当前位置:文档之家› 浅谈晶体缺陷及其应用

浅谈晶体缺陷及其应用

浅谈晶体缺陷及其应用
浅谈晶体缺陷及其应用

浅谈晶体缺陷及其应用

摘要:晶体缺陷对晶体的力学性能既有有利的方面,也有不利的方面。少量晶体缺陷对于晶体的物理性能能够产生重要影响,所以可以根据不同的晶体缺陷,开发利用其产生的影响,充分发挥可能产生的作用,研究并制备具有不同性能的材料,以适应人们不同的实际需要和时代的发展需求。关键词:晶体缺陷; 性能; 铁磁性; 电阻; 半导体材料;杂质

引言:在讨论晶体结构时,我们认为晶体的结构是三维空间内周期有序的,其内部质点按照一定的点阵结构排列。这是一种理想的完美晶体,它在现实中并不存在,只作为理论研究模型。相反,偏离理想状态的不完整晶体,即有某些缺陷的晶体,具有重要的理论研究意义和实际应用价值。所有的天然和人工晶体都不是理想的完整晶体,它们的许多性质往往并不决定于原子的规则排列,而决定于不规则排列的晶体缺陷。

晶体缺陷对晶体生长、晶体的力学性能、电学性能、磁学性能和光学性能等均有着极大影响,在生产上和科研中都非常重要,是固体物理、固体化学、材料科学等领域的重要基础内容。研究晶体缺陷因此具有了尤其重要的意义。本文着重对晶体缺陷及其对晶体的影响和应用进行阐述。

1.晶体缺陷的定义和分类

1.1 晶体缺陷的定义

在理想的晶体结构中,所有的原子、离子或分子都处于规则的点阵结构的位置上,也就是平衡位置上。1926 年弗仑克尔l首先指出,在任一温度下,实际晶体的原子排列都不会是完整的点阵,即晶体中一些区域的原子的正规排列遭到破坏而失去正常的相邻关系。我们把实际晶体中偏离理想完整点阵的部位或结构称为晶体缺陷.

1.2 晶体缺陷的分类

1.2.1、按缺陷的几何形态分类可分为四类:点缺陷、线缺陷、面缺陷、体缺陷。

1.点缺陷(零维缺陷):缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小。包

括:空位(vacancy)、间隙原子(interstitial particle)、异类原子(foreign particle)。

点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。

2..线缺陷(一维缺陷):指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向较长,另外二维方向上很短。线缺陷的产生及运动与材料的韧性、脆性密切相关。

3.面缺陷:面缺陷又称为二维缺陷,是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维方向上很小。如晶界、相界、表面、堆积层错、镶嵌结构等。面缺陷的取向及分布与材料的断裂韧性有关。

4.体缺陷:也称为三维缺陷,指晶体中在三维方向上相对尺度比较大的缺陷,和基质晶体已经不属于同一物相,是异相缺陷。

固体材料中最基本和最重要的晶体缺陷是点缺陷,包括本征缺陷和杂质缺陷等。

1.2.2、按缺陷产生的原因分类:

热缺陷、杂质缺陷、非化学计量缺陷、其它原因(如电荷缺陷,辐照缺陷等)。

1.热缺陷

定义:热缺陷亦称为本征缺陷,是指由热起伏的原因所产生的空位或间隙质点(原子或离子)。

类型:弗仑克尔缺陷和肖脱基缺陷

热缺陷浓度与温度的关系:温度升高时,热缺陷浓度增加

2.杂质缺陷

定义:亦称为组成缺陷,是由外加杂质的引入所产生的缺陷。

特征:如果杂质的含量在固溶体的溶解度范围内,则杂质缺陷的浓度与温度无关。

3.非化学计量缺陷

定义:指组成上偏离化学中的定比定律所形成的缺陷。它是由基质晶体与介质中的某些组分发生交换而产生。

特点:其化学组成随周围气氛的性质及其分压大小而变化。

2.晶体缺陷对物理性能的影响

缺陷的存在破坏了晶体结构的完整,对其性能有严重影响。通常工业上应用的多晶体材料通过增加缺陷数目都可以提高材料的机械性能。比如加入合金元素形成固溶体可以产生固溶强化,提高强度,这主要是增加了点缺陷造成的;金属经过冷加工变形也可以提高强度,这是通过增加线缺陷--位错数目来实现的;金属通过细化晶粒提高强度的原因:增加了面缺陷:晶界的数目。而位错等缺陷的存在,会使材料易于断裂,比近于没有晶格缺陷的晶体的抗拉强度,降低至几十分之一。

我们分别从一下个方面进行讨论。

2.1 晶体电阻缺陷与晶体电学性能

2.1.1 晶体电阻

电阻就其物理意义来说是表征电子在运动过程中它所处的状态被改变的几率。实际上位于晶体阵点上的原子(或离子实)是不断地振动着的,它与电子相互作用使电子状态发生改变,因此金属晶体有电阻,而且温度愈高电阻愈大。而由于晶体缺陷的存在使得离子偏离平衡位置,从而使晶体存在缺陷电阻。

2.1.2点缺陷电阻

缺陷根据其特性会从三方面影响晶体的周期场。(1)缺陷所在处的荷电量一般说来与基体离子的不同,故在缺陷附近形成了屏蔽场。(2)因杂质原子与基体原子大小不同或因空位形成而使周围原子发生位移,或因基体原子脱离点阵位置而成为间隙原子都会形成附加位一称为变型位。(3)即使替代原子与基体原子的原子价相同,原子大小相近,由于各自的原子位有差别,其附近的晶体周期场也会受到破坏。这些也都能产生相应的电阻。

此外还有位错电阻,但位错电阻至今尚未精确计算过,主要问题在于散射位的探求较困难。2.2 缺陷与半导体性能

硅、锗等第4族元素的共价晶体绝对零度时为绝缘体,温度刀·高导电率增加但比金属的小得多,称这种晶体为半导体。晶体呈现半导体性能的根本原因是填满电子的最高能带与导带之间的禁带宽度很窄,温度升高部分电子可以从满带跃迁到导带成为传导电子。晶体的半导体性能决定于禁带宽度以及参与导电的载流子(电子或空穴)数目和它的迁移率。缺陷影响禁带宽度和载流子数目及迁移率,因而对晶体的半导体性能有严重影响。

2.2.1 缺陷对半导体晶体能阶的影响

硅和锗本征半导体的晶体结构为金刚石型。每个原子与四个近邻原子共价结合。杂质原子的引入或空位的形成都改变了参与结合的共价电子数目,影响晶体的能价分布。

有时为了改善本征半导体的性能有意掺入一些三、五族元素形成掺杂半导体;而其他点缺陷如空位或除三,五族以外的别的杂质原子原则上也会形成附近能阶。位错对半导体性能影响很大,但目前只对金钢石结构的硅、锗中的位错了解得较多一点。

2.2.2 缺陷对载流子数目的影响

点缺陷使能带的禁带区出现附加能阶,位错本身又会起悬浮键作用,它起着施主或受主的作用,另外位错俘获电子使载流子数目减少,所以半导体中实际载流子数目减少。

2.3 位错对铁磁性的影响

只有过渡族元素的一部分或其部分化合物是铁磁性材料。物质的铁磁性要经过外磁场的磁化作用表现出来。能量极小原理要求磁性物质是由磁矩取向各异的磁畴构成。

一般说来加工硬化降低磁场H的磁化作用,磁畴不可逆移动开始的磁场Ho (起始点的磁场强度)升高,而加工则使物质的饱和磁化强度降低。

3. 晶体缺陷在半导体材料方面的应用

3.1ZnO

过量的Zn 原子可以溶解在ZnO 晶体中,进入晶格的间隙位置,形成间隙型离子缺陷,同时它把两个电子松弛地束缚在其周围,对外不表现出带电性。但这两个电子是亚稳定的,很容易被激发到导带中去,成为准自由电子,使材料具有半导性。

3. 2 Fe3O4

Fe3O4 晶体中,全部的Fe2+离子和1/2 量的Fe3+离子统计地分布在由氧离子密堆所构成的八面体间隙中。因为在Fe2+ — Fe3+ — Fe2+ — Fe3+—……之间可以迁移,Fe3O4 是一种本征半导体。

3. 3 掺杂硅半导体

常温下硅的导电性能主要由杂质决定。在硅中掺入VA 族元素杂质(如P、As、Sb 等)后,这些VA 族杂质替代了一部分硅原子的位置,但由于它们的最外层有5个价电子,其中4 个与周围硅原子形成共价键,多余的一个价电子便成了可以导电的自由电子。这样一个VA 族杂质原子可以向半导体硅提供一个自由电子而本身成为带正电的离子,通常把这种杂质称为施主杂质。当硅中掺有施主杂质时,主要靠施主提供的电子导电,这种依靠电子导电的半导体被成为n 型半导体。

3.4 BaTiO3 半导瓷

在BaTiO3 陶瓷中,人们常常加入三价或五价杂质来取代Ba2+离子或Ti4+离子来形成n 型半导瓷。例如,从离子半径角度来考虑,一般使用的五价杂质元素的离子半径是与Ti4+离子半径(0.064nm)相近的,如Nb5+=0.069nm,Sb5+=0.062nm,它们容易替代Ti4+离子;或者使用三价元素,如

La3+=0.122nm,Ce3+=0.118nm,Nd3+=0.115nm,它们接近于Ba2+离子的半径(0.143nm),因而易于替代Ba2+离子。

由此可知,不管使用三价元素还是五价元素掺杂,结果大都形成高价离子取代,即形成n 型半导体。

国内外学者对物质性能与缺陷的关系研究得相当多,它在包括激光、光电转换等许多方面都取得了可喜的进展,并有很好的应用前景。相信在作为21世纪科技高速发展的今天,晶体缺陷及其对晶体物理性质的影响必将能更大的发挥其功效,为材料领域带来可喜的成就与发展!

参考文献

[1]黄昆,韩汝琦固体物理[M].北京:高等教育出版社

[2]蒲永平.功能材料的缺陷化学.北京:化学工业出版社,2008:1

[3]林栋樑.晶体缺陷.上海交通大学出版社,1996:5

[4]陈继勤陈敏熊赵敬世晶体缺陷.,浙江大学出版社,1991.8

[5]隋春宁张骏曹自强官亚夫晶体缺陷及其在半导体材料方面的应用,2008 .11 .19

[6]张兴,黄如,刘晓彦.微电子学概论.第二版.北京:北京大学出版社,2005:15

浅谈晶体缺陷及其应用

浅谈晶体缺陷及其应用 1103011036 周康粉体一班 摘要:晶体缺陷对晶体的力学性能既有有利的方面,也有不利的方面。少量晶体缺陷对于晶体的物理性能能够产生重要影响,所以可以根据不同的晶体缺陷,开发利用其产生的影响,充分发挥可能产生的作用,研究并制备具有不同性能的材料,以适应人们不同的实际需要和时代的发展需求。 关键词:晶体缺陷; 性能; 铁磁性; 电阻; 半导体材料;杂质 引言:在讨论晶体结构时,我们认为晶体的结构是三维空间内周期有序的,其内部质点按照一定的点阵结构排列。这是一种理想的完美晶体,它在现实中并不存在,只作为理论研究模型。相反,偏离理想状态的不完整晶体,即有某些缺陷的晶体,具有重要的理论研究意义和实际应用价值。所有的天然和人工晶体都不是理想的完整晶体,它们的许多性质往往并不决定于原子的规则排列,而决定于不规则排列的晶体缺陷。 晶体缺陷对晶体生长、晶体的力学性能、电学性能、磁学性能和光学性能等均有着极大影响,在生产上和科研中都非常重要,是固体物理、固体化学、材料科学等领域的重要基础内容。研究晶体缺陷因此具有了尤其重要的意义。本文着重对晶体缺陷及其对晶体的影响和应用进行阐述。 1.晶体缺陷的定义和分类 1.1 晶体缺陷的定义 在理想的晶体结构中,所有的原子、离子或分子都处于规则的点阵结构的位置上,也就是平衡位置上。1926 年弗仑克尔l首先指出,在任一温度

下,实际晶体的原子排列都不会是完整的点阵,即晶体中一些区域的原子的正规排列遭到破坏而失去正常的相邻关系。我们把实际晶体中偏离理想完整点阵的部位或结构称为晶体缺陷. 1.2 晶体缺陷的分类 1.2.1、按缺陷的几何形态分类可分为四类:点缺陷、线缺陷、面缺陷、体缺陷。 1.点缺陷(零维缺陷):缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小。包括:空位(vacancy)、间隙原子(interstitial particle)、异类原子(foreign particle)。 点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。2..线缺陷(一维缺陷):指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向较长,另外二维方向上很短。线缺陷的产生及运动与材料的韧性、脆性密切相关。 3.面缺陷:面缺陷又称为二维缺陷,是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维方向上很小。如晶界、相界、表面、堆积层错、镶嵌结构等。面缺陷的取向及分布与材料的断裂韧性有关。 固体材料中最基本和最重要的晶体缺陷是点缺陷,包括本征缺陷和杂质缺陷等。 1.2.2、按缺陷产生的原因分类: 热缺陷、杂质缺陷、非化学计量缺陷、其它原因(如电荷缺陷,辐照缺陷等)。

晶体缺陷习题及答案解析

晶体缺陷习题与答案 1 解释以下基本概念 肖脱基空位、弗仑克尔空位、刃型位错、螺型位错、混合位错、柏氏矢量、位错密度、位错的滑移、位错的攀移、弗兰克—瑞德源、派—纳力、单位位错、不全位错、堆垛层错、汤普森四面体、位错反应、扩展位错、表面能、界面能、对称倾侧晶界、重合位置点阵、共格界面、失配度、非共格界面、内吸附。 2 指出图中各段位错的性质,并说明刃型位错部分的多余半原子面。 3 如图,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。(1)分析该位错环各段位错的结构类型。(2)求各段位错线所受的力的大小及方向。(3)在τ的作用下,该位错环将如何运动?(4)在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大? 4 面心立方晶体中,在(111)面上的单位位错]101[2a b =,在(111)面上分解为两个肖克莱不全位错,请写出该位错反应,并证明所形成的扩展位错的宽度由下式给出πγ 242 Gb s d ≈(G 切 变模量,γ层错能)。 5 已知单位位错]011[2a 能与肖克莱不全位错]112[6a 相结合形成弗兰克不全位错,试说明: (1)新生成的弗兰克不全位错的柏氏矢量。(2)判定此位错反应能否进行?(3)这个位错为什么称固定位错? 6 判定下列位错反应能否进行?若能进行,试在晶胞上作出矢量图。 (1)]001[]111[]111[22a a a →+ (2)]211[]112[]110[662a a a +→ (3)]111[]111[]112[263a a a →+ 7 试分析在(111)面上运动的柏氏矢量为]101[2a b =的螺位错受阻时, 能否通过交滑移转移

浅谈镁合金晶粒细化的方法和意义

浅谈镁合金晶粒细化的方法和意义 重庆大学材料科学与工程学院材料科学专业 摘要 简述了镁合金的工程运用现状和细化晶粒的益处;以镁合金晶粒细化方法为主线,对镁合金在熔体阶段的过热处理、添加变质剂、物理场法、动态晶粒细化和快速凝固法,以及镁合金固态阶段的锻造、挤压、轧制和剧烈塑性变形等细化晶粒的方法进行了总结。同时,归纳了镁合金细化晶粒的意义。 关键词 镁合金 晶粒细化 熔体 固态形变 1 背景介绍 纯镁是银白色金属,熔点651℃,密度为1.74×103kg/m3,是最轻的工程金属[1]。镁合金具有密度低、比强度高、比刚度高、减振和抗冲击性能好等优点,而且还具有较好的尺寸稳定性和机械加工性能及低廉的铸造成本。在汽车、电子、通信、航空航天、国防和3C 等行业都拥有广泛的应用前景。但是镁合金密排六方的晶体结构特点,决定了在室温条件下独立滑移系少,导致室温塑性低、变形加工困难和变形容易开裂等阻碍了镁合金材料的广泛应用。其次,镁合金强度偏低,无法应用于受力较大的工程环境,也成为镁合金大规模运用的一大瓶颈。所有提高镁合金的室温塑性变形能力和强度有利于镁合金工程应用的普及和推广[2~5]。 细化晶粒是唯一可以提高金属构件强度的同时,又提高塑性的方法。根据Hall-petch 公式21 0s -+=d k y σσ,材料的强度随着晶粒尺寸的减小而增大。镁合金具有很大的系数k y ,所 有,细化晶粒能够显著的提高镁合金的强度[6]。而且,由于有细小均匀晶粒的材料发生塑性变形时,各晶粒分担一定的变形量,使变形更加均匀,位错在晶界处塞积少,应力集中小,材料开裂的倾向减小,从而提高材料的塑性。 2 晶粒细化方法 目前用于工程和科研中有很多细化镁合金晶粒的方法,笔者综合相关论文报道将镁合金晶粒细化分为两个阶段细化:熔体阶段细化和固态形变处理细化。 2.1 熔体阶段细化 2.1.1 过热处理法 过热处理是浇注前将熔体温度升高并保持一段时间后再降温至浇注温度进行浇注的工艺过程。过热处理细化晶粒的机制是过热处理过程中形成了可以作为非均质结晶核心[7]。目前广泛认同的观点是Fe 等元素在镁熔体中的溶解的随温度变化很显著,随着温度的降低,Fe 在镁中溶解度急剧降低,在过热的熔体降温时,过热难容的铁将从液相中先析出,在凝固过程中成为α-Mg 的异质形核基底。过热处理在一定程度上可以细化晶粒,但是也存在很多缺陷。例如,将熔体加热到高温镁合金熔体会因大量溶解气体和杂质而质量下降,从而降低合金的综合性能,所以,过热处理法在工业上应用很少。 2.1.2 添加变质剂 添加变质剂可以改善合金的铸造性能和加工性能,使铸件组织细小均匀,因而提高合金的强度和塑性。加入的变质剂必须满足6点:①高温下化学成分不变,在熔体中有足够的稳定性,

晶体缺陷和强度理论

非晶合金的强度研究及进展 非晶合金,又称金属玻璃,由于具有优异的物理、化学、光学、磁学和力学性能,受到人们的普遍关注,成为材料领域的研究热点之一。大量的研究与开发工作表明,非晶合金材料在许多实用性能方面具有十分明显的优势,具有良好的应用前景。非晶合金研究的进展,不仅突破了长期以来金属合金只能以结晶态形式凝固这一传统认识,丰富了合金液固相变理论,而且在合金的非晶形成能力、非晶合金的相结构及其相演化过程、非晶合金的性能等方面的研究都取得了大量成果。 1非晶合金的发展历史 自从1960 年首次用熔体快速凝固方法制备出Au-Cu 非晶合金以来,在随后的30 年里,大量的非晶合金已经被制备出来。众所周知,在1990年以前可以用105K/s 的冷却速率制备出Fe 基、Co 基和Ni 基非晶合金,但这些合金的厚度都小于50 μm,其中,作为特例的贵金属基Pd-Ni-P 和Pt-Ni-P 合金系,其临界冷却速度也在103 K/s 的数量级。在1974 年Chen对Pb-T-P(T=Ni, Co, Fe)合金进行了系统的研究并制备出了厚度为 1 mm 的非晶合金。在1982 年,可以制备出临界尺寸较大的Au55 Pd22.5 Sb22.5非晶合金。虽然在大块非晶合金的研究中取得了突出的进展,但是这些合金的成本昂贵,在长达十几年的时间内,利用非贵金属制备大块非晶合金的愿望始终未能实现,使非晶合金的应用范围受到很大限制。 上世纪八十年代后期,日本学者 A. Inoue(井上明久)领导的课题组首先在非贵金属系大块非晶合金制备方面取得了突破,并受到同行的关注。自从1988 年以来,发现可以用更低的临界冷却速率制备出新的多组元合金体系,包括Mg 基、Zr基、Fe 基、Pd基[、La 基、Ti基和Ni 基合金体系。由于发现了具有很强的非晶形成能力的合金体系,使得在临界冷却速度低于102 K/s 的条件下,用一般的工艺方法(铜模铸造方法等)即可获得三维尺寸在毫米以上量级的大块非晶合金。 目前人们所研究的大块非晶合金体系中,Pd系、La 系和Zr系多组元合金具有优秀的非晶形成能力,其中美国Johnson 课题组开发的Zr-Ti-Cu-Ni-Be 和日本

晶体缺陷

晶体的缺陷及其在半导体中的应用 内容摘要 缺陷对晶体来说是很难被消除的,缺陷的存在会影响晶体的某些性质。晶体中的缺陷包括点缺陷、线缺陷、面缺陷以及体缺陷。不管是哪种类型的缺陷,它都会对晶体材料的性质产生影响。人们可以根据实际需要,通过人为地向晶体引入缺陷来开发制备出对人们有用的材料。该文简要介绍了缺陷的类型、定义、运动以及一些缺陷的简单应用。 【关键词】缺陷运动半导体影响

Crystal defects and the application of defects in semiconductor Abstract Defects in the crystal is very difficult to be eliminated, the defect will affect some properties of the crystal. Crystal defects including point defects, line defects, surface defects and bulk defects. No matter what type of defect, it will affect some properties of the crystal . People can produce some crystal material which is useful by artificially introducing defects to the crystal according to actual needs. This paper briefly describes the type of defect, definitions, sports, and some applications of defects. 【Key Words】Defects Movement Semiconductor Impact

谈谈对石材缺陷的看法

谈谈对石材缺陷的看法 晏辉 (佳廉石材集团,顺德528313) 提要:此文简要介绍了石材裂纹、色斑等天然缺陷及其质量要求,并就装修中供需双方如何评价天然问题进行了探讨,以求抛砖引玉。 随着石材在室内外装修中的日益受宠,石材生产厂家、石材供应商同石材需求方的矛盾与经济纠纷不断增多。轻则损失几万元,重则损失数十万元甚至数百万元。尤为严重的是造成石材需求方大楼装修工程的停工待料,影响大楼整个装修工程的施工进度和大楼的按期开业,这种经济损失更是无法用金钱来估价。最后的结局是石材生产厂家,石材供应商与石材需求方之间对簿公堂,弄得两败俱伤,劳民伤财,严重影响了双方各自的正常生产和经营秩序。这种石材生产加工和经营中出现的不正常经济现象,究其原因大多是由于石材的天然而引起的纠纷。如果双方之间本着互相让利,求同存异的观点出发,这种问题的解决就好办得多了。 由于石材这种物质不同于任何其它装修材料,有着独有的特殊性。众所周知,石材是经过亿万年以上各种地质作用而形成的,其形成后的外在特征是很难通过事后的方法来补救。尽管目前各种石材表面修补技术不断诞生,但其修补后的效果毕竟还是很难取代石材天然艳丽的外观效果。又由于石材的生产厂家,石材供应商,同石材需求方在对石材特性上理解的不同,这就注定了两者之间必然产生纷争。 在石材日常生产加工中,常见的石材外观的缺陷有以下几种: 裂纹:岩石中存在的细小裂隙。有明裂隙、暗裂之分。明裂是指那些裂纹明显,石材未加工前从石材荒料外表面就能看出裂纹线且裂纹线延伸较长的那类裂纹。暗裂是指那些裂纹不明显,石标未加工前从石材荒料外表面很难辨别出裂纹线且裂纹线延伸较短的那类裂纹。裂纹的产生有天然的,也有可能是因为开采石材所采取的开采方法不合理所造成的。石材裂纹普遍存在于那些米黄类的石材(如旧米黄,莎安娜米黄,西班牙米黄)及大花白,雅士白等白色类的石材中,此外像紫罗红,啡网纹等也有,从众多的生产厂家的反映看,石材裂纹较普遍存在于大理石中。 色斑(色胆):与石材表面基本颜色不一样的斑状物质或异样物质。色斑在石材中表现为无色、浅黄色、黄色的透明晶体状物;黑色、绿色、白色、锈斑状物质。石材色斑(色胆)较普遍存在于大花白,爵士白,雅士白等白色类的石材,以及西班牙米黄、紫罗红、珊瑚红、啡网纹、紫彩麻、幻彩红、啡珠麻等色类的石材中。 黄斑(锈斑):与石材表面基本颜色不一致的黄色斑状物,原生于石材的表面。黄斑在大花白、大花绿中较为常见,某些花岗石中也有存在。 色线:与石材表面颜色花纹不一样的条纹状,条带状物质。在石材加工中常见的表现为红色或白色的晶体线。 砂眼:天然形成的具有一定深度的凹坑,直径在2mm以下,石材砂眼较普遍存在于金花米黄、金米黄、香槟红、银线米黄以及砂石类的石材中。 孔洞:天然形成的具有一定深度的凹坑,直径在2mm以上。石材孔洞较普遍存在于西班牙米黄、啡网纹,尤以啡网纹表现最为突出。 霉斑:天然形成的绿色或暗绿色霉状物质。霉斑较普遍存在于紫罗红、银线米黄、旧米黄类的石材中。 色差:在石材的表面所呈现出的与石材基本颜色不一致的另一类颜色,同石材基本颜色在人眼中所产生的视觉差别。色差较普遍存在于米黄类(尤以西班牙米黄、旧米黄最为突出)、紫罗红、大花绿这类石材中。 考虑到石材天然存在着以上所提到石材缺陷,国家建材局颁发了天然大理石,花岗石行业标准。

第七章晶体缺陷

第七章晶体缺陷 第一章所述的晶体结构是理想晶体的结构,但是在实际应用的金属中,总是不可避免地存在着不完整性,即原子的排列都不是完美无缺的。实际金属中原子排列的不完整性称为晶体缺陷。按照晶体缺陷的几何形态特征,可以将其分为以下三类: (1)点缺陷(point defect)其特征是三个方向上的尺寸都很小,相当于原子的尺寸,例如空位(vacancy)、间隙原子(interstitial atom)、置换原子(substitional atom)等; (2)线缺陷(line defect)其特征是在两个方向上的尺寸很小,另一个方向上的尺寸相对很大。属于这一类缺陷的主要是位错(dislocation); (3)面缺陷(interfacial defect)其特征是在一个方向上的尺寸很小,另两个方向上的尺寸相对很大,例如晶界、亚晶界(subgrain boundary)等。 7-1 点缺陷 常见的点缺陷有三种,即空位、间隙原子和置换原子,如图2.11所示。 间隙原子 空位 置换原子 图2.11 晶体中的点缺陷 一、空位 在实际晶体的晶格中,并不是每个平衡位置都为原子所占据,总有极少数位置是空着的,这就是空位。由于空位的出现,使其周围的原子偏离平衡位置,发生晶格畸变(distortion),所以说空位是一种点缺陷。 二、间隙原子 间隙原子就是处于晶格空隙中的原子。晶格中原子间的空隙是很小的,一个

原子硬挤进去,必然使周围的原子偏离平衡位置,造成晶格畸变,因此间隙原子也是一种点缺陷。间隙原子有两种,一种是同类原子的间隙原子,另一种是异类原子的间隙原子。 三、置换原子 许多异类原子溶入金属晶体时,如果占据在原来基体原子的平衡位置上,则称为置换原子。由于置换原子的大小与基体原子不可能完全相同,因此其周围临近原子也将偏离其平衡位置,造成晶格畸变,因此置换原子也是一种点缺陷。 由上可知,不管是哪类点缺陷,都会造成晶格畸变,这将对金属的性能产生影响,如使屈服强度升高、电阻增大、体积膨胀等。此外,点缺陷的存在,还将加速金属中的扩散过程,从而影响与扩散有关的相变化、化学热处理、高温下的塑性变形和断裂等。 7-2 线缺陷 晶体中的线缺陷就是各种类型的位错。位错是一种极重要的晶体缺陷,它是在晶体中某处有一列或若干列原子发生了有规律的位错现象,使长度达几百至几万个原子间距、宽约几个原子间距范围内的原子离开其平衡位置,发生了有规律的错动。位错有多种类型,其中最简单、也是最基本的有两种:刃型位错(edge dislocation )和螺型位错(screw dislocation ),如图2.12所示。 一、刃型位错 刃型位错如图2.12(b)所示。由图可见,晶体的上半部分已经发生了局部滑移,左边是未滑移区,右边是已滑移区,原子向左移动了一个原子间距。在已滑移区和未滑移区之间,出现了一个多余的半原子面,好象一片刀刃插入晶体,中止在内部。沿着半原子面的“刃边”,晶格发生了很大的畸变,这就是一条刃型位错。如图2.13所示,晶格畸变中心的联线就是刃型位错线(图中画“⊥”处)。位错线并不是一个原子列,而是一个晶格畸变的“管道”。 (a)完整晶体 (b)刃型位错 (c)螺型位错 图2.12 完整晶体和位错

晶体缺陷

一、概述 1、晶体缺陷:晶体中原子(离子、分子)排列的不规则性及不完整性。种类:点缺陷、线缺陷、面缺陷。 1) 由上图可得随着缺陷数目的增加,金属的强度下降。原因是缺陷破坏了警惕的完整性,降低了原子间结合力,从宏观上看,即随缺陷数目增加,强度下降。 2) 随着缺陷数目的增加,金属的强度增加。原因是晶体缺陷相互作用(点缺陷钉扎位错、位错交割缠结等),使位错运动的阻力增加,强度增加。 3) 由此可见,强化金属的方向有两个:一是制备无缺陷的理想晶体,其强度最高,但实际上很难;另一种是制备缺陷数目多的晶体,例如:纳米晶体,非晶态晶体等。 二、点缺陷 3、点缺陷:缺陷尺寸在三维方向上都很小且与原子尺寸相当的缺陷(或者在结点上或邻近的微观区域内偏离晶体结构正常排列的一种缺陷),称为点缺陷或零维缺陷。分类:空位、间隙原子、杂质原子、溶质原子。 4、肖特基空位:原子迁移到晶体表面或内表面正常结点位置使晶体内形成的空位。 5、弗仑克尔空位:原子离开平衡位置挤入点阵间隙形成数目相等的空位和间隙原子,该空位叫做弗仑克尔空位。 6、空位形成能EV:在晶体中取出一个原子放在晶体表面上(不改变晶体表面积和表面能)所需的能量。间隙原子形成能远大于空位形成能,所以间隙原子浓度远小于空位浓度。 7、点缺陷为热平衡缺陷,淬火、冷变形加工、高能粒子辐照可得到过饱和点缺陷。 8、复合:间隙原子和空位相遇,间隙原子占据空位导致两者同时消失,此过程成为复合。 9、点缺陷对性能的影响:点缺陷使得金属的电阻增加,体积膨胀,密度减小;使离子晶体的导电性改善。过饱和点缺陷,如淬火空位、辐照缺陷,还可以提高金属的屈服强度。 三、线缺陷 10、线缺陷:线缺陷在两个方向上尺寸很小,另外一个方向上延伸较长,也称为一维缺陷。主要为各类位错。 11、位错:位错是晶体原子排列的一种特殊组态;位错是晶体的一部分沿一定晶面与晶向发生某种有规律的错排现象;位错是已滑移区和未滑移区的分界线;位错是伯氏矢量不为零的晶体缺陷。分类:刃位错、螺位错、混合型位错。 12、刃型位错特点:a) 刃型位错有一个多余半原子面。正刃型位错和负刃型位错只有相对意义,无本质区别。 b) 位错线不一定为直线,但滑移面必定是位错线和滑移矢量确定的平面,滑移面唯一。 c) 刃型位错周围点阵发生弹性畸变,既有切应变,又有正应变。能引起材料体积变化。 d) 刃型位错位错线垂直于柏氏矢量,垂直于滑移方向,垂直于滑移矢量。位错线移动方向平行于晶体滑移方向。 e) 刃型位错属于线缺陷,位错线可以理解为晶体中已滑移区与未滑移区的边界线。 f) 刃型位错位错线不能终止于晶体内部,只能露头晶体表面或晶界。 13、螺型位错特点: a) 螺型位错无额外半个原子面,原子错排是呈轴对称的。右螺型位错和左螺型位错有本质区别。 b) 螺型位错线一定是直线,但滑移面不唯一,凡是包含螺型位错线的(原子密排)平面都可以作为他的滑移面。 c) 螺型位错周围点阵发生弹性畸变,只有平行于位错线的切应变,没有正应变。不会引起材料体积变化。 d) 螺型位错位错线平行于柏氏矢量,平行于滑移方向,平行于滑移矢量,位错线的移动方向垂直于晶体滑移方向。 e) 刃型位错属于线缺陷,位错线可以理解为晶体中已滑移区与未滑移区的边界线。 f) 螺型位错位错线不能终止于晶体内部,只能露头晶体表面或晶界。 14、混合型位错:滑移矢量既不平行也不垂直于位错线,而与位错线相交成任意角度,这种位错称为混合位错。特点:a) 混合型位错位错线既不平行也不垂直于滑移矢量,每一段混合型位错均包含刃型位错分量和螺型位错分量(可以有纯刃型位错环,没有纯螺型位错环)。 b) 混合型位错是已滑移区和未滑移区的分界线。 c) 混合型位错位错线不能终止于晶体内部,只能露头晶体表面或晶界。 15、柏氏矢量的确定: 1) 首先选定位错线的正向,一般选择出纸面方向为正向。 2) 在实际晶体中,从任一原子出发,围绕位错(避开位错线附近的严重畸变区)以一定的步数作一右旋闭合回路MNOPQ(称为柏氏回路)。 3) 在完整晶体中按同样的方向和步数作相同的回路,该回路并不封闭,由终点Q向起点M引一矢量b,使该回路闭合,这个矢量b就是实际晶体中位错的柏氏矢量。 16、右手法则:右手的拇指、食指、中指构成直角

晶体结构缺陷

第三章晶体结构缺陷 【例3-1】写出MgO形成肖特基缺陷的反应方程式。 【解】 MgO形成肖特基缺陷时,表面的Mg2+和O2-离子迁到表面新位置上,在晶体内部留下空位,用方程式表示为: ????该方程式中的表面位置与新表面位置无本质区别,故可以从方程两边消掉,以零O(naught)代表无缺陷状态,则肖特基缺陷方程式可简化为: 【例3-2】写出AgBr形成弗伦克尔缺陷的反应方程式。 【解】AgBr中半径小的Ag+离子进入晶格间隙,在其格点上留下空位,方程式为: 【提示】一般规律:当晶体中剩余空隙比较小,如NaCl型结构,容易形成肖特基缺陷;当晶体中剩余空隙比较大时,如萤石CaF2型结构等,容易产生弗伦克尔缺陷。 【例3-3】写出NaF加入YF3中的缺陷反应方程式。 【解】首先以正离子为基准,Na+离子占据Y3+位置,该位置带有2个单位负电荷,同时,引入的1个F-离子位于基质晶体中F-离子的位置上。按照位置关系,基质YF3中正负离子格点数之比为1/3,现在只引入了1个F-离子,所以还有2个F-离子位置空着。反应方程式为:可以验证该方程式符合上述3个原则。 ????再以负离子为基准,假设引入3个F-离子位于基质中的F-离子位置上,与此同时,引入了3个Na+离子。根据基质晶体中的位置关系,只能有1个Na+离子占据Y3+离子位置,其余2个Na+位于晶格间隙,方程式为:

????此方程亦满足上述3个原则。当然,也可以写出其他形式的缺陷反应方程式,但上述2个方程所代表的缺陷是最可能出现的。 【例3-4】写出CaCl2加入KCl中的缺陷反应方程式。 【解】以正离子为基准,缺陷反应方程式为: ????以负离子为基准,则缺陷反应方程式为: ????这也是2个典型的缺陷反应方程式,与后边将要介绍的固溶体类型相对应。 【提示】通过上述2个实例,可以得出2条基本规律: ????(1)低价正离子占据高价正离子位置时,该位置带有负电荷。为了保持电中性,会产生负离子空位或间隙正离子。 ????(2)高价正离子占据低价正离子位置时,该位置带有正电荷。为了保持电中性,会产生正离子空位或间隙负离子。 【例3-5】 TiO2在还原气氛下失去部分氧,生成非化学计量化合物TiO2-x,写出缺陷反应方程式。 【解】非化学计量缺陷的形成与浓度取决于气氛性质及其分压大小,即在一定气氛性质和压力下到达平衡。该过程的缺陷反应可用 或 方程式表示,晶体中的氧以电中性的氧分子的形式从TiO2中逸出,同时在晶体中产生带正电荷的氧空位和与其符号相反的带负电荷的来保持电中性,方程两边总有效电荷都等于零。可以看成是Ti4+被还原为Ti3+,三价Ti占据了四价Ti的位置,因而带一个单位有效负电荷。而二个Ti3+替代了二个Ti4+,

晶体缺陷

对晶体缺陷的统计热力学研究指出,在任何高于0K温度下,每一种固体化合物均存在着组成在一定范围变动的单一物相。现代晶体结构理论和实验更证明非整比化合物的存在是很普遍的现象。所有固体都有产生点缺陷的热力学趋向,这时因为缺陷的出现能使固体由有序结构变为无序,从而使嫡值增加,有缺陷的固体样品的Gibbs自由能来自嫡和熔两方面的贡献(G=H-TS),由于嫡是体系无序度的量度,因而任何实际固体(其中总有一些原子不处在它们应该出现的位置上)的嫡值都高于理想晶体。这就是说,缺陷对固体Gibbs自由能的贡献为负项。缺陷的形成通常是吸热过程(因而缺陷固体的H值较高);但只要T>0, Gibbs自由能在缺陷的某一浓度下将会出现极小值,即缺陷会自发形成,而且温度升高时,G的极小值向缺陷浓度更高的方向移动。这就意味着温度升高有利于缺陷的形成。 crystal defects 实际晶体中原子偏离理想的周期性排列的区域称作 。晶体缺陷在晶体中所占的总体积很小,也就是说,实际晶体中的绝大部分区域,原子排列于周期性位置上。因此,晶体缺陷是近完整晶体中的不完整性。但晶体缺陷对固体的许多结构敏感的物理量(如引起形变的临界切应力、扩散系数等)有极大的影响,晶体缺陷的研究对材料的强度、热处理等问题的研究有很重要的作用。 晶体缺陷分为:①点缺陷,包括空位、自填隙原子、代位原子、异类填隙原子等;②线缺陷,如位错;③面缺陷,如堆垛层错、孪晶界、反相畴界等,面缺陷还可以包括晶体表面、晶界和相界面(见界面)。 点缺陷图1[点缺陷的示意]是点缺陷的示意图,表示各种点缺陷的形式。热平衡状态下点缺陷浓度遵从统计物理规律 =exp(-/)这里[kg2]是玻耳兹曼常数;[kg2]是绝对温度;是点缺陷形成能。常用金属铁、铜、铝等的室温平衡空位浓度很小,接近熔点时的空位浓度约为10。自填隙原子形成能是空位形成能的3~4倍,其平衡浓度极小。代位原子和异类填隙

浅谈粗晶材料及其超声检测技术

浅谈粗晶材料及其超声检测技术 安东石油技术(集团)有限公司陈先富 [摘要]本文介绍了几种常见粗晶材料的组织结构特点,理论上分析了粗晶材料晶粒度对超声检测的影响,总结了粗晶材料的现有超声检测方法。 超声检测是常规无损检测方法之一。与其他方法相比,超声检测具有灵敏度高、穿透力强、指向性好、检测速度快、成本低等优点,因此在机械制造、冶金、航空航天、石油化工、铁路运输等众多工业领域中得到了广泛应用。然而,当被检测材料的微观结构(如钢中的晶粒和铸铁中的石墨片)较大时,会造成严重的材料噪声和声波衰减,致使超声检测的高灵敏度、强穿透力等优越性严重下降。因此,提高强散射材料缺陷检出能力和信噪比是无损检测领域中的重要研究课题。 粗晶材料是超声探伤中经常遇到的强散射材料,其对超声检测能力的影响是由材料本身组织特点决定的。 1.几种常见粗晶材料 ⑴奥氏体不锈钢 工业生产中,通过向钢中添加镍、锰、氮等奥氏体化合金元素,抑制奥氏体转化温度,使常温下奥氏体相呈稳定状态,以获得奥氏体不锈钢。奥氏体钢冷却时不经过相变,常温下的晶粒就是高温时的粗大奥氏体晶粒。这使奥氏体不锈钢对超声的散射很大,散射信号作为噪声,在探伤仪屏幕上呈现草状回波,同时散射使衰减增大,缺陷信号强度大大降低。另外,奥氏体钢的热处理(如固溶处理)并不能改变其奥氏体组织,无法细化晶粒。因此,奥氏体不锈钢铸件都是粗晶粒的,很难进行超声探伤[1]。 ⑵灰铸铁 灰铸铁中含碳量高(大于2.11%),材料内部含有大量片状石墨。若进行超声检测,这些片状石墨和粗大晶粒会造成非常显著的散射回波和信号衰减,因此,通常灰铸铁件很难采用超声探伤[2]。 ⑶粗晶钛合金 相比粗晶奥氏体不锈钢和铸铁件,粗晶钛合金的晶粒要细些,晶粒度通常要小几个级别。但由于钛合金往往用在飞机发动机等重要部件中,要求检出缺陷的尺寸小,对超声检测的灵敏度要求很高。 可以看出:粗晶材料所含晶粒是影响超声检测的主要因素。 2.材料晶粒度对超声检测的影响 材料晶粒度对超声检测的影响表现在散射和衰减两个方面。 超声无损检测对象,通常是多晶体金属材料,其内部由大量随机分布的晶粒和晶界间夹杂物组成。超声信号进入材料内部,会在各种界面发生散射。 超声波散射与材料晶粒平均直径有关,当晶粒平均直径-d与波长λ的比值小 于0.1时,散射现象微弱,对超声检测不会造成大的影响;而当比值大于0.1时,散射现象将显著增强,超声检测的信噪比降低灵敏度下降。另外,超声波的散射还与材料各向异性程度、超声波频率等因素有关。在瑞利散射区,散射系数

晶体结构及缺陷

晶体结构与晶体中的缺陷 17、Li 2O 的结构是O2-作面心立方堆积,Li +占据所有四面体空隙位置,氧离子半径为0.132nm 。求: (1)计算负离子彼此接触时,四面体空隙所能容纳的最大阳离子半径,并与书末附表Li +半径比较,说明此时O 2-能否互相接触。 (2)根据离子半径数据求晶胞参数。 (3)求Li 2O 的密度。 解:(1)如图2-2是一个四面体空隙,O 为四面体中心位置。 -++=r r AO ,-=r BC 2, -=r CE 3, 3/323/2-==r CE CG 3/62-=r AG , OGC ?∽EFC ?,CF EF CG OG //=,6/6/-=?=r CG CF EF OG 2/6-=-=r OG AG AO ,301.0)12/6(=-=-=--+r r AO r 查表知Li r + +=0.68>0.301,∴O 2-不能互相接触; (2)体对角线=a 3=4(r ++r -),a=4.665;(3)ρ=m/V=1.963g/cm 3 图2-2 四面体空隙 28、下列硅酸盐矿物各属何种结构类型: Mg 2[SiO 4],K[AISi 3O 8],CaMg[Si 2O 6], Mg 3[Si 4O 10](OH)2,Ca 2Al[AlSiO 7]。 解:岛状;架状;单链;层状(复网);组群(双四面体)。 23、石棉矿如透闪石Ca 2Mg 5[Si 4O 11](OH)2具有纤维状结晶习性,而滑石Mg 2[Si 4O 10](OH)2却具有片状结晶习性,试解释之。 解:透闪石双链结构,链内的Si-O 键要比链5的Ca-O 、Mg-O 键强很多,所以很容易沿链间结合力较弱处劈裂成为纤维状;滑石复网层结构,复网层由两个 [SiO4]层和中间的水镁石层结构构成,复网层与复网层之间靠教弱的分之间作用力联系,因分子间力弱,所以易沿分子间力联系处解理成片状。 24、石墨、滑石和高岭石具有层状结构,说明它们结构的区别及由此引起的性质上的差异。

声子晶体在机械振动和噪声中的应用浅析剖析

本科生设计(论文) 论文题目:声子晶体在机械振动和噪声中的应用浅析姓名: 学院:海洋港口学院 专业:12机械制造及其自动化(港口)(师范)学号: 指导教师:丁红星

声子晶体在机械振动和噪声中的应用浅析 一、绪论 1.1课题背景 现代社会对噪声防治和处理的各种要求,促进了当代噪声控制工程技术的迅猛发展。工程中对噪声进行处理最常用而有效的技术措施就是安装适当的隔声材料。因此,对隔声材料进行开发研究具有十分重要的意义。 声子晶体是一种新型隔声材料,存在弹性波禁带,落在禁带范围内的弹性波在声子晶体中传播时会强烈的衰减,其衰减程度远远大于质量密度定理的预测值。因此声子晶体在噪声与振动的控制方面有着巨大的潜力。本文以声子晶体在中低频隔声的实际应用为切入点,针对布拉格散(Bragg)射型声子晶体和局域共振声子晶体,系统地研究其禁带的产生以及影响禁带特性的各种因素,通过有限元仿真与实验验证完成声子晶体在隔声功能上的应用尝试。 声子晶体复合材料的自身特性决定了其带隙影响因素的多样性,因此有必要对其带隙的影响因素进行全面的研究分析,通过对各个参数对带隙的影响情况的分析来判断声子晶体在中低频范围内隔声应用的可行性,为下一步的仿真计算和实验验证中声子晶体各参数的选择提供理论依据。 传统的隔声材料种类繁多,从定义上讲所有的对声波有阻隔作用的材料都可以称为隔声材料,实际的隔声工程实施中经常采用的隔声材料有各种金属板、石膏板、木板以及复合板材。由于它们大多都属于均匀介质结构,其隔声量都遵循质量密度定理,即材料的隔声性能与面密度有关,面密度增加一倍隔声量将会增大 6 分贝。因此要获得较好的隔声效果就必须要增加隔声材料的密度。然而在实际的应用当中,增加隔声材料密度会带来施工成本以及施工难度的急剧增大,这也限制了传统隔声材料的应用范围。因此工程应用当中对新型轻质隔声材料的需求非常迫切。 声子晶体材料是近几十年研究状况非常热门的一种新型功能性隔声材料,其本质是

半导体论文

浅谈半导体材料 半导体材料的发展与器件紧密相关。1941年用多晶硅材料制成检波器,是半导体材料应用的开始,1948~1950年用切克劳斯基法成功的拉出了锗单晶,并用它制成了世界上第一个具有放大性能的锗晶体三极管。1951年用四氯化硅锌还原法制出了多硅晶,1952年用直拉法成功拉出世界上第一根硅单晶,同年制出了硅结型晶体管,从而大大推进了半导体材料的广泛应用和半导体器件的飞速发展。 一.半导体材料的分类: 半导体材料是导电能力介于导体与绝缘体之间的物质。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,电阻率约在1mΩ·cm~1GΩ·cm范围内。 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、化合物半导体、有机半导体、固溶体半导体和非晶态与液态半导体。元素半导体大约有十几种,处于ⅢA族—ⅦA族的金属元素与非金属元素交界处,如Ge,Si,Se,Te等;化合物半导体分为二元化合物半导体和多元化合物半导体;有机半导体分为有机分子晶体、有机分子络合物、和高分子聚合物,一般指具有半导体性质的碳-碳双键有机化合物,电导率为10-10~102Ω·cm。固溶体半导体是由两个或多个晶格结构类似的元素化合物相融合而成,有二元系和三元系之分,如ⅣA-ⅣA组成的Ge-Si固溶体,ⅤA-ⅤA组成的Bi-Sb固溶体。原子排列短程有序、长程无序的半导体成为非晶态半导体,主要有非晶硅、非晶锗等。 二.半导体材料的制备工艺: 不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。 所有的半导体材料都需要对原料进行提纯,要求的纯度在6个“9”以上,最高达11个“9”以上。提纯的方法分两大类,一类是不改变材料的化学组成进行提纯,称为物理提纯;另一类是把元素先变成化合物进行提纯,再将提纯后的化合物还原成元素,称为化学提纯。物理提纯的方法有真空蒸发、区域精制、拉晶提纯等,使用最多的是区域精制。化学提纯的主要方法有电解、络合、萃取、精

晶体结构和晶体缺陷

第一部分晶体结构和晶体缺陷 1.原子的负电性的定义和物理意义是什么? 2.共价键的定义和特点是什么? 3.金刚石结构为什么要提出杂化轨道的概念? 4.V、VI、VII族元素仅靠共价键能否形成三维晶体? 5.晶体结构,空间点阵,基元,B格子、单式格子和复式格子之间的关系和区别。 6.W-S元胞的主要优点,缺点各是什么? 7.配位数的定义是什么? 8.晶体中有哪几种密堆积,密堆积的配位数是多少? 9.晶向指数,晶面指数是如何定义的? 10.点对称操作的基本操作是哪几个? 11.群的定义是什么?讨论晶体结构时引入群的目的是什么? 12.晶体结构、B格子、所属群之间的关系如何? 13.七种晶系和十四种B格子是根据什么划分的? 14.肖特基缺陷、费仑克尔缺陷、点缺陷、色心、F心是如何定义的? 15.棱(刃)位错和螺位错分别与位错线的关系如何? 16.位错线的定义和特征如何? 17.影响晶体中杂质替位几率的主要因素有哪些? 18.晶体中原子空位扩散系数D与哪些因素有关? 19.解理面是面指数低的晶面还是面指数高的晶面?为什么? 20.为什么要提出布拉菲格子的概念? 21.对六角晶系的晶面指数和晶向指数使用四指标表示有什么利弊? 第二部分倒格子 1.倒格子基矢是如何定义的? 2. 正、倒格子之间有哪些关系? 3.原子散射因子是如何表示的,它的物理意义如何? 4. 几何结构因子是如何表示的,它的物理意义如何? 5. 几何结构因子S h与哪些元素有关? 6.衍射极大的必要条件如何? 7.什么叫消光条件? 8.反射球是在哪个空间画的,反射球能起到什么作用,如何画反射球? 9.常用的X光衍射方法有哪几种,各有什么基本特点? 10.为什么要使用“倒空间”的概念?

浅谈石英晶体振荡器的发展前景

浅谈石英晶体振荡器的发展前景 摘要:分析石英晶体振荡器的国内外发展现状、技术发展趋势和市场前景。广泛应用于融合通信、导航、卫星、雷达、测绘等领域,需求量以每年38%快速增长,未来具有广阔的市场空间。 关键词:石英晶体振荡器趋势市场 石英晶体振荡器,石英谐振器简称为晶振,它是利用具有压电效应的石英晶体片制成的。这种石英晶体薄片受到外加交变电场的作用时会产生机械振动,当交变电场的频率与石英晶体的固有频率相同时,振动便变得很强烈,这就是晶体谐振特性的反应。利用这种特性,就可以用石英谐振器取代LC(线圈和电容)谐振回路、滤波器等。由于石英谐振器具有体积小、重量轻、可靠性高、频率稳定度高等优点,被应用于家用电器和通信设备中。石英谐振器因具有极高的频率稳定性,故主要用在要求频率十分稳定的振荡电路中作谐振元件. 一、石英晶体振荡器的基本原理 1、石英晶体振荡器的结构 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。 2、压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 3、谐振频率 从石英晶体谐振器的等效电路可知,它有两个谐振频率,即(1)当L、C、R支路发生串联谐振时,它的等效阻抗最小(等于R)。串联揩振频率用fs表示,石英晶体对于串联揩振频率fs呈纯阻性,(2)当频率高于fs时L、C、R支路呈感性,可与电容C。发生并联谐振,其并联频率用fd表示。根据石英晶体的等

晶体缺陷作业

1 什么叫肖特基缺陷和弗兰克耳缺陷?用Kroger-Vink 记号分别描述AgBr 中的弗兰克耳缺陷和MgO 中的肖特基缺陷形成的缺陷化学方程,写出ZnO 中掺杂Al 2O 3空位补偿和电子补偿的缺陷化学方程。 2 If cupric oxide (CuO) is exposed to reducing atmospheres at elevated temperatures, some of the Cu 2+ ions will become Cu +. (a) Under these conditions, name one crystalline defect that you would expect to form in order to maintain charge neutrality. (b) How many Cu + ions are required for the creation of each defect? (c) How would you express the chemical formula for this nonstoichiometric material? 3 (a) Suppose that Li 2O is added as an impurity to CaO. If the Li + substitutes for Ca 2+, what kind of vacancies would you expect to form? How many of these vacancies are created for every Li added? (b) Suppose that CaCl 2 is added as an impurity to CaO. If the Cl - substitutes for O 2-, what kind of vacancies would you expect to form? How many of the vacancies are created for every Cl - added? 4 纯铁的空位形成能为1.5X10-19J/atom ,将纯铁加热至850℃后激冷至室温20℃,若高温下的空位全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。 5 已知铜的晶体结构为fcc,点阵常数a=0.225nm ,切变模量210104-??=m N G ,试分别计算柏氏矢量为]121[6 ]111[2]111[3]110[2a a a a 的位错应变能。 6在图示的Cu 晶界上有一双球冠形第二相,已知Cu 的大角度晶界能为25.0m J ?, (1)分别计算当o o 90,60==θθ时Cu 与第二相之间的相界面能;

第二章晶体结构与晶体中的缺陷

内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

相关主题
文本预览
相关文档 最新文档