当前位置:文档之家› 高中必修1第四单元函数零点的存在性定理习题和答案

高中必修1第四单元函数零点的存在性定理习题和答案

高中必修1第四单元函数零点的存在性定理习题和答案
高中必修1第四单元函数零点的存在性定理习题和答案

§3.4函数的应用

3.4.1 函数与方程

第1课时函数的零点

课时目标 1.能够结合二次函数的图象判断一元二次方程根的存在性及根的个数,理解二次函数的图象与x轴的交点和相应的一元二次方程根的关系.2.理解函数零点的概念以及函数零点与方程根的联系.3.掌握函数零点的存在性定理.

1.函数y=ax2+bx+c(a≠0)的图象与x轴的交点和相应的ax2+bx+c=0(a≠0)的根的关系

函数图象

判别式Δ>0Δ=0Δ<0

与x轴交

点个数

方程的根无解

2.

一般地,我们把使函数y=f(x)的值为0的实数x称为函数y=f(x)的______.

3.函数y=f(x)的零点就是方程f(x)=0的________,也就是函数y=f(x)的图象与x轴的交点的______.

4.方程f(x)=0有实数根

?函数y=f(x)的图象与x轴有______

?函数y=f(x)有______.

函数零点的存在性的判断方法

若函数f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)·f(b)<0,则函数y=f(x)在区间(a,b)上有零点.

一、填空题

1.二次函数y=ax2+bx+c中,a·c<0,则函数的零点个数是________.

2.若函数y=f(x)在区间[a,b]上的图象为一条连续不断的曲线,则下列说法不正确的是________.(填序号)

①若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0;

②若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0;

③若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0;

④若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=0.

3.若函数f(x)=ax+b(a≠0)有一个零点为2,那么函数g(x)=bx2-ax的零点是________.4.已知函数y=f(x)是偶函数,其部分图象如图所示,则这个函数的零点至少有________个.

5.函数f (x )=????? x 2

+2x -3, x ≤0,-2+ln x , x >0零点的个数为________. 6.已知函数y =ax 3+bx 2+cx +d 的图象如图所示,则实数b 的取值范围是________.

7.已知函数f (x )是定义域为R 的奇函数,-2是它的一个零点,且在(0,+∞)上是增

函数,则该函数有______个零点,这几个零点的和等于______.

8.函数f (x )=ln x -x +2的零点个数为________.

9.根据表格中的数据,可以判定方程e x -x -2=0的一个实根所在的区间为(k ,k +1)(k ∈N ),则k

二、解答题

10.证明:方程x 4-4x -2=0在区间[-1,2]内至少有两个实数解.

11.关于x 的方程mx 2+2(m +3)x +2m +14=0有两实根,且一个大于4,一个小于4,求m 的取值范围.

能力提升

12.设函数f (x )=?

????

x 2+bx +c ,x ≤0,2, x >0,若f (-4)=f (0),f (-2)=-2,则方程f (x )=x 的解的个数是_______________________.

13.若方程x 2+(k -2)x +2k -1=0的两根中,一根在0和1之间,另一根在1和2之间,求k 的取值范围.

§2.5 函数与方程

2.5.1 函数的零点

知识梳理

1.2个 1个 0个 2个 1个 2.零点 3.实数根 横坐标

4.交点 零点

作业设计

1.2个

解析 方程ax 2+bx +c =0中,∵ac <0,∴a ≠0,

∴Δ=b 2-4ac >0,

即方程ax 2+bx +c =0有2个不同实数根,

则对应函数的零点个数为2个.

2.①②④

解析 对于①,可能存在根;

对于②,必存在但不一定唯一;

④显然不成立.

3.0,-12

解析 ∵a ≠0,2a +b =0,

∴b ≠0,a b =-12

. 令bx 2-ax =0,得x =0或x =a b =-12

. 4.4

解析 由图象可知,当x >0时,函数至少有2个零点,因为偶函数的图象关于y 轴对称,故此函数的零点至少有4个.

5.2

解析 x ≤0时,令x 2+2x -3=0,解得x =-3.

x >0时,f (x )=ln x -2在(0,+∞)上递增,

f (1)=-2<0,f (e 3)=1>0,∴f (1)f (e 3)<0,

∴f (x )在(0,+∞)上有且只有一个零点.

综上,f (x )在R 上有2个零点.

6.(-∞,0)

解析 设f (x )=ax 3+bx 2+cx +d ,则由f (0)=0可得d =0,f (x )=x (ax 2+bx +c )=ax (x -

1)(x -2)?b =-3a ,又由x ∈(0,1)时f (x )>0,可得a >0,∴b <0.

7.3 0

解析 ∵f (x )是R 上的奇函数,∴f (0)=0,又∵f (x )在(0,+∞)上是增函数,由奇函数的对称性可知,f (x )在(-∞,0)上也单调递增,由f (2)=-f (-2)=0.因此在(0,+∞)上只有一个零点,综上f (x )在R 上共有3个零点,其和为-2+0+2=0.

8.2

解析 该函数零点的个数就是函数y =ln x 与y =x -2图象的交点个数.在同一坐标系中作出y =ln x 与y =x -2的图象如下图:

由图象可知,两个函数图象有2个交点,即函数f (x )=ln x -x +2有2个零点.

9.1

解析 设f (x )=e 2-(x +2),由题意知f (-1)<0,f (0)<0,f (1)<0,f (2)>0,所以方程的一个实根在区间(1,2)内,即k =1.

10.证明 设f (x )=x 4-4x -2,其图象是连续曲线.

因为f (-1)=3>0,f (0)=-2<0,f (2)=6>0.

所以在(-1,0),(0,2)内都有实数解.

从而证明该方程在给定的区间内至少有两个实数解.

11.解 令f (x )=mx 2+2(m +3)x +2m +14.

依题意得??? m >0f (4)<0或??? m <0f (4)>0

, 即????? m >026m +38<0或?????

m <026m +38>0,解得-1913

解析 由已知????? 16-4b +c =c ,4-2b +c =-2,得?

????

b =4,

c =2. ∴f (x )=????? x 2+4x +2,x ≤0,2, x >0. 当x ≤0时,方程为x 2+4x +2=x ,

即x 2+3x +2=0,

∴x =-1或x =-2;

当x >0时,方程为x =2,

∴方程f (x )=x 有3个解.

13.解 设f (x )=x 2+(k -2)x +2k -1.

∵方程f (x )=0的两根中,一根在(0,1)内,一根在(1,2)内,

∴????? f (0)>0f (1)<0f (2)>0,即????? 2k -1>01+k -2+2k -1<0

4+2k -4+2k -1>0

∴12

.

人教版数学必修一函数与方程练习题

人教版数学必修一函数与方程练习题 重点:掌握零点定理的内容及应用 二次函数方程根的分布 学会利用图像进行零点分布的分析 1. 下列函数中,不能用二分法求零点的是( ) 2. 如果二次函数 )3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) 3. A.()6,2- B.[]6,2- C.{}6,2- D.( )(),26,-∞-+∞ 4. 已知函数22)(m mx x x f --=,则)(x f ( ) A .有一个零点 B .有两个零点 C .有一个或两个零点 D .无零点 5. 已知函数)(x f 的图象是连续不间断的,有如下的)(,x f x 对应值表 x 1 2 3 4 5 6

函数)(x f 在区间]6,1[上的零点至少有( ) A .2个 B .3个 C .4个 D .5个 6. 若方程0=--a x a x 有两个根,则a 的取值范围是( ) A .)1(∞+ B .)1,0( C .),0(+∞ D .? 7. 设函数???>≤++=,0,3,0,)(2x x c bx x x f 若2)2(),0()4(-=-=-f f f ,则函数 x x f y -=)(的零点的个数为( ) A .1 B .2 C .3 D .4 8. 无论m 取哪个实数值,函数)2 3(232--+-=x m x x y 的零点个数都是( ) A .1 B .2 C .3 D .不确定 9. 已知函数).0(42)(2>++=a ax ax x f 若0,2121=+ B .)()(21x f x f = C .)()(21x f x f < D .)(1x f 与)(2x f 大 小不能确定 10. 若一次函数b ax x f +=)(有一个零点2,则二次函数ax bx x g -=2)(的 零点是 11. 根据下表,能够判断方程)()(x g x f =有实数解的区间 是 .

函数零点存在性定理

?函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. ?函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1: 若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有______(写出所有正确结论的序号).

苏教版高中数学必修一函数的零点教案

2.5.1函数的零点 教学目标: 1.理解函数的零点的概念,了解函数的零点与方程根的联系. 2.理解“在函数的零点两侧函数值乘积小于0”这一结论的实质,并运用其解决有关一元二次方程根的分布问题. 3.通过函数零点内容的学习,分析解决对一元二次方程根的分布的有关问题,转变学生对数学学习的态度,加强学生对数形结合、分类讨论等数学思想的进一步认识. 教学重点: 函数零点存在性的判断. 教学难点: 数形结合思想,转化化归思想的培养与应用. 教学方法: 在相对熟悉的问题情境中,通过学生自主探究,在合作交流中完成学习任务.尝试指导与自主学习相结合. 教学过程: 一、问题情境 1.情境:在第2.3.1节中,我们利用对数求出了方程0.84x=0.5的近似解; 2.问题:利用函数的图象能求出方程0.84x=0.5的近似解吗? 二、学生活动 1.如图1,一次函数y=kx+b的图象与x轴交于点(-2,0),试根据图象填空: (1)k0,b0; (2)方程kx+b=0的解是; (3)不等式kx+b<0的解集; x y O -2 图1

2.如果二次函数y =ax 2+bx +c 的图象与x 轴交于点(-3,0)和(1,0),且开口方向向下,试画出图象,并根据图象填空: (1)方程ax 2+bx +c =0的解是 ; (2)不等式ax 2+bx +c >0的解集为 ; ax 2+bx +c <0的解集为 . 三、建构数学 1.函数y =f (x )零点的定义; 2.一元二次方程ax 2+bx +c =0(a >0)与二次函数y =ax 2+bx +c 的图象之间关系: △=b 2-4ac △>0 △=0 △<0 ax 2+bx +c =0的根 y =ax 2+bx +c 的图象 y =ax 2+bx +c 的零点 3.函数零点存在的条件:函数y =f (x )在区间[a ,b ]上不间断,且f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )上有零点. 四、数学运用 例1 函数y =f (x )(x [-5,3])的图象如图所示 ,根据图象,写出函数f (x ) 的零点及不等式f (x )>0与f (x )<0的解集. 例2 求证:二次函数y =2x 2+3x -7有两个不同的零点. 例3 判断函数f (x )=x 2-2x -1在区间(2,3)上是否存在零点? 例4 求证:函数f (x )=x 3+x 2+1在区间(-2,-1)上存在零点. 练习:(1)函数f (x )=2x 2-5x +2的零点是_______ . O x 1 x 2 x y O x 1=x 2 x y O x y y x O -5 -3 -1 1 3

函数零点存在性定理

函数零点存在性定理标准化管理部编码-[99968T-6889628-J68568-1689N]

函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. 函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1: 若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有 ______(写出所有正确结论的序号). 答案 由题意可确定f(x)唯一的一个零点在区间(0,2)内,故在区间[2,16)内无零点. (3)正确, (1)不能确定, (2)中零点可能为1, (4)中单调性也不能确定.

高中数学人教B版必修一第二章2.4.1《函数的零点》 教学设计

《函数的零点》课堂教学设计 一.教学内容 本课内容选自经全国中小学教材审定委员会2004年初审通过的人教版普通高中课程标准试验教科书,数学必修①,B 版第二单元《函数》中的《函数的零点》,新授课,第一课时。 1.知识背景 2.4节《函数与方程》作为新课程改革试验教材中的新增内容,其课程目标是想 通过对本节的学习,使学生学会用二分法求函数零点近似解的方法,从中体会函数与方程之间的联系,同时达到“方法构建、技术运用、算法渗透”这一隐性的教学目标。建立实际问题的函数模型,利用已知函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求函数零点的近似解,是在建立和运用函数模型的大背景下展开的。方程的根与函数的零点的关系、用二分法求函数零点的近似解中均蕴涵了“函数与方程的思想”,这也是本章渗透的主要数学思想. 2.本节内容 《函数的零点》通过对二次函数图像的绘制、分析,得到零点的概念,从而进一步 探索一般函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,对函数图像进行全新的认识,在函数与方程的联系中体验数学中的转化思想的意义和价值。 二.教学目标 知识与技能:(1)通过对二次函数增图像的描绘,理解函数零点的概念,体会我们在 研究和解决问题过程的一般思维方法。 (2)通过对一般函数图像的描绘分析,领会函数零点与相应方程之间的 关系,掌握零点存在的判定条件。 (3)培养学生对事物的观察、归纳能力和探究能力。 过程与方法: 通过画函数图像,分析零点的存在性。 情感态度与价值观: 使学生再次领略“数形”的有机结合,渗透由抽象到具体的思想, 理解动与静的辨证关系,体会数学知识之间的紧密联系。 三.教学重点 重点:理解零点的概念,判定二次函数零点的个数,会求函数的零点. 具体流程设计 一、创设情境 画函数322--=x x y 的图像,并观察其图象与其对应的一元二次方程0322=--x x [师生互动] 师:引导学生通过配方,画函数图象,分析方程的根与图象和x 轴交点坐标的关系。

张荣军判断零点的存在性定理

课题:判断函数零点的存在性 ---------根的存在性定理 学习目标: (一)知识与技能: 2.理解并会用函数在某个区间上存在零点的判定方法. (二)过程与方法: 自主发现、探究实践,理解函数零点存在的条件. (三)情感、态度、价值观: 1.在函数与方程的联系中体验数学转化思想的意义和价值 2.数行结合思想在探索数学问题的重要性. 2.了解方程求解方法的简单发展史.. 重点难点: 重点:体会函数的零点与方程的根之间的联系,掌握零点存在的判定条件. 难点:探究发现函数零点的存在性. 课题引入:在人类用智慧架设的无数从未知通向已知的金桥中,方程的求解是其中璀璨的一座,虽然今 天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月. 我国古代数学家已比较系统地解决了部分方程的求解的问题。如约公元50年—100年编成的《九章算术》,就给出了求一次方程、二次方程和三次方程根的具体方法… 问题·探究 (一)回顾旧知,“温故知新”。 1、函数的零点:对于函数)(x f ,我们把使0)(=x f 的实数x 叫做)(x f 的零点(zero point ). 2、等价关系: 方程0)(=x f 有实数根 ?函数)(x f y =的图像与x 轴有交点?函 数)(x f y =有零点. 巩固练习:求下列方程的根. (1)0652 =+-x x (2) )1lg()(-=x x f (3)062ln =-+x x (二)提出问题,“星河探秘”。(零点存在性) 问题1:函数y =f(x)在某个区间上是否一定有零点?

怎样的条件下,函数y =f(x)一定有零点? (1)观察二次函数32)(2 --=x x x f 的图象,分析其图像在零点两侧如何分布? ○ 1 在区间]1,2[-上有零点______;=-)2(f _______,=)1(f _______, )2(-f ·)1(f _____0(<或>) . ○2 在区间]4,2[上有零点______;)2(f ·)4(f ____0(<或>). (2)观察下面函数)(x f y =的图象,分析其图像在零点两侧如何分布? ○1 在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>). ○2 在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>). ○3 在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>). (4)观察上面(3)的函数图象: 若函数在某区间内存在零点,则函数在该区间上的图象是 ____ (间断/连续);含零点的某一较小区间中以零点左右两边的实数为自变量,它们各自所对应的函数值的符号是____(相同/互异) (三)讨论探索,发现“新大陆”。 根的存在性定理:如果函数)(x f y =在区间][b a ,上的图像是连续不断的一条曲线,并且有 0)()(

函数零点存在性定理.

? ? 函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. ?函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1: 若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有______(写出所有正确结论的序号).

数学必修一零点题型总结

第三章 第一节 函数与方程 一、函数的零点 1、实例:填表 2、函数零点的定义:____________________________叫做函数的零点 (注意:________________________) 题型一 求函数的零点 1.y =x -2的图象与x 轴的交点坐标及其零点分别是( ) A .2;2 B .(2,0);2 C .-2;-2 D .(-2,0);-2 2.函数f(x)=x 2+4x +a 没有零点,则实数a 的取值范围是( ) A .a<4 B .a>4 C .a ≤4 D .a ≥4 3.函数f(x)=ax 2+2ax +c(a ≠0)的一个零点是-3,则它的另一个零点是( ) A .-1 B .1 C .-2 D .2 4.函数f(x)=x 2-ax -b 的两个零点是2和3,求函数g(x)=bx 2-ax -1的零点. 5、求下列函数的零点 (1)9 1 27)(-=x x f (2))1(log 2)(3+-=x x f

二、零点定理 1、方程的根与函数零点的关系: 方程f(x)=0的根?函数f(x)的零点?函数与x 轴交点的横坐标 2、零点定理: 如果函数 () y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 ()()0f a f b ?<那么函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得 ()0f c =,这个 c 也就是方程()0f x =的实数根。 问题1:去掉“连续不断”可以吗? 问题2:如果函数 ()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 ()()0f a f b ?<那么函数()y f x =在区间(,)a b 内有一个零点,对不对? 问题3:如果函数 ()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 0)()(>b f a f 那么函数()y f x =在区间(,)a b 上无零点,对不对? 题型二、判断区间内有无零点 1.函数y =f (x )在区间(-2,2)上的图象是连续的,且方程f (x )=0在(-2,2)上仅有一个实根0,则f (-1)·f (1)的值( ) A .大于0 B .小于0 C .等于0 D .无法确定 2. 函数2 ()ln f x x x =- 的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .1 (1,)e 和(3,4) D .(,)e +∞ 3.设函数f(x)=2x -x 2 -2x ,则在下列区间中不存在...零点的是( ) A.(-3,0) B.(0,3) C.(3,6) D.(6,9) 4、方程521 =+-x x 在下列哪个区间内一定有根?( ) A 、(0,1) B 、(1,2) C 、(2,3) D 、(3,4) 5、根据表格中的数据,可以判定方程20x e x --=的一个根所在的区间为( ) D .(2,3)

人教新课标版数学高一-必修一练习方程的根与函数的零点

1.函数f (x )=2x 2-3x +1的零点是( ) A .-12,-1 B.12 ,1 C.12,-1 D .-12 ,1 解析:方程2x 2-3x +1=0的两根分别为x 1=1,x 2=12 ,所以函数f (x )=2x 2-3x +1的零点是12 ,1. 答案:B 2.下列各图象表示的函数中没有零点的是( ) 解析:函数没有零点?函数的图象与x 轴没有交点. 答案:D 3.函数f (x )=x +ln x 的零点所在的区间为( ) A .(-1,0) B .(0,1) C .(1,2) D .(1,e) 解析:法一:∵x >0,∴A 错.又因为f (x )=x +ln x 在(0,+∞)上为增函数,f (1)=1>0,所以f (x )=x +ln x 在(1,2),(1,e)上均有f (x )>0,故C 、D 不对. 法二:取x =1e ∈(0,1),因为f (1e )=1e -1<0,f (1)=1>0,所以f (x )=x +ln x 的零点所在的区间为(0,1). 答案:B 4.若函数f (x )唯一的零点同时在区间(0,16),(0,8),(0,4),(0,2)上,那么下列命题中正确的是( ) A .函数f (x )在区间(0,1)内有零点 B .函数f (x )在区间(0,1)或(1,2)内有零点

C.函数f(x)在区间[2,16)内无零点 D.函数f(x)在区间(1,16)内无零点 解析:由题意可知函数f(x)的零点必在区间(0,2)内. 答案:C 5.方程ln x=8-2x的实数根x∈(k,k+1),k∈Z,则k=__________. 解析:令f(x)=ln x+2x-8,则f(x)在(0,+∞)上单调递增. ∵f(3)=ln 3-2<0,f(4)=ln 4>0, ∴零点在(3,4)上,∴k=3. 答案:3 6.函数f(x)=(x2-1)(x+2)2(x2-2x-3)的零点个数是________. 解析:f(x)=(x+1)(x-1)(x+2)2(x-3)(x+1) =(x+1)2(x-1)(x+2)2(x-3). 可知零点为±1,-2,3,共4个. 答案:4 7.判断下列函数在给定区间上是否存在零点. (1)f(x)=x2-3x-18,x∈[1,8]; (2)f(x)=x3-x-1,x∈[-1,2]; (3)f(x)=log2(x+2)-x,x∈[1,3]. 解:(1)法一:∵f(1)=-20<0,f(8)=22>0, ∴f(1)·f(8)<0.故f(x)=x2-3x-18在[1,8]上存在零点. 法二:令x2-3x-18=0,解得x=-3或x=6, ∴函数f(x)=x2-3x-18在[1,8]上存在零点. (2)∵f(-1)=-1<0,f(2)=5>0, ∴f(-1)·f(2)<0. ∴f(x)=x3-x-1在[-1,2]上存在零点. (3)∵f(1)=log2(1+2)-1>log22-1=0, f(3)=log2(3+2)-3

根的存在性证明(零点定理)

根的存在性定理:如果)(x f 在闭区间[a,b]上连续 0)(,,0)()(=∈<ξξf b a b f a f )使得(则存在。 证明 利用构造法的思想,将)(x f 的零点范围逐步缩小。先将[a,b]二等分为],2[],2, [b b a b a a ++,如果0)2 (=+b a f 。则定理获证。如果0)2(≠+b a f ,则f(a)和f(b)中必然有一个与)2 (b a f +异号,记这个小区间为[11,b a ],它满足2-0)()(1111a b a b b f a f -=<且区间的长度。又将[11,b a ]二等分,考虑中点的函数值,要么为零,要么不为零。如果中点的函数值为零,则定理获证。如果中点的函数值不为零,那么必然可以选出一个小区间,使得f(x)在这个区间的端点值异号,记这个小区间为 ],[22b a ,它满足[a,b]?[11,b a ]],[22b a ?,0)()(2222 22<-=-a f b f a b a b 且。采用这样的方法一直进行下去,或者到有限步时,某个区间的中点的函数值为零,这样定理的结论成立。或者所有区间的中点的函数值不为零,那么我们就会得到一个无穷的区间序列{],[n n b a },它满足:① [a,b]?[11,b a ]?????],[22b a ;②n n n a b a b 2-=-;③0)()(δ,使得f(x)在],[),(b a ?+-δξδξ上与)(ξf 同号。根据所构造的区间的性质②,存在正整数N ,当n>N 时, ],[),(],[b a b a n n ?+-?δξδξ。根据区间的性质③,0)()(

高中数学必修一《函数图象变换与函数零点》优秀教学设计

? -2 13x y O 【课前练习】 1.函数 12-=x y 的零点是 2. 2.函数 x y 2log = 的零点是 3.函数 12-=x y 的零点是 4.函数 12 ++=x x y 的零点个数是 5.函数 232)(2 --=x x x f 的零点个数是 6.函数y=f( x)的图象如右图,则其零点为 思考: (1)怎样求函数lnx+2x -6=0的零点呢?零点个数呢? (2)怎样求函数 ()243f x x x =-+的零点呢?零点个数呢? 这节课将学习这类问题,首先介绍一下图象变换 问题1: 怎样由函数)(x f y =的图象得到函数)(a x f y ±=的图象? 怎样由函数)(x f y =的图象得到函数a x f y ±=)(的图象? 课题 §函数图象变换与函数零点 课型 复习 学习目标 ①掌握函数图象平移、对称、翻折变换法则 ②会画出一些基本函数图象,并进行平移、对称、翻折变换 ③会在同一坐标系中画出两个函数图象,并通过交点个数判断函数零点个数 ④能说出函数零点,方程根,图象交点的关系。 重点 会根据图象变换法则,画出相应函数图象 难点 会在同一坐标系中画出两个函数图象,并通过交点个数判断函数零点个数 平 移 变 换

翻 折 变 换 练习2:作出函数2 2- =x y的图象

【典例分析】

【课后巩固练习】 1. 函数零点所在区间为( ) A. )0,1(- B. )1,0( C. )2,1( D. )3,2( 2、【2015高考安徽,文4】下列函数中,既是偶函数又存在零点的是( ) (A )y =lnx (B )2 1y x =+ (C )y =sinx (D )y =cosx 3 、函数 的一个正数零点附近的函数值用二分法计算,得数据如下: 那么方程的一个最接近的近似根为( ) A . B . C . D . 4、【2015高考湖南】若函数()|22|x f x b =--有两个零点,则实数b 的取值范围是 . 5、(07湖南)函数()???>+-≤-=1,341 ,442x x x x x x f 的图象和函数()x x g 2log =的图象的交 点个数是( ) A.4 B.3 C.2 D.1 2()2x f x e x =+-

人教版A版高一数学必修一第三章第一节 函数的零点教学设计

3.1.1 函数零点 一、内容与解析 (一)内容:函数零点 (二)解析:函数的零点是高中新教材人教A版必修①第三章3.1.1的内容。在上一章中学了几种基本 f x的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为初等函数,() 0的实数x;从方程的角度看,即为相应方程()0 f x 的实数根;从函数的图像角度看,函数的零点就是 f x与x轴交点的横坐标.函数的零点从不同的角度,将函数与方程,数与形有机的联系在一起,体现函数() 的是函数知识的应用. 学习函数零点存在性定理可为二次函数实根分布打下基础,并为下一节内容《二分法求方程近似解》提供理论支持.因此本节课是本学科的重点内容,有着承前启后的作用。教学的重点是函数零点的形成与求解及其基本应用,在讲授本节内容时更多要渗透函数与方程思想、转化与化归思想、数形结合的思想方法.本科计划两课时。 二、教学目标及解析 目标:1、理解函数(结合二次函数)零点的概念,能判断二次函数零点的存在性,会求简单函数的零点,了解函数零点与方程的关系。 2、体验函数零点概念的形成过程,引导学生会用转化与数形结合的思想方法研究问题,提高数学知识的综合应用能力。 解析:1、目标1是指学生体会到使函数值为0的解; 2、目标2是指学生体会到函数与方程思想,转化与化归思想、数形结合的思想方法.; 三、问题诊断分析 本节课的教学中,学生可能出现如下几个问题: ①为什么要研究函数的零点?什么叫函数的零点?怎样去求函数的零点?一元二次方程的根与二次函

数图像之间的关系? ②函数零点是不是一个点?零点一定是实根吗?那存不存在非实根? 学生出现这几个问题的原因是抓不住函数零点的本质,对函数零点的概念理解不透彻,另外现实生活中遇到的零点问题,更多的是没有认真去研究。解决这些问题的关键是需要感受从特殊到一般过程,找出其共同点和规律,另外在应用时应以方程和图像的眼光来看待函数的零点,对应图象和定义,找出方程与函数的关系。 四、教学条件支持 本节课的教学中需要用到几何画板,因为使用几何画板有利于更直观的展示方程的根与函数零点的联系 五、教学过程 1、自学(大约8分钟) 问题1:函数零点是如何得到的? 问题2:函数零点内容是什么? 问题3:函数零点能解决什么问题? 2、互学导学(大约32分钟) 问题1:如何定义函数的零点以及函数零点概念是如何形成的? 设计意图:单刀直入,从学生熟悉的二次函数与二次方程入手,通过对图象的观察获得二次函数的零点与一元二次方程根的关系,给学生搭自然类比引出概念.零点知识是陈述性知识,关键不在于让学生提出这个概念,而在于理解提出零点概念的作用——沟通函数与方程的关系.引入函数的零点的概念一是突出这一转化的思想,二是表述起来更方便。 师生活动:引导学生通过配方,画函数图象,分析方程的根与图象和x轴交点坐标的关系。 小问题1:已知函数223 =--,当x为何值时,Y=0 ? y x x

人教版数学高一必修一同步训练 函数的零点

§2.4 函数与方程 2.4.1 函数的零点 一、基础过关 1.函数f (x )=x -4 x 的零点个数为 ( ) A .0 B .1 C .2 D .无数个 2.若函数y =f (x )在区间[a ,b ]上的图象为一条连续不断的曲线,则下列说法正确的是( ) A .若f (a )f (b )>0,不存在实数c ∈(a ,b )使得f (c )=0 B .若f (a )f (b )<0,存在且只存在一个实数c ∈(a ,b )使得f (c )=0 C .若f (a )f (b )>0,有可能存在实数c ∈(a ,b )使得f (c )=0 D .若f (a )f (b )<0,有可能不存在实数c ∈(a ,b )使得f (c )=0 3.若函数f (x )=mx 2+8mx +21,当f (x )<0时,-7b >c ,则该函数的零点个数为 ( ) A .1 B .2 C .0 D .不能确定 11.已知函数f (x )是定义域为R 的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数, 则该函数有______个零点,这几个零点的和等于______. 12.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x . (1)写出函数y =f (x )的解析式;

高中数学必修一 零点存在性定理及典例

零点存在性定理 如果函数y = f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0那么,函数y = f (x )在区间[a ,b ]内有零点,即存在c ∈(a ,b ),使得f (c ) = 0这个c 也就是方程f (x ) = 0的根 定理的理解 (1)函数在区间[a ,b ]上的图象连续不断,又它在区间[a ,b ]端点的函数值异号,则函数在[a ,b ]上一定存在零点 (2)函数值在区间[a ,b ]上连续且存在零点,则它在区间[a ,b ]端点的函数值可能异号也可能同号 (3)定理只能判定零点的存在性,不能判断零点的个数 例:函数y = f (x ) = x 2 – ax + 2在(0,3)内,①有2个零点. ②有1个零点,分别求a 的取值范围. 解析:①f (x )在(0,1)内有2个零点,则其图象如下 则(0)0(3)00032 f f a b a >??>????≥??<-??>?

(完整word版)高中数学必修一第三章知识点总结

1 第三章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。 2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。 即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点. 3、函数零点的求法: ○ 1 (代数法)求方程0)(=x f 的实数根; ○ 2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点. 4、基本初等函数的零点: ①正比例函数(0)y kx k =≠仅有一个零点。 ②反比例函数(0)k y k x = ≠没有零点。 ③一次函数(0)y kx b k =+≠仅有一个零点。 ④二次函数)0(2≠++=a c bx ax y . (1)△>0,方程20(0)ax bx c a ++=≠有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点. (2)△=0,方程20(0)ax bx c a ++=≠有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△<0,方程20(0)ax bx c a ++=≠无实根,二次函数的图象与x 轴无交点,二次函数无零点. ⑤指数函数(0,1)x y a a a =>≠且没有零点。 ⑥对数函数log (0,1)a y x a a =>≠且仅有一个零点1. ⑦幂函数y x α=,当0n >时,仅有一个零点0,当0n ≤时,没有零点。 5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把()f x 转化成()0f x =,再把复杂的函数拆分成两个我们常见的函数12,y y (基本初等函数),这另 个函数图像的交点个数就是函数()f x 零点的个数。 6、选择题判断区间(),a b 上是否含有零点,只需满足()()0f a f b <。 7、确定零点在某区间(),a b 个数是唯一的条件是:①()f x 在区间上 连续,且()()0f a f b <②在区间(),a b 上单调。 8、函数零点的性质: 从“数”的角度看:即是使0)(=x f 的实数; 从“形”的角度看:即是函数)(x f 的图象与x 轴交点的横坐标;

高中数学 零点存在性定理教学设计 新人教版必修1

2014年高中数学零点存在性定理教学设计新人教版必修1 一、内容及其解析 (一)内容:零点存在性定理. (二)解析:本节课是关于函数零点的一节概念及探究课,是高中新课改人教A版教材第三章的第一节课的第二小节,因此教学时应当站在函数应用的高度,从函数与其它知识的联系的角度来引入较为适宜。 函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图象表示看,函数的零点就是函数f(x)与x轴交点的横坐标。函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形、函数与方程有机的联系在一起。 函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则。从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。 函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。 二、目标及其解析 (一)教学目标 (1)知识与技能:结合二次函数的图象,判断一元二次方程根的存在性及个数,从而了解函数的零点与方程的根的联系.理解并会用零点存在性定理。 (2)过程与方法:培养学生观察、思考、分析、猜想,验证的能力,并从中体验从特殊到一般及函数与方程思想。渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。 (3)情感态度与价值观:在引导学生通过自主探究,发现问题,解决问题的过程中,激发学生学习热情和求知欲,体现学生的主体地位,提高学习数学的兴趣。 (二)解析 1.对于常见函数的图象学生要有印象,要能用描点法画出一些复杂函数的图象,同时,研究函数的单调性、奇偶性等性质,来判断方程的根的存在与否和个数; 2.函数的零点、方程的根、函数图象与X轴交点的横坐标具备等价关系,这种等价关系实质上是数学本质一致,只是各自有不同的描述对象而已,从而向学生渗透转化的数学思想; 3.本节课对函数零点存在性(即方程的根的存在性)的探究是借助实际问题抽象出来的,由此推广到一次函数、二次函数这两类特殊的函数,进一步推广到一般的情形,要注意推广的可行性、借助于函数图象的直观性,只要求学生理解其合理性并能对具体的函数进行简单应用。教学中,教师可以引导学生借助函数图象分析其逆定理的正确与否,由此达到充分理解此定理的目的。 三、问题诊断分析 通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。由此作为函数应用的第一课时,有必要点明函数的核心地位,即说明函数与其他知识的联系及其在生活中的应用,初

专题05 零点存在定理中取点问题

max min max 专题五 零点存在定理中取点问题 如果函数 y = f ( x ) 在区间[a , b ] 上的图象是连续不断的一条曲线,并且有 f (a ) f (b ) < 0 ,那么,函数 y = f ( x ) 在区间(a , b ) 内有零点,即存在c ∈(a , b ) ,使得 f (c ) = 0 ,这个c 也就是方程 f ( x ) = 0 的根. 在实际应用中,如何取 a , b ,是解决问题的难点. 类型一 利用方程的根或部分代数式的根取点 x 典例 1 已知函数 f ( x ) = e - ax +1. (1) 当 a = 1 时,求 y = f ( x ) 在 x ∈[-1,1] 上的值域; (2) 试求 f ( x ) 的零点个数,并证明你的结论. 【答案】(1) [2 - e ,1](2)当a ≤ 0 时, f ( x ) 只有一个零点;当 a > 0 时, f ( x ) 有两个零点. 【解析】 (1)当 a = 1 时, f ( x ) = x e x - ax +1,则 f '( x ) = 1- x -1 = g ( x ) , e x 而 g '( x ) = x - 2 < 0 在[-1,1]上恒成立,所以 g ( x ) = e x f '( x ) 在[-1,1]上递减, f '( x ) = f '(-1) = 2e -1 > 0 , f '( x ) = f '(1) = -1 < 0 , 所以 f '( x ) 在[-1,1]上存在唯一的 x 0 = 0 ,使得 f '(0) = 0 ,而且 当 x ∈(-1, 0) 时, f '( x ) > 0 , f ( x ) 递增;当 x ∈(0,1) 时 f '( x ) < 0 , f ( x ) 递减; 所以,当 x = 0 时, f ( x ) 取极大值,也是最大值,即 f ( x ) = f (0) = 1, x

相关主题
文本预览
相关文档 最新文档