当前位置:文档之家› 函数零点存在的判定与证明

函数零点存在的判定与证明

函数零点存在的判定与证明
函数零点存在的判定与证明

零点存在的判定与证明

一、基础知识:

1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。

2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ?<,那么函数()y f x =在区间(),a b 内必有零点,即

()0,x a b ?∈,使得()00f x =

注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在

3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。因此分析一个函数零点的个数前,可尝试判断函数是否单调

4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)

(1)若()()0f a f b ?<,则()f x “一定”存在零点,但“不一定”只有一个零点。要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点 (2)若()()0f a f b

?>,

则()f x “不一定”存在零点,也“不一定”没有零点。如果()f x 单调,那么“一定”没有零点

(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ?的符号是“不确定”的,受函数性质与图像影响。如果()f x 单调,则()()f a f b ?一定小于0

5、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,

0x x =是()f x 的零点,且()0,x a b ∈,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,

()0f x >

6、判断函数单调性的方法: (1)可直接判断的几个结论:

① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数

② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数

③ 若()(),f x g x 为增函数,且()(),0f x g x >,则()()f x g x ?为增函数

(2)复合函数单调性:判断()()y f g x =的单调性可分别判断()t g x =与()y f t =的单调性(注意要利用x 的范围求出t 的范围),若()t g x =,()y f t =均为增函数或均为减函数,则()()y f g x =单调递增;若()t g x =,()y f t =一增一减,则()()y f g x =单调递减(此规律可简记为“同增异减”

) (3)利用导数进行判断——求出单调区间从而也可作出图像 7、证明零点存在的步骤:

(1)将所证等式中的所有项移至等号一侧,以便于构造函数

(2)判断是否要对表达式进行合理变形,然后将表达式设为函数()f x (3)分析函数()f x 的性质,并考虑在已知范围内寻找端点函数值异号的区间 (4)利用零点存在性定理证明零点存在

例1:函数()23x f x e x =+-的零点所在的一个区间是( )

A. 1,02??

- ???

B.

10,2??

???

C. 1,12??

???

D. 31,2?? ???

思路:函数()f x 为增函数,所以只需代入每个选项区间的端点,判断函数值是否异号即可

解:12112340

22f e -????

-=+?--=

-< ? ?????

,()020f =-<

11232022f ??

=+?-=< ???

()12310f e e =+-=-> ()1102f f ??∴?< ??? 01,12x ??

∴∈ ???

,使得()00f x =

答案:C

例2:函数()()ln 1f x x x =-+的零点所在的大致区间是( )

A. 31,2??

???

B.

3,22??

???

C. ()2,e

D. (),e +∞ 思路:先能判断出()f x 为增函数,然后利用零点存在性判定定理,只需验证选项中区间端点函数值的符号即可。1x →时,()ln 1x -→-∞,从而()f x ?-∞,

313ln 0222f ??=+> ???,所以031,2x ??

∈ ???

,使得()00f x =

答案:A

小炼有话说:(1)本题在处理1x →时,是利用对数的性质得到其()ln 1x -的一个趋势,从而确定符号。那么处理零点问题遇到无法计算的点时也要善于估计函数值的取向。

(2)本题在估计出1x →时,()ln 1x -→-∞后,也可举一个具体的函数值为负数的例子来说明,比如()1

1.1 1.1ln 010

f =+<。

正是在已分析清楚函数趋势的前提下,才能保证快速找到合适的例子。

例3:(优质试题,浙江)已知0x 是函数()1

21x f x x

=+

-的一个零点,若()()10201,,,x x x x ∈∈+∞,则( )

A. ()()120,0f x f x <<

B. ()()120,0f x f x <>

C. ()()120,0f x f x ><

D. ()()120,0f x f x >>

思路:条件给出了()f x 的零点,且可以分析出()f x 在()1,+∞为连续的增函数,所

以结合函数性质可得()()()()10200,0f x f x f x f x <=>= 答案:B

例4:已知函数()()log 0,1a f x x x b a a =+->≠,当234a b <<<<时,函数()f x 的零点()0,1,x n n n N *∈+∈,则n =________

思路:由a 的范围和()f x 解析式可判断出()f x 为增函数,所以0x 是唯一的零点。考

()3l o g

3

3a

a a

f b =

+->

+-=->,()2log 22log 223log 210a a a f b =+-<+-=-<,所以()02,3x ∈,从而2n = 答案:2n =

例5:定义方程()()'f x f x =的实数根0x 叫做函数()f x 的“新驻点”,若

()()()()3,ln 1,1g x x h x x x x ?==+=-的“新驻点”分别为,,αβγ,则( ) A. αβγ>> B. βαγ>> C. γαβ>> D. βγα>> 思路:可先求出()()()''',,g x h x x ?,由“新驻点”的定义可得对应方程为:

()321

1,ln 1,131

x x x x x =+=

-=+,从而构造函数 ()()()()321111

1,ln 1,311g x x h x x x x x x ?=-=+-=--+,

再利用零点存在性定理判断,,αβγ的范围即可 解:()()()'''21

1,,31

g x h x x x x ?==

=+ 所以,,αβγ分别为方程()321

1,ln 1,131

x x x x x =+=

-=+的根,即为函数: ()()()()321111

1,ln 1,311

g x x h x x x x x x ?=-=+-

=--+的零点 1α=

()()111

010,1ln202

h h =-<=-> ()()()110100,1h h β∴?

()()'213632x x x x x ?=-=- ()1x ?∴在()0,2单调减,在()(),0,2,-∞+∞单调增,

而()1010?=-<,(),2x ∴∈-∞时,()10x ?<,而()14150?=>

()()11240??∴?< ()2,4γ∴∈

βαγ∴<<

答案:C

例6:若函数)(x f 的零点与()ln 28g x x x =+-的零点之差的绝对值不超过5.0, 则

)(x f 可以是( )

A .63)(-=x x f

B .2)4()(-=x x f

C .1)(1-=-x e x f

D .)2

5ln()(-=x x f

思路:可判断出()g x 单增且连续,所以至多一个零点,但()g x 的零点无法直接求出,而各选项的零点便于求解,所以考虑先解出各选项的零点,再判断()g x 的零点所在区间即可

解:设各选项的零点分别为,,,A B C D x x x x ,则有72,4,1,2

A B C D x x x x ==== 对于()ln 28g x x x =+-,可得:()()3ln320,4ln40g g =-<=>

()03,4x ∴?∈ ()00g x =

77=ln 1022g ??-> ??? 073,2x ??

∴∈ ???

,所以C 选项符合条件

答案:C

例7:设函数()()224,ln 25x f x e x g x x x =+-=+-,若实数,a b 分别是()(),f x g x 的零点,则( )

A. ()()0g a f b <<

B. ()()0f b g a <<

C. ()()0g a f b <<

D. ()()0f b g a << 思路:可先根据零点存在定理判断出,a b 的取值范围:

()()030,1240f f e =-<=+->,从而()0,1a ∈;()()130,2ln230g g =-<=+>,从而()1,2b ∈ ,所以有012a b <<<<,考虑()()0f a g b ==,且发现()()

,f x g x

为增函数。进而()()()()0,0g a g b f b f a <=>=,即()()0g a f b << 答案:A

例8:已知定义在()1,+∞上的函数()ln 2f x x x =--,求证:()f x 存在唯一的零点,且零点属于()3,4

思路:本题要证两个要素:一个是存在零点,一个是零点唯一。证明零点存在可用零点存在性定理,而要说明唯一,则需要函数的单调性 解:()'11

1x f x x x

-=-

=

()1,x ∈+∞

()'0f x ∴> ()f x ∴在()1,+∞单调递增 ()()31ln30,42ln20f f =-<=->

()()340f f ∴< ()03,4x ∴?∈,使得()00f x =

因为()f x 单调,所以若()''0003,4,x x x ?∈≠,且()()'

000f x f x == 则由单调性的性质:'

0x x =与题设矛盾 所以()f x 的零点唯一

小炼有话说:如果函数()f x 在(),a b 单调递增,则在(),a b 中,

()()1212x x f x f x

=?=,即函数值与自变量一一对应。在解答题中常用这个结论证明零点的唯一性

例9:(优质试题年,天津)已知0a >,函数()2ln f x x ax =-(()f x 的图像连续不断)

(1)求()f x 的单调区间 (2)当18a =

时,证明:存在()02,+x ∈∞,使得()032f x f ??

= ???

解:(1)()2'

121

2ax f x ax x x

-=-=- 令()'0f x >

解得:x >

()f x ∴在? ?单调递减,在?+∞??

单调递增 (2)思路:由(1)可得()f x 在()0,2单调递减,在()2,+∞单调递增,从而从图

像上看必然会在()2,+∞存在0x 使得()032f x f ??

= ???,但由于是证明题,解题过程要

有理有据。所以可以考虑将所证等式变为()0302f x f ??

-= ???,构造函数

()()32g x f x f ??

=-

???

,从而只需利用零点存在性定理证明()g x 有零点即可。 解:设()()32g x f x f ??

=- ???

()()''g x f x ∴=

由(1)可得:当1

8

a =

时,()f x 在()0,2单调递减,在()2,+∞单调递增 ()322f f ??

∴> ???

()()32202g f f ??

∴=-> ???

()213339ln ,ln 822232g x x x f f

??

??

=--=- ? ?

??

??

()39

100ln1001250ln 232

g ∴=---,因为ln10012500-<

()1000g ∴< ()()21000

g g ∴< 根据零点存在性定理可得: ()02,100x ?∈,使得()()00302g x f x f ??

=-= ???

即存在()02,+x ∈∞,使得()032f x f ??

= ???

小炼有话说:(1)在证明存在某个点的函数值与常数相等时,往往可以将常数挪至函数的一侧并构造函数,从而将问题转化成为证明函数存在零点的问题。 (2)本题在寻找()g x 小于零的点时,先观察()g x 表达式的特点:

()213ln 82g x x x f ??

=-- ???

,意味着只要x 取得足够大,早晚218x 比ln x 要大的多,

所以只需要取较大的自变量便可以找到()0g x <的点。选择100x =也可,选择

10,271x =等等也可以。

例10:已知函数()ln x f x e a x a =--,其中常数0a >,若()f x 有两个零点

()1212,0x x x x <<,求证:

121

1x x a a

<<<< 思路:若要证零点位于某个区间,则考虑利用零点存在性定理,即证()110

f f a ??

< ???且()()10f f a <,即只需判断()()1,1,f f f a a ??

???的符号,可先由()f x 存在两个零

点判断出a 的取值范围为a e > ,从而()10f e a =-<,只需将()1,f f a a ??

???

视为关

于a 的函数,再利用函数性质证明均大于零即可。

解:()1ln 0ln 1x x

e f x e a x a a x x e ??

=--=?=≠ ?+??

令()ln 1x

e x x ?=+ ()()

'2

1l n 1l n 1x e x x x x ??

?+- ?

??

∴=+ 设()1

ln 1g x x x

=+-

,可得()g x 为增函数且()10g = 110,,1x e e ??

??∴∈ ?

???

??

时,()()'

00g x x ??>

()x ?∴在110,,,1e e ????

? ?????单调递减,在()1,+∞单调递增

所以在1,x e ??

∈+∞ ???

,()()min 1x e ??==

()f x 有两个零点 a e ∴> ()10f e a ∴=-<

()ln a f a e a a a =-- ()'ln 2a f a e a ∴=--

()''111

0a a e f a e e e a e e

=-

>->-> ()'f a ∴在(),e +∞单调递增 ()()''2330e f a f e e e ∴>=->-> ()f a ∴在(),e +∞单调递增

()()()22220e f a f e e e e e e e ∴>=->-=-> 而()10f < ()()10f f a ∴< ()21,x a ∴?∈,使得()20f x =即21x a <<

另一方面:()111

11ln ln ln 1a a a

f e a a e a a a e a a a a ??=--=+-=+- ???

a e > l n 10a ∴->

10f a ??

∴> ??? 而()10f < ()110f f a ??∴< ???

11,1x a ??

∴?∈ ???

,使得()10f x =即111x a <<

综上所述:121

1x x a a

<<<<

函数零点的定义理解

函数零点的定义理解 函数的零点是函数图象的一个重要的特征,同时也沟通了函数、方程、不等式以及算法等内容,在分析解题思路、探求解题方法中起着重要的作用,因此要重视对函数零点的学习.下面就函数的零点判定中的几个误区进行剖析,希望对大家有所帮助. 1. 因"望文生义"而致误 例1.函数23)(2+-=x x x f 的零点是 ( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2 错解:C 错解剖析:错误的原因是没有理解零点的概念,"望文生义",认为零点就是一个点.而函数的零点是一个实数,即使()0=x f 成立的实数x ,也是函数()x f y =的图象与x 轴交点的横坐标. 正解:由()0232=+-=x x x f 得,x =1和2,所以选D. 点拨:求函数的零点有两个方法,⑴代数法:求方程()0=x f 的实数根,⑵几何法:由公式不能直接求得,可以将它与函数的图象联系起来,函数的图象与x 轴交点的横坐标. 即使所求. 2. 因函数的图象不连续而致误 例2.函数()x x x f 1+=的零点个数为 ( ) A.0 B.1 C.2 D.3 错解:因为2)1(-=-f ,()21=f ,所以()()011<-f f ,函数()x f y =有一个零点,选B. 错解剖析:分析函数的有关问题首先考虑定义域,其次考虑函数()x x x f 1+ =的图象是不是连续的,这里的函数图像是不连续的,所以不能用零点判定定理. 正解:函数的定义域为()()+∞?∞-,00,,当0>x 时,()0>x f ,当0

函数零点存在性定理

?函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. ?函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1: 若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有______(写出所有正确结论的序号).

张荣军判断零点的存在性定理

课题:判断函数零点的存在性 ---------根的存在性定理 学习目标: (一)知识与技能: 2.理解并会用函数在某个区间上存在零点的判定方法. (二)过程与方法: 自主发现、探究实践,理解函数零点存在的条件. (三)情感、态度、价值观: 1.在函数与方程的联系中体验数学转化思想的意义和价值 2.数行结合思想在探索数学问题的重要性. 2.了解方程求解方法的简单发展史.. 重点难点: 重点:体会函数的零点与方程的根之间的联系,掌握零点存在的判定条件. 难点:探究发现函数零点的存在性. 课题引入:在人类用智慧架设的无数从未知通向已知的金桥中,方程的求解是其中璀璨的一座,虽然今 天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月. 我国古代数学家已比较系统地解决了部分方程的求解的问题。如约公元50年—100年编成的《九章算术》,就给出了求一次方程、二次方程和三次方程根的具体方法… 问题·探究 (一)回顾旧知,“温故知新”。 1、函数的零点:对于函数)(x f ,我们把使0)(=x f 的实数x 叫做)(x f 的零点(zero point ). 2、等价关系: 方程0)(=x f 有实数根 ?函数)(x f y =的图像与x 轴有交点?函 数)(x f y =有零点. 巩固练习:求下列方程的根. (1)0652 =+-x x (2) )1lg()(-=x x f (3)062ln =-+x x (二)提出问题,“星河探秘”。(零点存在性) 问题1:函数y =f(x)在某个区间上是否一定有零点?

怎样的条件下,函数y =f(x)一定有零点? (1)观察二次函数32)(2 --=x x x f 的图象,分析其图像在零点两侧如何分布? ○ 1 在区间]1,2[-上有零点______;=-)2(f _______,=)1(f _______, )2(-f ·)1(f _____0(<或>) . ○2 在区间]4,2[上有零点______;)2(f ·)4(f ____0(<或>). (2)观察下面函数)(x f y =的图象,分析其图像在零点两侧如何分布? ○1 在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>). ○2 在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>). ○3 在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>). (4)观察上面(3)的函数图象: 若函数在某区间内存在零点,则函数在该区间上的图象是 ____ (间断/连续);含零点的某一较小区间中以零点左右两边的实数为自变量,它们各自所对应的函数值的符号是____(相同/互异) (三)讨论探索,发现“新大陆”。 根的存在性定理:如果函数)(x f y =在区间][b a ,上的图像是连续不断的一条曲线,并且有 0)()(

函数零点存在性定理

函数零点存在性定理标准化管理部编码-[99968T-6889628-J68568-1689N]

函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. 函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1: 若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有 ______(写出所有正确结论的序号). 答案 由题意可确定f(x)唯一的一个零点在区间(0,2)内,故在区间[2,16)内无零点. (3)正确, (1)不能确定, (2)中零点可能为1, (4)中单调性也不能确定.

根的存在性证明(零点定理)

根的存在性定理:如果)(x f 在闭区间[a,b]上连续 0)(,,0)()(=∈<ξξf b a b f a f )使得(则存在。 证明 利用构造法的思想,将)(x f 的零点范围逐步缩小。先将[a,b]二等分为],2[],2, [b b a b a a ++,如果0)2 (=+b a f 。则定理获证。如果0)2(≠+b a f ,则f(a)和f(b)中必然有一个与)2 (b a f +异号,记这个小区间为[11,b a ],它满足2-0)()(1111a b a b b f a f -=<且区间的长度。又将[11,b a ]二等分,考虑中点的函数值,要么为零,要么不为零。如果中点的函数值为零,则定理获证。如果中点的函数值不为零,那么必然可以选出一个小区间,使得f(x)在这个区间的端点值异号,记这个小区间为 ],[22b a ,它满足[a,b]?[11,b a ]],[22b a ?,0)()(2222 22<-=-a f b f a b a b 且。采用这样的方法一直进行下去,或者到有限步时,某个区间的中点的函数值为零,这样定理的结论成立。或者所有区间的中点的函数值不为零,那么我们就会得到一个无穷的区间序列{],[n n b a },它满足:① [a,b]?[11,b a ]?????],[22b a ;②n n n a b a b 2-=-;③0)()(δ,使得f(x)在],[),(b a ?+-δξδξ上与)(ξf 同号。根据所构造的区间的性质②,存在正整数N ,当n>N 时, ],[),(],[b a b a n n ?+-?δξδξ。根据区间的性质③,0)()(

3.1.1第二课时。_函数零点的存在性定理

1 3.1.1第二课时。 函数零点的存在性定理 1x ) 2.78 A.(-1,0) B .2、函数f(x)=lnx -2x 的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(e,3) 3、下列函数不存在零点的是( ) A .y =x -1x B .y =2x 2-x -1 C .y =??? x +1 x≤0x -1 x >0 D .y =??? x +1 x≥0x -1 x <0 4、函数y =log a (x +1)+x 2-2(0<a <1)的零点的个数为( ) A .0 B .1 C .2 D .无法确定 5、设函数y =x 3与y =(12 )x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 6、函数f(x)=ax 2+2ax +c(a≠0)的一个零点为1,则它的另一个零点为________. 7、若函数f(x)=3ax -2a +1在区间[-1,1]上存在一个零点,则a 的取值范围是________. 8、下列说法正确的有________: ①对于函数f(x)=x 2+mx +n ,若f(a)>0,f(b)>0,则函数f(x)在区间(a ,b)内一定没有零点. ②函数f(x)=2x -x 2有两个零点. ③若奇函数、偶函数有零点,其和为0. ④当a =1时,函数f(x)=|x 2-2x|-a 有三个零点. 9、 已知集合A = {x ∈R|x 2 – 4ax + 2a + 6 = 0},B = { x ∈R|x <0},若A ∩B ≠?,求实数a 的取值范围. 10、 设集合A = {x | x 2 + 4x = 0,x ∈R},B = {x | x 2 + 2 (a + 1) x + a 2 – 1 = 0, x ∈R},若A ∪B = A ,求实数a 的值.

利用导数解决函数零点问题

利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 ④综上所述送1分. )(x f ' )(x f

(三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2 --=存在唯一 的极大值点0x ,且202 2)(--<

函数的零点问题

函数零点问题的求解 【教学目标】 知识与技能: 1.理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数 零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 过程与方法: 1.函数零点反映了函数和方程的联系,函数零点与方程的根能相互转化,能把方程问题合理 转化为函数问题进行解决. 2.函数的零点问题的解决涉及到分类讨论,数形结合,化归转化等数学思想方法,有效提升了 学生的数学思想方法的应用. 情感、态度与价值观: 1.培养学生认真、耐心、严谨的数学品质; 2.让学生在自我解决问题的过程中,体验成功的喜悦. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理问题的意识. 【教学难点】 根据函数零点所在的区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 【教学过程】 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2 解法一:代数解法 解:(1).因为()0 0e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对于函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2. 零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有

零点存在定理的教案

教案 课题:零点存在定理 授课人: 一、内容及内容解析: 本章位于全书的第3章,零点主要是解决方程求解的问题,应用函数思想的方法,把方程与函数相结合,它在较难方程的求根方面有巨大的贡献,而零点存在定理能确定零点的存在范围,从而近似的确定零点的值,也即方程的近似根. 各个内容之间的联系: 方程的根?零点?零点存在定理 ? 二分法 二、三维目标: 知识与技能:会使用零点存在定理解决问题,准确确定根的范围,并且使用二分法找到相应方程的近似解. 过程与方法:通过分析零点附近的值的关系,得到0)()(

高考数学经典常考题型第9专题 零点存在的判定与证明

第9专题训练 零点存在的判定与证明 一、基础知识: 1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数 ()y f x =的零点。 2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有 ()()0f a f b ?<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b ?∈,使得()00f x = 注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在 3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。因此分析一个函数零点的个数前,可尝试判断函数是否单调 4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续) (1)若()()0f a f b ?<,则()f x “一定”存在零点,但“不一定”只有一个零点。要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点 (2)若()()0f a f b ?>,则()f x “不一定”存在零点,也“不一定”没有零点。如果()f x 单调,那么“一定”没有零点 (3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ?的符号是“不确定”的,受函数性质与图像影响。如果()f x 单调,则()()f a f b ?一定小于0 5、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b ∈,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > 6、判断函数单调性的方法: (1)可直接判断的几个结论: ① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数 ② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数

函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2,n x x n ≠= ,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A + -→→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ? φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ????? ? ? ? +? -?? () 2 11c o s ~2 (1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ? φ≤≤(,且 0 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

函数零点存在性定理.

? ? 函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. ?函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1: 若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有______(写出所有正确结论的序号).

方程的根与函数的零点题型及解析

方程的根与函数的零点 题型及解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

方程的根与函数的零点题型及解析1.求下列函数的零点 (1)f(x)=x3+1;(2)f(x)=;(3)y=﹣x2+3x+4;(4)y=x2+4x+4. 分析:根据函数零点的定义解f(x)=0,即可得到结论. 解:(1)由f(x)=x3+1=0得x=﹣1,即函数的零点为﹣1;(2)由f(x)==0 得x2+2x+1=0得(x+1)2=0,得x=﹣1,即函数的零点为﹣1.(3)由y=﹣x2+3x+4=0,可得(x﹣4)(x+1)=0,所以函数的零点为4,﹣1;(4)y=x2+4x+4,可得(x+2)2=0,所以函数的零点为﹣2. 2.①求函数f(x)=2x+x﹣3的零点的个数;②求函数f(x)=log 2 x﹣x+2的零点的个数;③求函数的零点个数是多少? 分析:①由题意可判断f(x)是定义域上的增函数,从而求零点的个数;②由题意可 得,函数y=log 2 x 的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数 y=lnx 的图象与函数y=的图 象只有一个交点,可得函数f(x)=lnx-(1/x)的零点个数. 解:①∵函数f(x)=2x+x﹣3单调递增,又∵f(1)=0,故函数f(x)=2x+x﹣3 有且只有一个零点 ②函数f(x)=log 2x﹣x+2的零点的个数,即函数y=log 2 x 的图象和直线y=x﹣2 的交点个数,如图所示:故函数y=log 2 x 的图象(红色部分)和直线y=x﹣2(蓝 色部分)的交点个数为2,即函数f(x)=log 2 x﹣x+2的零点的个数为2;③函数 f(x)=lnx-(1/x)的零点个数就是函数y=lnx的图象与函数y=1/x的图象 的 交点的个数,由函数y=lnx 的图象与函数y=1/x的图象只有一个交点,如图 所示, 可得函数f(x)=lnx-(1/x)的零点个数是1 3.①已知方程x2﹣3x+a=0在区间(2,3)内有一个零点,求实数a的取值范围 ②已知a是实数,函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个 零点,求a的取值. ③已知函数f(x)=x2﹣2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围 分析:①由已知,函数f(x)在区间(2,3)内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可; ②若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f(0)<0,f(1)>0,f(2)>0,f(4)<0,解得答案;③若函数f(x)=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数f(x)=x2﹣2ax+4有两个零点,进而f (1)f(2)<0,解得答案 解:①若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f (0)<0,f(1)>0,f(2)>0,f(4)<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈(4,19/4);②∵令f(x)=x2﹣3x+a,它的对称轴为x=3/2,∴函数f (x)在区间(2,3)单调递增,∵方程x2﹣3x+a=0在区间(2,3)内有一个零点,∴函数f(x)在区间(2,3)内与x轴有一个交点,根据零点存在性定理得出:f(2)<0,f(3)>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数f(x)=x2﹣2ax+4只有

连续函数及连续函数的性质

连续函数及连续函数的性质 张柏忱 数学与统计学院 09级汉本 (三) 班 09041100434 摘要:数学分析的发展史告示我们,无论在理论上或在应用中都应从连续函数开始。这是因为,一方面在生产实际中所遇到的函数多是连续函数;另一方面,我们常常直接或间接地借助于连续函数讨论一些不连续的函数。于是连续函数就成为数学分析研究的主要对象。 关键词:连续 该变量 间断点 有界性 最值性 介值性、 一. 连续函数概念 已知函数f(x)在a 存在极限b ,即a b x f a x ,)(lim =→可能属于函数f(x)的定义域;f(a)也 一定等于b 。但是,当f(a)=b 时,有着特殊意义。 定义 设函数f(x)在U(a)有定义。若函数f(x)在a 存在极限,且极限就是f(a),即 )()(lim a f x f a x =→ (1) 则称函数f(x)在a 连续,a 是函数f(x)的连续点。 函数f(x)在a 连续,不仅a 属于函数f(x)的定义域,且有(1)式极限。因此函数f(x)在a 连续比函数f(x)在a 存在极限有更高的要求。 用极限的“δε- 定义”,函数f(x)在a 连续(即(1)式极限).|f(a)-f(x)|,|:|,0,0εδδε<<-?>?>??有a x x 将(1)式极限改写为、 0)]()([lim =-→a f x f a x (2) 设x a x x x a x ?-=??+=.或称为自变数a x 在的改变量。设 ),()()()(a f x a f a f x f y -?+=-=? y ?称为函数y 在a 的改变量.如图3.1..0→??→x a x 于是,由(2)式 函数.0lim )(0 =??→?y a x f x 连续在 有时只需要讨论函数a x f 在)(左侧或右侧的连续性,有下面左右连续概念: 定义 设函数a x f 在以)(为左(右)端点的区间有定义。若 ))0()()(lim )(0()()(lim -==+==- + →→a f a f x f a f a f x f a x a x

函数与函数的零点知识点总结

函数及函数的零点有关概念 函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素 1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。 (6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合即交集.(7)三角函数正切函数tan y x =中()2 x k k Z π π≠+ ∈. (8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法: 复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。 (1)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是指满足()a g x b ≤≤的x 的取值范围; (2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域; (3) 已知f[g(x)]的定义域是[a,b],求f[h(x)]的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域,g(x)的值域就是h(x)的值域,再由h(x)的范围解出x 即可。 2).求函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法 3).值域 : 先考虑其定义域 3.1求函数值域的常用方法 1、图像法; 2、层层递进法; 3、分离常数法; 4、换元法; 5、单调性法; 6、判别式法; 7、有界性; 8、奇偶性法; 9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集 3.3复合函数的值域

零点存在定理的应用

葛沽一中整体建构教学模式导学案 高一 年级 数学 学科 主备人: 备课或教研组长审核签字 使用人签字 使用时间 第 11 周 第 5 课 课题: 零点存在定理的应用 教学过程 一、例题精析 应用迁移 拓展提升 1.函数f(x)=23x x +的零点所在的一个区间是( ) (A)(-2,-1) (B)(-1,0) (C)(0,1) (D)(1,2) 2.(2014·天津模拟)方程log 4x-=0的根所在区间为( ) A. B. C.(3,4) D.(4,5) 3.(2014·北京模拟)已知方程lgx=2-x 的解为x 0,则下列说法正确的是( ) ∈(0,1) ∈(1,2) ∈(2,3) ∈[0,1] 小结: 5.(2014·济南模拟)函数f(x)= 的零点个数为( ) 6.函数的零点个数是_________________ 小结: 提示:建议:注意:要求: 二.拓展练习 7.已知函数f(x)= 在下列区间中,包含f(x)零点的区间是( ) A.(0,1) B.(1,2) C.(2,4) D.(4,+∞) 8.函数f(x)=ln(x+1)- 的零点所在的大致区间是( ) A.(0,1) B.(1,2) C.(2,e) D.(3,4) 9.设函数1 ()ln (0),3f x x x x =->则()y f x = A 在区间1 (,1),(1,)e e 内均有零点。 B 在区间1 (,1),(1,)e e 内均无零点。 C 在区间1 (,1)e 内有零点,在区间(1,)e 内无零点。 D 在区间1 (,1)e 内无零点,在区间(1,)e 内有零点。 10. 函数3()=2+2x f x x -在区间(0,1)内的零点个数是( ) A .0 B .1 C .2 D .3 11. 函数f(x)=|x-2|-lnx 在定义域内零点的个数为( ) B.1 12.函数0.5()2|log |1x f x x =-的零点个数为 (A) 1 (B) 2 (C) 3 (D) 4 13.已知函数f(x)=x+2x ,g(x)=x+lnx 的零点分别为x 1,x 2,则x 1,x 2的大小关系是( ) x 2 =x 2 D.不能确定 ()ln 26f x x x =+-4.求函数的零点个数。 1x 2 1 x ()2 -26 log x x -, 2 x

函数方程与零点(精)

函数的零点 .【高考考情解读】常考查:1.结合函数与方程的关系,求函数的零点.2.结合根的存在性定理或函数图像,对函数是否存在零点或存在零点的个数进行判断.3.判定函数零点(方程的根)所在的区间.4.利用零点(方程实根)的存在求相关参数的值或取值范围.高考题突出数形结合思想与函数方程思想的考查,以客观题的形式为主. (1)函数与方程的关系:函数f (x )有零点?方程f (x )=0有根?函数f (x )的图象与x 轴有交点?f (x )与g (x )有交点?f (x )=g (x ). 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y =f(x)的图像与函数y =g(x)的图像交点的横坐标. (2)函数f (x )的零点存在性定理:如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且有f (a )·f (b )<0,那么,函数f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使f (c )=0. 注:①如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且函数f (x )在区间[a ,b ]上是一个单调函数,那么当f (a )·f (b )<0时,函数f (x )在区间(a ,b )内有唯一的零点,即存在唯一的c ∈(a ,b ),使f (c )=0. ②如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且有f (a )·f (b )>0,那么,函数f (x )在区间(a ,b )内不一定没有零点. ③如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,那么当函数f (x )在区间(a ,b )内有零点时不一定有f (a )·f (b )<0,也可能有f (a )·f (b )>0. (3)判定函数零点的方法:①解方程法;②利用零点存在性定理判定;③数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解. (2013·重庆)若a 0), 2x +1(x ≤0),的零点个数是 ( )

高中数学 零点存在性定理教学设计 新人教版必修1

2014年高中数学零点存在性定理教学设计新人教版必修1 一、内容及其解析 (一)内容:零点存在性定理. (二)解析:本节课是关于函数零点的一节概念及探究课,是高中新课改人教A版教材第三章的第一节课的第二小节,因此教学时应当站在函数应用的高度,从函数与其它知识的联系的角度来引入较为适宜。 函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图象表示看,函数的零点就是函数f(x)与x轴交点的横坐标。函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形、函数与方程有机的联系在一起。 函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则。从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。 函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。 二、目标及其解析 (一)教学目标 (1)知识与技能:结合二次函数的图象,判断一元二次方程根的存在性及个数,从而了解函数的零点与方程的根的联系.理解并会用零点存在性定理。 (2)过程与方法:培养学生观察、思考、分析、猜想,验证的能力,并从中体验从特殊到一般及函数与方程思想。渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。 (3)情感态度与价值观:在引导学生通过自主探究,发现问题,解决问题的过程中,激发学生学习热情和求知欲,体现学生的主体地位,提高学习数学的兴趣。 (二)解析 1.对于常见函数的图象学生要有印象,要能用描点法画出一些复杂函数的图象,同时,研究函数的单调性、奇偶性等性质,来判断方程的根的存在与否和个数; 2.函数的零点、方程的根、函数图象与X轴交点的横坐标具备等价关系,这种等价关系实质上是数学本质一致,只是各自有不同的描述对象而已,从而向学生渗透转化的数学思想; 3.本节课对函数零点存在性(即方程的根的存在性)的探究是借助实际问题抽象出来的,由此推广到一次函数、二次函数这两类特殊的函数,进一步推广到一般的情形,要注意推广的可行性、借助于函数图象的直观性,只要求学生理解其合理性并能对具体的函数进行简单应用。教学中,教师可以引导学生借助函数图象分析其逆定理的正确与否,由此达到充分理解此定理的目的。 三、问题诊断分析 通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。由此作为函数应用的第一课时,有必要点明函数的核心地位,即说明函数与其他知识的联系及其在生活中的应用,初

相关主题
文本预览
相关文档 最新文档