170%),内部晶粒等级在7.0~8.0之间,深冲性能极佳。目前许多生产保温瓶、锅类的企业,其产品的加工比(BLANKING SIZE/制品直径)一般都比较高,它们的加工比分别达3.0、1.96、2.13、1.98。SUS304 DDQ用材主要就是用于这些要求较高加工比的产品,当然加工比超过2.0的产品一般都需经过几道次的拉伸才能完成。如果原料延伸方面达不到的话,在加工深拉制品时产品极易产生裂纹、拉穿的现象,影响成品合格率,当然也就加大了厂家的成本; ②一般材:主要用于除了DDQ用途外的材料,这种材料的特点是延伸率相对较低(≧45%),而硬度相对较高(≦180),内部晶粒度等级在8.0~9.0

间,与DDQ用材比较,它的深冲性能相对稍差,它主要用于不需伸拉就能得到的制品,象一类餐具的勺、匙、叉、电器用具、钢管用途等。但它与DDQ材相比有一个优点,就是BQ性相对较好,这主要是由于它的硬度稍高的缘故。 (2)表面品质: 不锈钢薄板是一种价格非常高的材料,客户对它的表面质量要求也非常高。但不锈薄板在生产过程中不可避免会出现各种缺陷,如划伤、麻点、折痕、污染等,从而其表面质量,象划伤、折痕等这些缺陷不管是高级材还是低级都不允许出现,而麻点这种缺陷在勺、匙、叉、制作时也是决不允许的,因为抛光时很难抛掉它。我们根据表面各种缺陷出现的程度和频率,来确定其表质量等级,从而来确定产品等级。(见表:) (3)厚度公差: 一般来说不锈钢制品的不同,其要求原料厚度公差也各不相同,象二类餐具和保温杯等,厚度公差一般要求较高,为-3~5%,而一类餐具厚度公差一般要求

316不锈钢棒的化学成分,耐力度,特性和用途

316不锈钢棒的化学成分 品名:316不锈钢棒、304不锈钢棒,316不锈钢棒材。牌号:0Cr17Ni12Mo2,主要材质316、316L、 310、310s、304、304L、303等。 ●化学成份: 碳 C :≤0.08 硅 Si:≤1.00 锰 Mn:≤2.00 硫 S :≤0.030 磷 P :≤0.035 铬 Cr:16.00~18.50 镍 Ni:10.00~14.00 钼 Mo:2.00~3.00 2.316不锈钢棒的耐力强度 316不锈钢屈服强度(N/mm2)≥205 抗拉强度≥520 延伸率(%)≥40 硬度HB ≤187 HRB≤90 HV ≤200 密度7.93 g·cm-3 比热c(20℃)0.502 J·(g·C)-1 热导率λ/W(m·℃)-1 (在下列温度/℃) 20 100 500 12.1 16.3 21.4 线胀系数α/(10-6/℃) (在下列温度间/℃) 20~100 20~200 20~300 20~400 16.0 16.8 17.5 18.1 电阻率0.73 Ω·mm2·m-1 熔点 1398~1420℃ ●力学性能: 抗拉强度σb (MPa):≥520 条件屈服强度σ0.2 (MPa):≥205 伸长率δ 5 (%):≥40 断面收缩率ψ (%):≥60 硬度:≤187HB;≤90HRB;≤200HV ●热处理规范及金相组织: 热处理规范:固溶1010~1150℃快冷。

金相组织:组织特征为奥氏体型。 ●交货状态:一般以热处理状态交货,其热处理种类在合同中注明;未注明者,按不热处理状态交货 316 是美国标准下的牌号.属于不锈.耐热.耐蚀钢.是奥氏体不锈钢. 对于国标是0Cr17Ni12Mo2.是比304好的不锈钢.在海水和其他各种介质中.耐腐蚀性比0Cr19Ni9好.主要是耐点蚀材. 316不锈钢与304不锈钢从外观如何区别如下: 现在最常用的两种不锈钢304,316(或对应于德/欧标的 1.4308,1.4408),316与304在化学成分上的最主要区别就是316含Mo,而且一般公认,316的耐腐蚀性更好些,比304在高温环境下更耐腐蚀。所以在高温环境下,工程师一般都会选用316材料的零部件。 [1]Mo确实是一种耐高温的物质(知道黄金用什么坩埚熔吗?钼坩埚!)。 [2]钼很容易和高价硫离子反应生成硫化物。 316不锈钢棒用途 316不锈钢棒材:316不锈钢中含钼且含碳量低,在海洋中和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢!(316L低碳、316N含氮高强度高、316不锈钢含硫量较高,易削不锈钢。 316不锈钢棒材:作为低碳的304钢,在一般情况下,耐腐蚀性与316L 相似,但在焊接后或者消除应力后,其抗晶界腐蚀能力优秀,在未进行热处理情况下,也能保持良好的耐腐蚀性。 316不锈钢棒材:具有良好的耐蚀性,耐热性,低温强度和机械特性,冲压,弯曲等热加工性好,无热处理硬化现象。用途:餐具,橱柜,锅炉,汽车配件,医疗器具,建材,食品工业(使用温度-196°C-700°C)。 316不锈钢棒材:“刃具级”马氏体钢,类似布氏高铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。 316不锈钢棒材:316不锈钢中含钼且含碳量低,在海洋中和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢!(316L低碳、316N含氮高强度高、316不锈钢含硫量较高,易削不锈钢。 316不锈钢棒材:作为低碳的304钢,在一般情况下,耐腐蚀性与316L 相似,但在焊接后或者消除应力后,其抗晶界腐蚀能力优秀,在未进行热处理情况下,也能保持良好的耐腐蚀性。 316不锈钢棒材:具有良好的耐蚀性,耐热性,低温强度和机械特性,冲压,弯曲等热加工性好,无热处理硬化现象。用途:餐具,橱柜,锅炉,汽车配件,医疗器具,建材,食品工业(使用温度-196°C-700°C)。 310不锈钢棒材:主要特点是:耐高温,一般使用锅炉内,汽车排气管. 其他性能一般。

不锈钢的性能与特性.

不锈钢的性能与特性 一、不锈钢的组织性能 目前已知的化学元素有100多种,在工业中常用的钢铁材料中可以遇到的化学元素约二十多种。对于人们在与腐蚀现象作长期斗争的实践而形成的不锈钢这一特殊钢系列来说,最常用的元素有十几种,除了组成钢的基本元素铁以外,对不锈钢的性能与组织影响最大的元素是:碳、铬、镍、锰、硅、钼、钛、铌、钛、锰、氮、铜、钴等。这些元素中除碳、硅、氮以外,都是化学元素周期表中位于过渡族的元素。 实际上工业上应用的不锈钢都是同时存在几种以至十几种元素的,当几种元素共存于不锈钢这一个统一体中时,它们的影响要比单独存在时复杂得多,因为在这种情况下不仅要考虑各元素自身的作用,而且要注意它们互相之间的影响,因此不锈钢的组织决定于各种元素影响的总和。 合金元素的作用—— 不锈钢含有基本金属(Base)铁和主要元素Cr、Ni,通过添加Cr、Ni以外的元素制造具有各种特性的不锈钢。 二、不锈钢的特性 1.一般特性

◆表面美观以及使用可能性多样化 ◆耐腐蚀性能好,比普通钢长久耐用 ◆耐腐蚀性好 ◆强度高,因而薄板使用的可能性大 ◆耐高温氧化及强度高,因此能够抗火灾 ◆常温加工,即容易塑性加工 ◆因为不必表面处理,所以简便、维护简单 ◆清洁,光洁度高 ◆焊接性能好 2、品质特性 2-1不锈钢的品质特性

2-2不锈钢的品质特性要求 ※各产品由于用途的不同,其加工工艺和原料的品质要求也不同。 2-3 品质要求特性微细项目 (1) 材质: ①DDQ(deep drawing quality)材:是指用于深拉(冲)用途的材料,也就是大家所说的的软料,这种材料的主要特点是延伸率较高(≧53%),硬度较低(≦170%),内部晶粒等级在7.0~8.0之间,深冲性能极佳。目前许多生产保温瓶、锅类的企业,其产品的加工比一般都比较高,SUS304 DDQ用材主要就是用于这些要求较高加工比的产品,当然加工比超过2.0的产品一般都需经过几道次的拉伸才能完成。如果原料延伸方面达不到的话,在加工深拉制品时产品极易产生裂纹、拉穿的现象,影响成品合格率,当然也就加大了厂家的成本;

制动摩擦材料高速摩擦学性能的主要影响因素.

制动摩擦材料高速摩擦学性能的主要影响因素Ξ 马东辉张永振陈跃官宝 (河南科技大学材料科学与工程学院河南洛阳 471039 摘要 :综述了高速条件下速度、温度、压力对制动材料摩擦学性能的影响。重点讨论了摩擦表面的相对滑动速度对摩擦学性能的影响。 关键词 :相对滑动速度压力温度 The Main Influencing F actor of H igh 2speed Friction Ma Donghui Zhang Y ongzhen Chen Y ue Shangguan Bao (Department of Materials Science , Henan University of Science &T echn ology , Lu oyang 471039, China Abstract :The in fluence of friction under different pressure , temperature and slide velocity condition introduced , and the in fluence of relative slide velocity on the frictional interfaces was discussed. K eyw ords :R elative Slide V elocity Pressure T emperature 高速摩擦学 , 是研究摩擦副处在相对高的滑动速度时 , 两个表面之间相互作用、践的学科。 , 对制动装置及制动材料的性能也提出了更高的要求。例如制动材料要有足够而稳定的摩擦系数 , 动、静摩擦系数之差小 ; 良好的导热性、较大的热容量和一定的高温机械强度 ; 良好的耐磨性和抗粘着性 , 不易擦伤对偶件 , 无噪声 ; 低成本 , 对环境无污染等。传统的制动材料已不能满足高速条件下的需要 , 这就必须开发新的摩擦制动材料 , 研究高速摩擦条件下各种因素对材料摩擦学性能的影响。但这方面前人的研究工作不多 , 本文综述了这方面的研究进展 , 着重讨论了高速条件下速度、温度、正压力对材料摩擦学性能的影响。

摩擦学原理知识点整理

绪论 1、摩擦学定义:是关于相对运动的相互作用表面的科学技术,包括摩擦、润滑、磨损和冲蚀。 2、摩擦学研究内容主要包括:摩擦、磨损、润滑以及表面工程技术。 3、摩擦:是抵抗两物体接触表面在外力作用下发生切向相对运动的现象。 4、磨损:着重研究与分析材料和机件在不同工况下的磨损机理、发生规律和磨损特性。 5、润滑:研究内容包括流体动力润滑、静力润滑、边界润滑、弹性流体动力润滑等在内的各种润滑理论及其在实践中的应用。 6、表面工程技术:将表面与摩擦学有机结合起来,解决机器零部件的减摩、耐磨,延长使用寿命的问题。 第一章 1、表面形貌:微观粗糙度、宏观粗糙度(即波纹度)和宏观几何形状偏差。 2、表面参数:(1)算术平均偏差Ra 是在一个取样长度lr 内纵坐标值Z (x )绝对值的算术平均值。(2)轮廓的最大高度Rz 是在一个取样长度lr 内最大轮廓峰高Zp 和最大轮廓谷深Zv 之和的高度。(3)均方根偏差Rq 是在一个取样长度lr 内纵坐标值Z (x )的均方根值。 3、对于液体,表层中全部分子所具有的额外势能的总和,叫做表面能。表面能越高,越易粘着。 4、物理吸附:当气体或液体与固体表面接触时,由于分子或原子相互吸引的作用力而产生的吸附叫做物理吸附,是靠范德华力维系的,温度越高,吸附量越小。物理吸附薄膜形成的特点是吸附和解吸附具有可逆性,无选择性。 5、化学吸附:极性分子与金属表面的电子发生交换形成化学键吸附在金属表面上,且极性分子呈定向排列。化学吸附的吸附能较高,比物理吸附稳定,且是不完全可逆的,具有选择性。 6、粘附:是指两个发生接触的表面之间的吸引。 7、影响粘附的因素:①润湿性,②粘附功,③界面张力,④亲和力。 8、金属表面的实际结构:(1)外表层:①污染层,②吸附气体层,③氧化层;(2)内表层:①加工硬化层,②金属基体。 第二章 1、固体表面的接触分类:(1)点接触和面接触。(2)①弹性接触(赫兹接触),②塑性接触,③弹塑性接触,④粘弹性接触。 2、名义接触面积:是两接触固体几何(宏观)界面的边界所确定的面积。 3、实际接触面积:是两接触固体之间传递界面力的各接触斑点面积之和。 影响因素:①载荷的大小,②材料的性质,③微观粗糙度。 4、接触模型:①圆柱体模型(当载荷改变时其接触面积保持不变),②圆锥体模型(比较接近实际情况,因为存在尖端微凸体的可能性很小),③形状对称的球体模型(最符合实际)。 5、塑性指数: 2 1??? ??=ψR H E σ σ:表面微凸体高度分布的标准偏差;R :微凸体的相当曲率半径;E :复合弹性模量;H :材料的硬度值。当ψ<1,弹性接触;ψ>1,部分接触点含有塑性接触;ψ>3,主要是塑性接触。 第三章 1、摩擦的概念:摩擦力是指两个相互接触的物体在外力作用下发生相对运动(或具有趋势)时在接触面间产生的切向运动阻力,这种现象称为摩擦现象。 2、摩擦有害的方面:(1)造成大量能量的消耗,引起机械效率的降低;(2)摩擦使得机器中相对运动的零件表面产生磨损;(3)摩擦使得摩擦副工作温度上升。 3、摩擦的分类: (1)运动状态:静摩擦和动摩擦;(2)运动方式:①滑动摩擦,②滚动摩擦,③转动摩擦;

各种不锈钢的用途和特性

cody 发件人:"cody" 发送时间:2006年5月23日 11:37 主题:各种不锈钢的特性和用途 各种不锈钢的特性和用途 钢号特性用途 奥氏体钢 301 17Cr-7Ni-低碳 与304钢相比,Cr、Ni含量少,冷加工时抗拉强度和硬度增高, 无磁性,但冷加工后有磁性。 列车、航空器、传送带 螺栓、螺母、弹簧、筛301L 17Cr-7Ni-0.1N-低碳 是在301钢基础上,降低C含量,改善焊口的抗晶界腐蚀性;通 过添加N元素来弥补含C量降低引起的强度不足,保证钢的强 度。 铁道车辆构架及外部装 304 18Cr-8Ni 作为一种用途广泛的钢,具有良好的耐蚀性、耐热性,低温强 度和机械特性;冲压、弯曲等热加工性好,无热处理硬化现象 (无磁性,使用温度-196℃~800℃)。 家庭用品(1、2类餐 柜、室内管线、热水器 浴缸),汽车配件(风 消声器、模制品), 建材,化学,食品工业 船舶部件 304L 18Cr-8Ni-低碳 作为低C的304钢,在一般状态下,其耐蚀性与304刚相似,但 在焊接后或者消除应力后,其抗晶界腐蚀能力优秀;在未进行 热处理的情况下,亦能保持良好的耐蚀性,使用温度-196℃~80 0℃。 应用于抗晶界腐蚀性要 学、煤炭、石油产业 机器,建材耐热零件及 困难的零件304Cu 13Cr-7.7Ni-2Cu 因添加Cu其成型性,特别是拔丝性和抗时效裂纹性好,故可进 行复杂形状的产品成形;其耐腐蚀性与304相同。 保温瓶、厨房洗涤槽 保温饭盒、门把手、纺 器。 304N1 18Cr-8Ni-N 在304钢的基础上,减少了S、Mn含量,添加N元素,防止塑性 降低,提高强度,减少钢材厚度。 构件、路灯、贮水罐304N2 18Cr-8Ni-N 与304相比,添加了N、Nb,为结构件用的高强度钢。构件、路灯、贮水罐 316 18Cr-12Ni-2.5Mo 因添加Mo,故其耐蚀性、耐大气腐蚀性和高温强度特别好,可 在苛酷的条件下使用;加工硬化性优(无磁性)。 海水里用设备、化学 纸、草酸、肥料等生产 像、食品工业、沿海地 绳索、CD杆、螺栓、316L 18Cr-12Ni-2.5Mo 低碳 作为316钢种的低C系列,除与316钢有相同的特性外,其抗晶 界腐蚀性优。 316钢的用途中,对抗 性有特别要求的产品321 18Cr-9Ni-Ti 在304钢中添加Ti元素来防止晶界腐蚀;适合于在430℃-900℃ 温度下使用。 航空器、排气管、锅炉 铁素体钢 409L 11.3Cr-0.17Ti-低C、N 因添加了Ti元素,故其高温耐蚀性及高温强度较好。 汽车排气管、热交换机 等在焊接后不热处理410L 13Cr-低C 在410钢的基础上,降低了含C量,其加工性,抗焊接变形,耐 高温氧化性优秀。 机械构造用件,发动机 锅炉燃烧室,燃烧器 430 16Cr 作为铁素体钢的代表钢种,热膨胀率抵,成形性及耐氧化性 优。 耐热器具、燃烧器、家 2类餐具、厨房洗涤槽 饰材料、螺栓、螺母 筛网430J1L 18-Cr0.5Cu-Nb-低C.N 在430钢中,添加了Cu、Nb等元素;其耐蚀性、成形性、焊接 性及耐高温氧化性良好。 建筑外部装饰材料,汽 冷热水供给设备。 436L 18Cr-1Mo-Ti、Nb、Zr低 C、N 耐热性、耐磨蚀性良好,因含有Nb、Zr元素,故其加工性,焊 接性优秀。 洗衣机、汽车排气管 品、3层底的锅。 410 作为马氏体钢的代表钢,虽然强度高,但不适合于苛酷的腐蚀 刀刃、机械零件、石油 置、螺栓、螺母、泵杆

不锈钢的化学成分及力学性能和应用

00Cr17Ni14Mo2不锈钢 (316L不锈钢 ) SUS316(L)- 00Cr17Ni14Mo2 添加了Mo(2~3%)达到优秀的耐孔蚀和耐腐蚀性,高温Creep强度优秀 特性及实用用途: 化学成分:(单位:wt%) 机械性能: SUS304不锈钢-0Cr18Ni9不锈钢材质性能及用途介绍 作为AUSTENITE系的基本钢种耐腐蚀性、耐热性、低温强度、机械性能优秀,热处理后不发生硬化,几乎没有磁性 特性及实用用途:

化学成分:(单位:wt%) 机械性能: SUS317L不锈钢-00Cr19Ni13Mo3不锈钢材质性能介绍 化学成分:(单位:wt%) 机械性能:

SUS 430不锈钢钢种介绍 1、概要 含有17% Cr, 在高温以混合相(α+γ)形式存在,1000OC以下是α单相的BCC结构。广泛使用的铁素体系不锈钢。 2、特点 1)深冲性能优秀,类似于304钢; 2)对氧化性酸有很强的耐腐蚀性,对碱液及大部分有机酸和无机酸也有一定的耐腐蚀能力;耐应力腐蚀开裂能力强于304钢种; 3)热膨胀系数低于304钢种,耐氧化能力高,适合于耐热设备; 4)冷轧产品外观光亮度好,漂亮; 5)和304比较,价格便宜,作为304钢种的替代钢种。 2、适用范围 主要用作在温和的大气中高抛光装饰用途,如燃气灶表面, 家电部件, 餐具, 建筑内装饰用,洗涤槽, 洗衣机内桶等。 6、热处理 熔点:1425~15100C; 退火:780~8500C。 7、使用状态 1)退火状态: NO.1,2D,2B,N0.4,HL,BA,Mirror,以及各种其他表面处理状态 8、使用注意事项 - 相对304,拉伸性能、焊接性能较差; - 由于是铁素体不锈钢,强度相对较低,加工硬化能力也低,选择使用时应该注意; - 拉伸加工后表面会出现轧钢方向条状缺陷(ridging),给抛光作业带来很大的困难。

聚乙烯吡咯烷酮作为水基润滑添加剂摩擦学性能的研究

Material Sciences 材料科学, 2014, 4, 103-110 Published Online May 2014 in Hans. https://www.doczj.com/doc/e013935440.html,/journal/ms https://www.doczj.com/doc/e013935440.html,/10.12677/ms.2014.43016 Tribology Properties of the Aqueous Solution of Polyvinylpyrrolidone Tingting Tu1, Weixu Wang1, Yong Wan1*, Jibin Pu2 1College of Mechanical Engineering, Qingdao Technological University, Qingdao 2State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou Email: *wanyong@https://www.doczj.com/doc/e013935440.html, Received: Apr. 2nd, 2014; revised: May 2nd, 2014; accepted: May 9th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/e013935440.html,/licenses/by/4.0/ Abstract Green, economical and safe water-based lubricant technology has always been the ultimate goal in tribological research. In the paper, the tribologial performance of aqueous solution containing polyvinylpyrrolidone (PVP) has been studied by using micro friction and wear tester and four-ball machine. The lubricating mechanisms of PVP in water solution were analyzed by SEM and EDS. When used as an additive in water, PVP showed lower friction. With the increase of concentration in water, friction-reducing performance was improved. This is mainly due to lubrication film formed by adsorption of the PVP molecule on the surface. Keywords Polyvinylpyrrolidone, Water-Based Lubricants, Anti-Friction Performance 聚乙烯吡咯烷酮作为水基润滑添加剂 摩擦学性能的研究 屠婷婷1,王伟旭1,万勇1*,蒲吉斌2 1青岛理工大学机械工程学院,青岛 2中国科学院兰州化学物理研究所固体润滑国家重点实验室,兰州 Email: *wanyong@https://www.doczj.com/doc/e013935440.html, *通讯作者。

PTFE复合材料的摩擦学性能及力学性能

第21卷第2期高分子材料科学与工程Vo l.21,N o.2 2005年3月POLYM ER M AT ERIALS SCIENCE AND ENGINEERING M ar.2005 PTFE复合材料的摩擦学性能及力学性能X 张招柱,曹佩弦,王 坤,刘维民 (中国科学院兰州化学物理研究所固体润滑国家重点实验室,甘肃兰州730000) 摘要:利用M M-200型磨损试验机,对不同填料填充PT FE复合材料的摩擦磨损性能进行了研究,并探讨了淬火处理对PT FE复合材料摩擦学性能及力学性能的影响。研究发现,几乎所有填料均可大大降低PT FE复合材料的磨损,但其对P T FE复合材料性能的影响差别较大。聚苯脂填充P T F E复合材料虽然具有良好的摩擦磨损性能,但是其拉伸强度较小。P I增大了PT FE复合材料的摩擦系数,随着P I含量的增加,P T F E复合材料的拉伸强度增大,而其伸长率则减小。CdO填充P T F E复合材料虽具有良好的摩擦性能,但其伸长率较大。淬火处理使PT FE复合材料的结晶度下降,从而导致P T F E复合材料的硬度减小、耐磨性变差。 关键词:P T F E复合材料;摩擦磨损;力学性能 中图分类号:O631.2+1 文献标识码:A 文章编号:1000-7555(2005)02-0189-04 聚四氟乙烯(PTFE)是一种优异的固体润滑材料,它具有低的摩擦系数和良好的化学稳定性及热稳定性,但PT FE的耐磨性较差。目前,人们已用不同种类的填料对PTFE进行填充改性,并对PTFE复合材料的摩擦磨损性能进行了大量的研究[1~4],但是淬火处理对PT FE复合材料摩擦学性能及力学性能影响的研究尚未见有详细报道。本文着重采用聚酰亚胺、聚苯脂、CdO、Cu粉、玻璃纤维及炭纤维等对PTFE进行填充改性,利用MM-200型磨损试验机对PT FE复合材料在干摩擦条件下的摩擦磨损性能进行了研究,并探讨了淬火处理对PT FE复合材料摩擦学性能及力学性能的影响。 1 实验部分 将Cu粉、Pb粉、CdO粉、石墨(Gr)、玻璃纤维(GF)、炭纤维(CF)、聚酰亚胺(PI)、聚苯脂(Ekonol)等(粒度小于76L m)以一定的体积比添加到PT FE粉末(粒度39L m)中,混合均匀后冷压成型,然后在空气中自由烧结,其中部分样品作淬火处理。样品尺寸为30m m×7mm ×6mm,对偶为直径40m m的45#钢环,样品及45#钢环表面均用900#水砂纸抛光打磨。在室温、干摩擦条件下,利用M M-200型磨损试验机对PTFE复合材料的摩擦磨损性能进行了评价。在每次试验前,将样品及对偶表面用丙酮棉球擦洗干净,并在空气中晾干。本试验所选用的负荷为200N,速度为0.42m/s,摩擦磨损试验时间均为120min。磨损量以试验后样品表面的磨痕宽度计。通过测量摩擦力矩,进而计算出摩擦系数,摩擦系数取后60m in内的平均值。硬度测定在布洛维显微硬度计上进行。拉伸性能在LJ500型拉力试验机上进行,试样尺寸按GB/T1040-92规定,采用I型试样。 2 结果与讨论 T ab.1给出了PT FE复合材料的摩擦磨损及力学性能测试结果。可以看出,几乎所有填料均可大大降低PT FE复合材料的磨损,极大地提高PTFE复合材料的耐磨性。同时,填料的加入均在不同程度上提高了PT FE复合材料的硬度,但却降低了PT FE复合材料的拉伸强度(5#样品除外)和伸长率。在本试验所选用 X收稿日期:2003-06-03;修订日期:2003-08-08  作者简介:张招柱(1965-),男,博士,研究员. E-mail:zz zhang@https://www.doczj.com/doc/e013935440.html,

摩擦学题库

第一章 绪论(5) 1、摩擦学研究的理论和实践包括设计和计算、润滑材料和润滑方法,摩擦材料和表面状态以及摩擦故障诊断、监测和预报等。 2、摩擦学的一般定义是:“关于相对运动中相互作用表面的科学、技术及有关的实践”。通常也理解为包括摩擦、磨损和润滑在内的一门跨学科的科学。 3、摩擦学研究的对象很广泛,概括说研究摩擦、磨损(包括材料转移)和润滑(包括固体润滑)的原理及其应用。概括起来有以下八方面: (1). 摩擦学现象的作用机理。 (2). 材料的摩擦学特性。 (3). 摩擦学元件(包括人体人工关节)的特性与设计以及摩擦学失效分析。 (4). 摩擦材料。 (5). 润滑材料。 (6). 摩擦学状态的测试技术与仪器设备。 (7). 机器设备摩擦学失效状态的在线检测与监控以及早期预报与诊断。 (8).摩擦学数据库与知识库。 4、摩擦学研究的基本方法 (1)、黑箱法 只知其输入值和输出值,但不知其内部结构的系统称为‘ 黑箱 ’。 (2)、系统辨识方法: 通过对系统输入-输出数据的测量和处理,以建立系统数学模型的方法,即系统辨识方法。 (3)、相关法 在大量试验数据的基础上,建立材料的摩擦学性能Pt 与材料表面组织结构参数Si 相关性的函数关系的一种方法,即:F(Pt ,S1,S2, )=0 第二章 固体的表面性质(15) 1、表面的几何形状特征 (1)、微观几何形状误差 加工过程固有误差引起表面对设计要求的形状偏差,用表面波纹度、表面粗糙度描述 (2)、表面波纹度 切削加工过程中系统有害振动引起的表面波纹(波高h 、波距s ) 宏观粗糙度 h /s ≈1:40 ;s 一般1~10mm (3)、表面粗糙度 不象波纹度那样有明显的周期性,波距较大、波高较小 实际轮廓 粗糙度 波纹度 表面形貌

不锈钢的种类及用途

不锈钢的种类及用途 钢号主要性能用途举例 0Cr13 可在 ≤540℃长期使 用。常作复合板 使用,30℃以下 耐弱酸腐蚀,对 淡水、海水、蒸 发、空气也有足 够的耐蚀性 用于含硫 介质设备内构 件,精馏塔衬 里、接管垫片。 汽轮机叶片、热 裂化设备零件。 用于要求防止 污染各耐蚀性 不高的介质中。 如:焦化分馏塔 衬里,尾气脱 硫,泵叶轮,硫 磺回收中的冷 凝器复合板 1Cr13 2Cr13 可在 ≤540℃长期使 用,最高不超过 700℃,要此 75~457℃略有 热脆 离心油泵 的叶轮壳体。蒸 汽往复泵活塞、 活塞杆。油泵 轴、轴套。与热 含硫介质接触

的紧固件及其它零件 3Cr13 同上,常在 淬火后再低温 回火后磨光使 用。用做弹簧时 在400~450℃使 用 用来制造 高机械载荷、磨 损和腐蚀条件 下的零件,如 轴、阀座、阀盘、 弹簧等,又用于 室温腐蚀介质 中并要求高强 度零件,其耐腐 蚀性比1Crl3、 2Crl3略低 0Cr18Ni9 因含碳低 焊接性能好,可 在-196~+600℃ 长期使用 制造焊接 镍铬不锈钢焊 接用的焊条。用 作非奥氏体钢 法兰、垫片和化 工容器、管道。 也可用做到 -200℃的深冷 设备材料

1Cr18Ni9 1Cr18Ni9 是典型的 18-8不锈钢。耐 酸无磁性,焊接 部分有晶间腐 蚀倾向,应进行 热处理,不宜在 450~800℃使 用,可用于低温 用于温度 不高,侵蚀性介 质中工作的不 经焊接的构件, 如阀门阀件,管 道及其它零件 和要求耐蚀的 非磁性部件,亦 可用于无晶间 腐蚀的焊接件 0Cr18Ni9Ti 1Cr18Ni9Ti 因含钛,有 良好的耐晶间 腐蚀性可在 -196~600℃使 用,负荷小时, 可在650℃以下 使用。最高不超 过800℃ 制造耐酸 容器和设备的 衬里,石油化工 输送管道、设备 和零件。如:换 热器、催化裂化 再生、反应器内 构件,焦化的分 馏塔内构件。制 氢脱碳用泵配 件、管线、塔内 构件、换热器也

石墨烯的摩擦学性能

期末报告 学 院:材料工程学院 专 业:材料工程 学 号: 姓 名: 任课教师:赵元聪 日期:20160107

石墨烯的表面改性以其摩擦学中的应用 摘要 介绍石墨烯特点的基础上,综述了石墨烯表面改性的研究情况,包括有机小分子及聚合物改性无机改性以及元素掺杂等,同时总结了石墨烯在摩擦领域中的应用,如作为润滑油添加剂,制备纳米复合材料,制备润滑膜等,并展望了其在该领域中未来的研究方向。 1.介绍 石墨烯是碳原子以SP2杂化的单层堆积而成的蜂巢状二维原子晶体,其化学形态与碳纳米管外表面相似,表面结构较碳纳米管更为开放,且杨氏模量和本征强度也可与碳纳米管相媲美,从而表现出与碳纳米管相似的应用特性,如良好的韧性和润滑性,可用于耐磨减损材料及润滑剂的制备等。近年来,石墨烯优异的摩擦性能已引起了人们越来越多的关注,其片层滑动,摩擦磨损机理及在摩擦领域的应用已有诸多研究和报道。然而,结构完整的石墨烯化学稳定性高,与其他介质相互作用较弱,且层间存在很大的范德华引力,难以在许多常见溶剂中分散形成稳定的溶液,给石墨烯的进一步研究和应用造成了极大的困难。本文重点介绍石墨烯的表面改性研究进展及其在摩擦领域中的相关应用。 2.制备方法简介 2004年Geim等[1]首次用微机械剥离法成功获得单层的石墨烯以来其特有的电学、热学、力学等性质引起了科学家的广泛关注。随着研究的深入展开,石墨烯的制备方法也越来越多样化,目前主要的方法有微机械剥离法、氧化还原法、溶剂剥离法、化学气相沉积法和外延生长法等[2]。由于石墨烯超薄的厚度及优异的摩擦性能,使其在纳米尺寸数据存储设备、纳米复合材料和纳米机电系统中具有很大的潜在应用价值。这就使得石墨烯与其它材料接触时表面的相互作用研究,如摩擦力、粘附力和磨损等,显得尤为重要。

不锈钢的种类及特性

不锈钢的耐腐蚀性及其种类 1.腐蚀的种类和定义 在众多的工业用途中,不锈钢都能提供今人满意的耐蚀性能。根据使用的经验来看,除机械失效外,不锈钢的腐蚀主要表现在:不锈钢的一种严重的腐蚀形式是局部腐蚀(亦即应力腐蚀开裂、点腐蚀、晶间腐蚀、腐蚀疲劳以及缝隙腐蚀)。这些局部腐蚀所导致的失效事例几乎占失效事例的一半以上。事实上,很多失效事故是可以通过合理的选材而予以避免的。 应力腐蚀开裂(SCC):是指承受应力的合金在腐蚀性环境中由于烈纹的扩展而互生失效的一种通用术语。应力腐蚀开裂具有脆性断口形貌,但它也可能发生于韧性高的材料中。发生应力腐蚀开裂的必要条件是要有拉应力(不论是残余应力还是外加应力,或者两者兼而有之)和特定的腐蚀介质存在。型纹的形成和扩展大致与拉应力方向垂直。这个导致应力腐蚀开裂的应力值,要比没有腐蚀介质存在时材料断裂所需要的应力值小得多。在微观上,穿过晶粒的裂纹称为穿晶裂纹,而沿晶界扩图的裂纹称为沿晶裂纹,当应力腐蚀开裂扩展至其一深度时(此处,承受载荷的材料断面上的应力达到它在空气中的断裂应力),则材料就按正常的裂纹(在韧性材料中,通常是通过显微缺陷的聚合)而断开。因此,由于应力腐蚀开裂而失效的零件的断面,将包含有应力腐蚀开裂的特征区域以及与已微缺陷的聚合相联系的“韧窝”区域。 点腐蚀:是一种导致腐蚀的局部腐蚀形式。 晶间腐蚀:晶粒间界是结晶学取向不同的晶粒间紊乱错合的界城,因而,它们是钢中各种溶质元素偏析或金属化合物(如碳化物和δ相)沉淀析出的有利区城。因此,在某些腐蚀介质中,晶粒间界可能先行被腐蚀乃是不足为奇的。这种类型的腐蚀被称为晶间腐蚀,大多数的金属和合金在特定的腐蚀介质中都可能呈现晶间腐蚀。 缝隙腐蚀:是局部腐蚀的一种形式,它可能发全于溶液停滞的缝隙之中或屏蔽的表面内。这样的缝隙可以在金属与金属或金属与非金属的接合处形成,例如,在与铆钉、螺栓、垫片、阀座、松动的表面沉积物以及海生物相接烛之处形成。 全面腐蚀:是用来描述在整个合金表面上以比较均勺的方式所发生的腐蚀现象的术语。当发生全面腐蚀时,村料由于腐蚀而逐渐变薄,甚至材料腐蚀失效。不锈钢在强酸和强碱中可能呈现全面腐蚀。全面腐蚀所引起的失效问题并不怎么令人担心,因为,这种腐蚀通常可以通过简单的浸泡试验或查阅腐蚀方面的文献资料而预测它。 1.不锈钢的定义 在空气中或化学腐蚀介质中能够抵抗腐蚀的一种高合金钢,不锈钢是具有美观的表面和耐腐蚀性能好,不必经过镀色等表面处理,而发挥不锈钢所固有的表面性能,使用于多方面的钢铁的一种,通常称为不锈钢。代表性能的有13铬钢,18-铬镍钢等高合金钢。

不锈钢表面强化及摩擦学性能研究

不锈钢表面强化及摩擦学性能研究 不锈钢具有良好的耐腐蚀性、强韧性与易维护等特点,在航空航天、化工、冶金以及海洋等领域中应用广泛。表面强化技术是一种应用表面工程技术对零件表面进行改性或者涂覆镀层的技术,可以对不锈钢表面进行强化,从而提高其摩擦学性能,延长其使用寿命。 金属铬(Cr)具有硬度高和耐磨减摩性能好等特点。碳纳米管(CNT)和石墨烯(graphene)具有机械强度高和润滑性能好等特点,已成为表面强化中的典型纳米添加材料。 为了提高420不锈钢的耐磨减摩性能,本课题开发了酸化多壁碳纳米管(MWCNT)和氧化石墨烯(GOS)与六价Cr复合电镀新工艺,并利用复合电镀技术制备了Cr基碳纳米材料复合镀层,研究了它们的耐磨减摩性能。具体内容如下:1.分别采用改进的Hummers法和CNT酸化法制备GOS和酸化MWCNT,并利用扫描电子显微镜(SEM)、透射电子显微镜、拉曼光谱和傅里叶变换红外光谱对GOS和酸化MWCNT进行形貌和结构表征。 结果表明,GOS和酸化MWCNT表面存在含氧官能团。然后将它们分别加入到电镀溶液中,并采用超声分散的方法分别制备出含有GOS与酸化MWCNT的复合电镀溶液。 最后通过复合电镀技术将金属Cr分别与不同浓度的GOS和酸化MWCNT在不同电镀温度与电流密度条件下进行共沉积,制备出MWCNT-Cr与GOS-Cr复合镀层。 2.利用SEM对MWCNT-Cr与GOS-Cr复合镀层进行表征。 结果表明,在复合镀层表面可明显观察到酸化MWCNT或GOS,这说明金属Cr 与酸化MWCNT和GOS均实现了共沉积。3.对复合镀层的硬度及耐磨减摩性能进行

表征,研究了电流密度、电镀温度以及碳纳米材料浓度对复合镀层的硬度与耐磨减摩性能的影响。 研究结果表明:(1)纯Cr层、MWCNT-Cr与GOS-Cr复合镀层的硬度随着电流密度与碳纳米材料浓度的提高而提高,随着电镀温度的上升而降低,且复合镀层的硬度均比纯Cr层高;(2)纯Cr层、MWCNT-Cr与GOS-Cr复合镀层的摩擦系数随着电流密度、电镀温度以及碳纳米材料浓度的上升呈现先下降后上升的变化趋势,且复合镀层的摩擦系数均比纯Cr层低;(3)纯Cr层、MWCNT-Cr与GOS-Cr复合镀层的磨损量随着电流密度与碳纳米材料浓度的提高而下降,随电镀温度的下降而降低,且复合镀层的磨损量均比纯Cr层低。总之,Cr基碳纳米材料复合镀层的硬度比纯Cr层高,摩擦系数与磨损量比纯Cr层低,表明由于酸化MWCNT与GOS具有的高机械强度与超润滑性能,导致它们对复合镀层起到了良好的强化作用。

常用不锈钢材料性能及用途

常用不锈钢材料性能及用途介绍如下: 316不锈钢:耐蚀性和高温强度特别好,可在苛刻的条件下使用,加工硬化性好,无磁性。适于海水用设备、化学、染料、造纸、草酸、肥料生产设备、照相、食品工业、沿海设施等。 316L不锈钢:钢中添加Mo(2-3%),故耐蚀性和高温强度优良;SUS316L含碳量比SUS316低,因此,抗晶间腐蚀性比SUS316优良;高温蠕变强度高。可在苛刻的条件使用,加工硬化性好,无磁性。适于海水用设备、化学、染料、造纸、草酸、肥料生产设备、照相、食品工业、沿海设施等。 304不锈钢:具有良好的耐蚀性、耐热性、低温强度和机械性能,冲压弯曲等热加工性好,无热处理硬化现象,无磁性。广泛用于家庭用品(1、2类餐具)、橱柜、室内管线、热水器、锅炉、浴缸、汽车配件、医疗器具、建材、化学、食品工业、农业、船舶部件。 304L不锈钢:是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。用途最为广泛;耐蚀性和耐热性优良;低温强度和机械性能优良;单相奥氏体组织,无热处理硬化现象(无磁性,使用温度-196--800℃)。 304Cu不锈钢:以17Cr-7Ni-2Cu为基本组成的奥氏不锈钢;成形性优良,特别是拔丝和抗时效裂纹性好;耐腐蚀性与304相同。 303不锈钢和303Se不锈钢: 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 309不锈钢、310不锈钢、314不锈钢: 镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而309S和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。 301不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B不锈钢是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 321不锈钢:在304不锈钢钢中添加Ti,故抗晶间腐蚀性优良;高温强度和高温抗氧性优良;成本高,加工性比SUS304不锈钢差。耐热材料、汽车、飞行器排气管管路,锅炉炉盖、管道,化学装置、热交换器。 200 系列—铬-镍-锰奥氏体不锈钢。 300 系列—铬-镍奥氏体不锈钢。 301—延展性好,用于成型产品。也可通过机速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 303—通过添加少量的硫、磷使其较削加工。 304—即18/8不锈钢。GB牌号为0Cr18Ni9。 309—较之304有更好的耐温性。

织构对铝合金表面润湿性和摩擦学性能的影响

织构对铝合金表面润湿性和摩擦学性能的影响为研究表面织构和润湿性对表面摩擦学性能的影响,利用激光加工技术在5083船用铝合金表面分别加工圆台形和正方形凹坑织构,结合低表面能修饰和 溶胶-凝胶法涂覆SiO2,制备出具有不同润湿性的疏水/油表面。采用往复摩擦实验机,实验研究表面在水、海水和油中的摩擦学性能。 基于Reynolds方程分别建立圆台形和正方形凹坑织构在流体动压润滑状态下的数学模型,并对润滑膜无量纲平均压力进行数值求解,理论分析了表面织构 对摩擦学性能的影响。主要研究内容和结果如下:激光加工并结合低表面能修饰和涂覆SiO2制备出超疏水/疏油的铝合金表面,且随凹坑深度的增大,表面的水、海水和油接触角增大。 正方形凹坑织构表面的疏水/油性能优于圆台形凹坑织构表面。当凹坑深度为30μm时,正方形凹坑织构表面的水、海水和油接触角分别达到163.3°、155.8°和128.7°。 涂覆SiO2改变了液滴与表面的黏附力,使表面的水和海水滚动角减小至2.1°和3.5°。摩擦学实验结果表明,超疏水/疏油铝合金表面的减摩耐磨性能大幅度提高。 且凹坑深度30 μm织构表面的减摩耐磨性能优于凹坑深度为15 μm的表面,圆台形凹坑织构表面的减摩耐磨性能优于正方形凹坑织构表面。圆台形凹坑织构表面在水、海水和油中的摩擦系数比光滑表面分别减小了30.5%、34.8%和48.9%。 海水介质中的摩擦系数小于水介质中的,但是磨损量却大于水介质中的。海水腐蚀物减小了摩擦系数,但却增大了磨损量,对摩擦学性能具有双重效应。 润滑膜无量纲平均压力数值求解结果表明,织构润滑膜无量纲平均压力随凹

坑深度的增大先增大后减小,当凹坑深度为75μm时,润滑膜无量纲平均压力最大。圆台形凹坑产生的润滑膜无量纲平均压力约是正方形凹坑的2.4倍。 因此,圆台形凹坑织构表面的减摩耐磨性能优于正方形凹坑织构表面,理论计算结果印证了摩擦学实验结果。为优化织构表面摩擦学性能,理论计算了摩擦滑动方向、凹坑深径比及面积率对润滑膜无量纲平均压力的影响。 当摩擦滑动方向夹角为0°时,正方形凹坑织构润滑膜无量纲平均压力达到最大值1.47。圆台形凹坑深径比和面积率分别为0.3和55%时,润滑膜无量纲平均压力达到最大值10.1。 正方形凹坑深径比和面积率分别为0.35和63%时,润滑膜无量纲平均压力达到最大值8.1。

常用不锈钢的性能对比

1.不锈钢201 202 301 304 316 主要考虑防锈,硬度,加工性能等,201 202 301 304 316在防锈耐热韧性都依次提升。 202 304 316 对应的密度:7.74 7.93 7.98; 在100温度下的热导率16.3 16.3 20.5; 膨胀系数温度20--100 15.5 16.0 16.0; 电阻率温度20:0.65 0.73 0.75。 1.1钢号、牌号及化学成分 国际不锈钢标示方法 美国钢铁学会是用三位数字来标示各种标准级的可锻不锈钢的。其中: ①奥氏体型不锈钢用200和300系列的数字标示,例如,某些较普通的奥氏体不锈钢是以201、304、316以及310为标记; ②铁素体和马氏体型不锈钢用400系列的数字表示。 ③铁素体不锈钢是以430和446为标记,马氏体不锈钢是以410、420以及440C为标记,双相(奥氏体-铁素体), ④不锈钢、沉淀硬化不锈钢以及含铁量低于50%的高合金通常是采用专利名称或商标命名。 化学元素 氢H,氦He, 锂Li,铍Be,硼B,碳C,氮N,氧O,氟F,氖Ne, 钠Na,镁Mg,铝Al,硅Si,磷P,硫S,氯Cl,氩Ar, 钾K,钙Ca,钪Sc,钛Ti,钒V,铬Cr,锰Mn,铁Fe,钴Co,镍Ni,铜Cu,锌 1.2不锈钢304、316区别 304不锈钢板性能特点用途:作为不锈钢耐热钢使用最广泛,食品用设备,一般化设备,原子能工业设备。304是最普遍的钢种,耐腐蚀性、耐热性、低温强度、机械性能良好。深冲压、弯曲等常温加工性能较好,热处理后不会硬化。家庭用1、2种西餐具、Sink、室内配管、热水器、浴缸、锅炉、汽车零部件(擦窗器、回气管)、医疗机械、建筑材料、化学、食品工业、纺织产业、制酪产业、船舶零部件(非磁性,使用温度:-196至800℃)。

相关主题
文本预览
相关文档 最新文档