当前位置:文档之家› 新版刀具材料论文.pdf

新版刀具材料论文.pdf

新版刀具材料论文.pdf
新版刀具材料论文.pdf

金属切削刀具的发展历史与现状

前言

刀具是机械制造中用于切削加工的工具,又称切削工具。广义的切削工具既包括刀具,还包括磨具。刀具技术的进步,体现在刀具材料、刀具结构、刀具几

何形状和刀具系统四个方面,刀具材料新产品更是琳琅满目。当代正在应用的刀具材料有高速钢、硬质合金、陶瓷、立方氮化硼和金刚石。其中,高速钢和硬质

合金是用得最多的两种刀具材料,分别约占刀具总量的30%~40%和50%~60%。本文将介绍刀具的发展历程,发展现状,并对未来刀具的发展法相作出分析。

刀具的发展历史

刀具的发展在人类进步的历史上占有重要的地位。

中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜

质刀具。战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。当

时的钻头和锯,与现代的扁钻和锯已有些相似之处。

然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。1783年,法国的勒内首先制出铣刀。1792年,英国的莫兹利制出丝锥和板牙。

有关麻花钻的发明最早的文献记载是在1822年,但直到1864年才作为商品生产。那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。1868年,英国的穆舍特制成含钨的合金工具钢。1898年,美国的泰勒和.怀特发明高速钢。1923年,德国的施勒特尔发明硬质合金。

在采用合金工具钢时,刀具的切削速度提高到约8米/分,采用高速钢时,又提高两倍以上,到采用硬质合金时,又比用高速钢提高两倍以上,切削加工出的工件表面质量和尺寸精度也大大提高。

由于高速钢和硬质合金的价格比较昂贵,刀具出现焊接和机械夹固式结构。1949~1950年间,美国开始在车刀上采用可转位刀片,不久即应用在铣刀和其他

刀具上。1938年,德国德古萨公司取得关于陶瓷刀具的专利。1972年,美国通用电气公司生产了聚晶人造金刚石和聚晶立方氮化硼刀片。这些非金属刀具材料可使刀具以更高的速度切削。1969年,瑞典山特维克钢厂取得用化学气相沉积法,生产碳化钛涂层硬质合金刀片的专利。1972年,美国的邦沙和拉古兰发展

了物理气相沉积法,在硬质合金或高速钢刀具表面涂覆碳化钛或氮化钛硬质层。

表面涂层方法把基体材料的高强度和韧性,与表层的高硬度和耐磨性结合起来,

从而使这种复合材料具有更好的切削性能。

刀具的发展现状

任何一个强大的国家都必须具有包括金属切削加工在内的强大制造业基础。

在整个21世纪中,金属切削加工仍是机械制造业的主导方法,切削加工(包含磨

削)不仅占其90%以上的份额,而且刀具消耗费用占制造成本的2%-5%。

1、刀具的各种分类

刀具按工件加工表面的形式可分为五类。加工各种外表面的刀具,包括车刀、刨刀、铣刀、外表面拉刀和锉刀等;孔加工刀具,包括钻头、扩孔钻、镗刀、铰

刀和内表面拉刀等;螺纹加工工具,包括丝锥、板牙、自动开合螺纹切头、螺纹

车刀和螺纹铣刀等;齿轮加工刀具,包括滚刀、插齿刀、剃齿刀、锥齿轮加工刀

具等;切断刀具,包括镶齿圆锯片、带锯、弓锯、切断车刀和锯片铣刀等等。此外,还有组合刀具。

按切削运动方式和相应的刀刃形状,刀具又可分为三类。通用刀具,如车刀、刨刀、铣刀(不包括成形的车刀、成形刨刀和成形铣刀)、镗刀、钻头、扩孔钻、铰刀和锯等;成形刀具,这类刀具的刀刃具有与被加工工件断面相同或接近相同

的形状,如成形车刀、成形刨刀、成形铣刀、拉刀、圆锥铰刀和各种螺纹加工刀

具等;展成刀具是用展成法加工齿轮的齿面或类似的工件,如滚刀、插齿刀、剃

齿刀、锥齿轮刨刀和锥齿轮铣刀盘等。各种刀具的结构都由装夹部分和工作部分

组成。整体结构刀具的装夹部分和工作部分都做在刀体上;镶齿结构刀具的工作部分(刀齿或刀片)则镶装在刀体上。刀具的装夹部分有带孔和带柄两类。带孔刀

具依靠内孔套装在机床的主轴或心轴上,借助轴向键或端面键传递扭转力矩,如圆柱形铣刀、套式面铣刀等。带柄的刀具通常有矩形柄、圆柱柄和圆锥柄三种。车刀、刨刀等一般为矩形柄;圆锥柄靠锥度承受轴向推力,并借助摩擦力传递扭矩;圆柱柄一般适用于较小的麻花钻、立铣刀等刀具,切削时借助夹紧时所产生的摩擦力传递扭转力矩。很多带柄的刀具的柄部用低合金钢制成,而工作部分则用高速钢把两部分对焊而成。刀具的工作部分就是产生和处理切屑的部分,包括刀刃、使切屑断碎或卷拢的结构、排屑或容储切屑的空间、切削液的通道等结构要素。有的刀具的工作部分就是切削部分,如车刀、刨刀、镗刀和铣刀等;有的

刀具的工作部分则包含切削部分和校准部分,如钻头、扩孔钻、铰刀、内表面拉

刀和丝锥等。切削部分的作用是用刀刃切除切屑,校准部分的作用是修光已切削的加工表面和引导刀具。刀具工作部分的结构有整体式、焊接式和机械夹固式三种。整体结构是在刀体上做出切削刃;焊接结构是把刀片钎焊到钢的刀体上;机械夹固结构又有两种,一种是把刀片夹固在刀体上,另一种是把钎焊好的刀头夹固在刀体上。硬质合金刀具一般制成焊接结构或机械夹固结构;瓷刀具都采用机械夹固结构。

刀具工作部分的结构有整体式、焊接式和机械夹固式三种。整体结构是在刀体上做出切削刃;焊接结构是把刀片钎焊到钢的刀体上;机械夹固结构又有两种,一种是把刀片夹固在刀体上,另一种是把钎焊好的刀头夹固在刀体上。硬质合金刀具一般制成焊接结构或机械夹固结构;瓷刀具都采用机械夹固结构。

刀具切削部分的几何参数对切削效率的高低和加工质量的好坏有很大影响。

增大前角,可减小前刀面挤压切削层时的塑性变形,减小切屑流经前面的摩擦阻力,从而减小切削力和切削热。但增大前角,同时会降低切削刃的强度,减小刀

头的散热体积。

刀具材料大致分如下几类:高速钢、硬质合金、金属陶瓷、陶瓷、聚晶立方

氮化硼以及聚晶金刚石。我主要提下陶瓷,陶瓷用于切削刀具的时间比硬质合金

早,但由于其脆性,发展很慢。但自上世纪70年代以后,还是得到了比较快的

发展。陶瓷刀具材料主要有两大系,即氧化铝系和氮化硅系。陶瓷作为刀具,具

有成本低、硬度高、耐高温性能好等优点,有很好的前景。

2、国外刀具的发展现状

1.切削工具材料和涂层技术

不同种类的切削工具材料都有所进步,包括高速工具钢、硬质合金、金属陶瓷、陶瓷、聚晶立方氮化硼(PCBN)和聚晶金刚石(PCD)。高速工具钢(HSS) 是高韧性的刀具材料,能制作成其他材料不能制作的各种复杂几何形状和尺寸的锋利切

削刀具。而高耐磨性的CBN和PCD超硬材料则适用于高速、小进给量加工。介

于上述两种材料之间的是硬质合金、金属陶瓷和陶瓷刀具材料,这些材料广泛使用于各种切削速度和进刀量需求的加工工业领域。

与刀具材料同步发展的还有化学涂层CVD和物理涂层PVD技术,如今几乎75%的硬质合金刀具为涂层刀具,其中CVD涂层约占80%。

当代CVD涂层的特点是多层涂层。其涂层结构包括TiCN、TiC、TiN、ZrCN 和Al2O3。通过对CVD工艺的良好控制,刀具制造商现在可提供质量稳定的从5μm到20μm厚度的涂层刀具,以及用于高硬度材料工件加工的单层涂层厚度

不超过0.2μm的多层涂层合金刀具。

PVD物理涂层技术使在金属陶瓷和硬质合金基体上的涂层厚度为2μm到5μm的硬质涂层已经进入了商业化。典型的商业化涂层方式包括TiN、TiCN、TiAlN、CrN、TiB2,还有诸如TiN/TiAlN的多层涂层。PVD涂层工艺具有的独特优势是:可以给锐利的切削刃面提供超细晶粒、平滑、低摩擦和防止高温热裂的

涂层。

纳米PVD涂层(每层涂层厚度甚至薄到2nm,例如TiN/TiAlN涂层)和纳米复合涂层(TiN或TiAlN纳米结晶被植入Si3N4的矩阵之中)正处于研发阶段。

新近发展的硬质合金刀具涂层包含外部用PVD TiN或者TiAlN涂层与内部CVD TiN/TiCN/TiN涂层的结合。内部CVD涂层可提供极好的基体粘合力和耐磨性,而外部PVD涂层提供一个坚固的、超细晶粒的、不易脆裂的、表面光滑的

刀具表层。这种CVD-PVD相互结合的涂层有助于延长刀具在难加工金属材料和

钢材加工的断续切削时刀具使用寿命。新型的PVD TiCN或TiAlN涂层的金属陶瓷刀具,在用于车削和铣削钢材、不锈钢和铸铁的精加工和半精加工过程中,其

可靠性已经得到改进。它们的化学成分稳定,具有高红硬性和维持高速切削的能力,确保了降低被加工零件的尺寸误差,获得良好的表面质量,高的效率以及更长的刀具使用寿命。

陶瓷刀具也有了重要意义的发展。常规的Al2O3白色陶瓷刀具已被超细微粒的Al2O3-TiCN黑色陶瓷所取代。其高强度与高抗磨损性适用于硬度高达60HRC 的铸铁、合金钢、工具钢和不锈钢的车削和镗削精加工。PVD TiN涂层已经为这些工具的耐磨性的更进一步的提高做出了贡献。碳化硅强化Al2O3陶瓷的发展,使得高速加工镍基合金已成为现实。

纯Si3N4基陶瓷所具有的高热导率和坚韧性使用于铸铁(发动机气缸,刹车鼓,刹车)的高速加工。CVD Al2O3涂层使Si3N4基陶瓷可应用于加工灰口韧性铸铁。

作为强化Al2O3金属陶瓷的补充刀具材料,SIALON硅铝氧氮聚合材料彻底更

新了镍基合金加工的生产力。例如:以3500sfm(英尺/分钟)的表面速度加工高温合金材料718铬镍合金和PH不锈钢就是一个SIALON硅铝氧氮聚合材料作为刀具

材料的有力佐证。

高速加工需要超硬的切削工具。其中聚晶金刚石(PCD)适用于加工非常耐磨损的高硅铝合金(含Si>12%)、有色金属材料和复合材料;聚晶立方氮化硼(PCBN)适用于硬的黑色金属材料的车削、镗削和铣削加工。

涂层领域新近的发展是将纯金刚石薄膜用CVD涂层的手段牢固地涂覆于硬

质合金基材上。金刚石涂层的硬质合金刀具可具有PCD刀具的性能,又可以通过模具成型断屑槽的方式使刀具在设计和使用工艺上更具灵活性。

切削工具制造商正通过开发像MoS2或者WC/C这样的固体润滑剂来满足这

一需要。当与PVD TiAlN涂层刀具和固体润滑剂结合使用时,能显著的提高金属切削的性能,尤其是对于钢和铝合金进行钻孔和攻丝的加工。

如今超耐磨切削刀具的应用,如金刚石刀具用于有色金属、CBN刀具用于黑色金属的高速切削和磨削等已成为典范。尽管其刀具采购成本高于传统工具的

20~50倍,但因其具有比其它刀具至少长100倍的使用寿命,采用此类超耐磨

刀具还是相当划算的。

2.切削刀具的设计

高速加工的使用者要求经过动平衡的切削刀具,以便减少调整刀具平衡的时间,延长刀具使用寿命,改进被加工零件的精度以及增加主轴轴承的寿命。

钻削、镗削工具系统也在不断的改进和发展。可更换钻头合金刀片已成趋势,钻尖磨损后钻头无需从刀架上卸下也可更换切削刃。现在市场已可以提供直径小

到0.5 英寸的这类钻头。目前工具制造商正在制造直径为0.25英寸的此类钻头。带有0.5μm调整机构的高速精密微调镗刀系统也已进入市场。

对于高的金属去除率的钛金属类加工,新开发的重切削立铣刀可安装多达

72个可转位刀片。这种刀具在设计上通过各个刀片的搭接提供各种变化多样的

刀具螺旋角和轴向刃倾度。这种变化扰乱了切削加工时的共振,从而可以无共振地进行深度的铣削加工。

3.工具系统结构

制造商对HSK工具系统支持高速机械加工的运用越来越感兴趣。虽然这种工具系统最初十分昂贵,但HSK似乎能够提高系统的刚性和稳定性以及在高速加工

时的产品精度,并缩短刀具更换时间。工具供应商正在不断地改进HSK工具系统,使其适应机床主轴转速达到60000r/min。

4.刀具质量与精度

在20年前,CNC机床达到25μm的精度被视为极限。如今机床制造精度接近原精度值的1/10已不困难。与此同时,SPC控制和在线检测对解决被加工零件

质量的一致性起到了很好的控制作用。在零部件装配时不再需要根据零件加工误

差进行分组选配。据报道高精密机床及被其加工的精密产品在过去的20年中对驱动美国生产力的提高起到了决定性的作用。虽然很多因素对于加工精度的重大

改进有重大的贡献,但是在进一步提升制造业的精度水平中,数据收集、计量设备、工序过程标准化的应用等已经起到关键的作用。

5.切削工具制造商和服务

近年来不断出现一些综合的工具制造商。一些主要切削工具供应商更多的注

重发展其核心业务,并通过重组和收购扩大其业务范围。Sandivik公司在过去的十年中收购了35家公司,2002年又完成了对Walter和Valenite等三家重点公司的

收购。美国肯纳公司也是如此。切削工具制造商能够通过简化现成的销售和服务

渠道提供更大范围的产品和服务。

3、国内刀具发展现状

目前国内最常用的刀具材料仍为高速钢和硬质合金,且以普通高速钢和普通硬质合金为主。硬质合金焊接刀具的应用仍十分普遍;铝高速钢、粉末冶金高速钢的使用很少;由于市场供应的国产高速钢质量下滑,使含钴高速钢刀具品质较差;高性能硬质合金及细(超细)颗粒硬质合金较少,几乎无专用牌号。我国的刀

具涂层技术与国外相比差距较大,金刚石膜涂层技术尚处于研发阶段;尚无商品化TiCN涂层产品;TiAIN、MoS2涂层、纳米涂层等新技术尚待研究;具有优良

耐磨性、抗高温、抗热震性的高速切削刀具材料也函待开发。国内对于陶瓷刀具的研究较为充分,已基本建立了融切削学和陶瓷学为一体的、基于切削可靠性的陶瓷刀具材料设计、研究理论新体系。国产氧化铝基陶瓷刀具已有近20个品种(部分产品性能及用途见表3) ,氮化硅基陶瓷刀具已有近10 个品种,陶瓷刀具的生产能力也较大。目前陶瓷刀具的研发水平已达到国际先进水平,陶瓷刀具的性能水平也不低于国外同类产品。已开发成功陶瓷—硬质合金复合刀片、梯度功能陶瓷刀片、多种采用协同增韧机理的陶瓷刀具等国外尚未见报道的新产品。目前与国外的差距主要表现在制造工艺水平较低,高精度陶瓷刀片和某些品种的陶瓷刀具(如加入氮化物的陶瓷刀具)质量欠佳,陶瓷刀具的推广应用也不如发达国家

普遍。

国内已开发出可分别用于车削、镗削、铣削等加工领域的多种不同CBN含量的CBN刀具和不同颗粒尺寸的PCD刀具,其中CBN刀具主要用于高速加工淬硬钢、高硬铸铁及某些难加工材料,PCD刀具则用于加工铝合金。不足之处是品种规格不够齐全,某些产品质量欠佳,推广应用尚不普遍。

未来发展展望

切削加工追求的目标是高精度、高效率、低成本、绿色环保。近年来,切削加工

技术在高速切削、硬态切削、微雾润滑切削、干式切削、复合切削等领域迅速发展,这些切削加工技术是实现以最小限度生产设备高效率、低成本加工零件的生产方式的核心,到目前为止,切削加工技术发展的最大标志就是高速切削加工(HighSpeedCutting,HSC)的发展。

先进的刀具技术是促进切削技术发展的基础和保证,刀具技术的发展涉及刀具材料和刀具结构的发展,刀具材料是提升刀具性能的基础,刀具结构是提高工件加工精度的关键。

随着高速加工、高精度加工技术的进步和难加工材料应用数量的增加,刀具材料的进展也十分显着,新型陶瓷、细晶粒硬质合金、超细晶粒硬质合金、TiC/TiN 基金属陶瓷、涂层硬质合金等材料大大提升了刀具的性能,刀具基体的耐磨性、

耐热性、韧性和抗弯强度明显提高。复合涂层技术使刀具性能进一步提升,涂层材料除了有适合高速切削的TiC、TiN、TiAlN以外,现在还使用金刚石、立方氮化硼、硅基纳米涂层等。

近年来,人们在新型刀具材料的应用、刀具涂层技术以及新型刀具切削性能方面进行了大量的研究与应用工作,生产现场使用的刀具已经进入了以硬质合金材料为主体、多种涂层成熟应用的状态,未来刀具材料主要的发展趋势是“细晶粒的基体材料+复合涂层”,以适应高速切削、干式切削、高精度加工的基本需求。

切削加工精度和表面质量是切削加工过程的关键因素,加工精度和表面质量取决于刀具的刃形、断屑性能和安装结构的稳定性。未来刀具的设计必须注重刃型设计、断屑槽设计、刀片定位或刀柄夹持设计以及表面涂层和刃口强化处理。

为降低刀具的应用成本,镶齿结构、镶嵌结构、涂覆结构应成为刀具主体结构,整体结构在小规格、微型规格才使用。未来的刀具应该是双性能结构,即“高韧性高强度基体+高硬度高耐磨性刃部”。

刀具材料及其涂层技术的发展促进了刀具切削速度的不断提高,带来了加工效率的变革,进一步带来了加工范围的拓展。

刀具的设计和使用应考虑刀具材料与工件材料的性能匹配性,针对不同的工件材料和加工条件确定合理的刀具材料和结构形式。高速、高效、高精度切削加工要求刀具具有多种优异性能,“高韧性高强度基体+高硬度高耐磨性刃部”是未来刀具的主要发展方向。

刀具材料论文

金属切削刀具的发展历史与现状 前言 刀具是机械制造中用于切削加工的工具,又称切削工具。广义的切削工具既包括刀具,还包括磨具。刀具技术的进步,体现在刀具材料、刀具结构、刀具几何形状和刀具系统四个方面,刀具材料新产品更是琳琅满目。当代正在应用的刀具材料有高速钢、硬质合金、陶瓷、立方氮化硼和金刚石。其中,高速钢和硬质合金是用得最多的两种刀具材料,分别约占刀具总量的30%~40%和50%~60%。本文将介绍刀具的发展历程,发展现状,并对未来刀具的发展法相作出分析。 刀具的发展历史 刀具的发展在人类进步的历史上占有重要的地位。 中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。当时的钻头和锯,与现代的扁钻和锯已有些相似之处。 然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。1783年,法国的勒内首先制出铣刀。1792年,英国的莫兹利制出丝锥和板牙。有关麻花钻的发明最早的文献记载是在1822年,但直到1864年才作为商品生产。那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。1868年,英国的穆舍特制成含钨的合金工具钢。1898年,美国的泰勒和.怀特发明高速钢。1923年,德国的施勒特尔发明硬质合金。 在采用合金工具钢时,刀具的切削速度提高到约8米/分,采用高速钢时,又提高两倍以上,到采用硬质合金时,又比用高速钢提高两倍以上,切削加工出的工件表面质量和尺寸精度也大大提高。 由于高速钢和硬质合金的价格比较昂贵,刀具出现焊接和机械夹固式结构。1949~1950年间,美国开始在车刀上采用可转位刀片,不久即应用在铣刀和其他刀具上。1938年,德国德古萨公司取得关于陶瓷刀具的专利。1972年,美国通用电气公司生产了聚晶人造金刚石和聚晶立方氮化硼刀片。这些非金属刀具材料可使刀具以更高的速度切削。1969年,瑞典山特维克钢厂取得用化学气相沉积法,生产碳化钛涂层硬质合金刀片的专利。1972年,美国的邦沙和拉古兰发展了物理气相沉积法,在硬质合金或高速钢刀具表面涂覆碳化钛或氮化钛硬质层。表面涂层方法把基体材料的高强度和韧性,与表层的高硬度和耐磨性结合起来,从而使这种复合材料具有更好的切削性能。 刀具的发展现状 任何一个强大的国家都必须具有包括金属切削加工在内的强大制造业基础。在整个21世纪中,金属切削加工仍是机械制造业的主导方法,切削加工(包含磨

数控刀具材料及选用

数控刀具材料及选用,再也不用盲目选刀 加工设备与高性能的数控刀具相配合,才能充分发挥其应有的效能,取得良好的经济效益。随着刀具材料迅速发展,各种新型刀具材料,其物理、力学性能和切削加工性能都有了很大的提高,应用范围也不断扩大。 一. 刀具材料应具备基本性能 刀具材料的选择对刀具寿命、加工效率、加工质量和加工成本等的影响很大。刀具切削时要承受高压、高温、摩擦、冲击和振动等作用。因此,刀具材料应具备如下一些基本性能: (1) 硬度和耐磨性。刀具材料的硬度必须高于工件材料的硬度,一般要求在60HRC以上。刀具材料的硬度越高,耐磨性就越好。 (2) 强度和韧性。刀具材料应具备较高的强度和韧性,以便承受切削力、冲击和振动,防止刀具脆性断裂和崩刃。 (3) 耐热性。刀具材料的耐热性要好,能承受高的切削温度,具备良好的抗氧化能力。 (4) 工艺性能和经济性。刀具材料应具备好的锻造性能、热处理性能、焊接性能;磨削加工性能等,而且要追求高的性能价格比。 二.刀具材料的种类、性能、特点、应用 1.金刚石刀具材料的种类、性能和特点及刀具应用 金刚石是碳的同素异构体,它是自然界已经发现的最硬的一种材料。金刚石刀具具有高硬度、高耐磨性和高导热性能,在有色金属和非金属材料加工中得到广泛的应用。尤其在铝和硅铝合金高速切削加工中,金刚石刀具是难以替代的主要切削刀具品种。可实现高效率、高稳定性、长寿命加工的金刚石刀具是现代数控加工中不可缺少的重要工具。 ⑴金刚石刀具的种类 ①天然金刚石刀具:天然金刚石作为切削刀具已有上百年的历史了,天然单晶金刚石刀具经过精细研磨,刃口能磨得极其锋利,刃口半径可达0.002靘,能实现超薄切削,可以加工出极高的工件精度和极低的表面粗糙度,是公认的、理想的和不能代替的超精密加工刀具。 ②PCD金刚石刀具:天然金刚石价格昂贵,金刚石广泛应用于切削加工的还是聚晶金刚石

刀具材料论文

现代工程材料成形与机械设计制造基础——《关于新型刀具材料论文》 目录 摘要: (1) 关键词: (2) 简析刀具材料和性能 (2) 一、刀具材料应具备的性能 (3) 二、现代新型刀具材料 (4) (一)高速钢 (4) (二)硬质合金 (5) (三)涂层刀具 (7) (四)陶瓷 (9) (五)超硬刀具材料 (9) 展望强度最高的物质——石墨烯,氮化碳(β—C3N4) (11) 摘要: 随着工件材料的力学性能不断提高,产品的品种和批量逐渐增多,加工精度的要求日益提高,工件的结构和形状不断复杂化和多样化,各种难加工材料的出现和应用,先进制造系统、高速切削、超精密加工、绿色制造的发展和付诸实用,都对刀具提出了更高、更新的要求,预计,在今后很长时期内,切削加工工艺不会衰退,刀具和刀具材料将有更新的发展。以下让我来论述了刀具和刀具材料回顾早期机械制造中的刀具材料,重点阐述现代产品加工中所用新型刀

具材料(高速钢、硬质合金、陶瓷、超硬材料)的性能及其应用范围。对二十一世纪新型刀具材料发展的动向作出预测和展望。 关键词:刀具材料;新型;常用刀具;展望。 刀具材料的发展在人类的生活、生产和战争中有着很大的重要性。在古代,“刀”和“火”是两项最伟大的发明,它们的发明和应用是人类登上历史舞台的重要标志。刀具材料的进步曾推动着人类社会文化和物质文明的发展。例如,在人类历史中曾有过旧石器时代、新石器时代、青铜器时代和铁器时代等。 材料、结构和几何形状是决定刀具切削性能的三要素。其中,刀具材料的性能起着关键作用。20世纪是刀具材料大发展的历史时期。各种难加工材料的出现和应用,先进制造系统、高速切削、超精密加工、绿色制造的发展和付诸实用,都对刀具提出了更高、更新的要求,预计,在今后很长时期内,切削加工工艺不会衰退,刀具和刀具材料将有更新的发展。 简析刀具材料和性能 刀具材料应具备的性能 刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工成本、加工质量、以及刀具耐用度影响很大。使用碳工具钢作为刀具材料时,切削速度只有10m/min左右;20世纪初出现了高速钢刀具材

新型刀具材料

新型刀具材料 重庆大学本科学生课题论文 新型刀具材料 学生: 学号: 指导教师: 专业:机械制造及其自动化专业重庆大学机械工程学院

新型刀具材料[在此处键入] [在此处键入] 摘要 随着科学与工业的发展,机械加工技术正朝着高效率、高精度、高柔性和绿色制造的方向发展。于此同时,机械加工技术的运用范围也越发广泛,无论是在航空航天,模具生产和汽车制造等领域都能看到机械制造的影子。然而随着工件材料的力学性能的不断提高,加工精度的要求日益的提高,以及各种新型难以加工的材料的出现,对加工技术的要求也越来越高。要想使一样加工技术得到改革,产生质的飞跃,刀具作为基本组成之一,人们也对其提出了更高的要求。故本文,我们将着重介绍各种的新型刀具材料,及其相关知识。 关键词 稀土硬质合金、陶瓷、超硬刀具材料

新型刀具材料 一、新型刀具材料的基本要求 刀具材料性能的优劣是影响切削加工能否正常运作的直接原因。为了适应当今社会更高的要求,新型刀具必须在保证提高加工效率和加工质量的同时,降低加工费用。材料、结构和几何形状是决定刀具加工性能的三个重要因素。其中,刀具材料最为重要。刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工成本、加工质量以及刀具使用寿命等都影响很大。 性能优良的刀具材料,是保证刀具高效工作的基本条件。造成刀具损坏最主要的原因是切削力和切削温度作用下的机械摩擦、粘结、化学磨损、崩刃、破碎以及塑性变形等磨损和破损。 因此高速切削刀具材料最主要的要求是高温时的力学性能、热物理性能、抗粘结性能、化学稳定性(氧化性、扩散性、溶解度等)和抗热震性能以及抗涂层破裂性能等。 本文主要介绍的新型刀具材料主要分为以下几类: (一)稀土硬质合金;(二)陶瓷刀具材料;(三)超硬刀具材料。二、稀土硬质合金 添加稀土元素的硬质合金是刀具材料新品种之一。稀土元素是指化学元素周期表中原子序数57~71(从La到Lu),再加上21和39(Sc和Y),共17个元素。将某些稀土元素,以一定方式,微量添加到传统的硬质合金牌号中,即可有效地提高它们的机械性能与切削性能。稀土对硬质合金的作用机理主要有:1.抑制Co 粘结相的相变和固溶强化;2. 控制 WC 晶粒的不均匀长大、细化晶粒;3. 富集杂质元素,改变其分布形态,净化界面;4. 影响合金中孔隙度和孔隙尺寸。 常见的稀土硬质合金主要有: 1.稀土硬质合金YG8R 此类合金有硬质合金YG8改进得到,YG8R主要用于铸铁和有色金属的粗加工。经过测试,用YG8R和YG8硬质合金车削灰铸铁HT200(硬度HB170~180),v=80m/min,ap=2mm,f=0.3mm/r。YG8R的使用寿命为YG8的1.5~2倍,且抗冲击性能有所改善。 2.稀土硬质合金YT14R 在YT14硬质合金中添加了Ce、Y等稀土元素后,可得到稀土硬质合金YT14R。YT14R主要用钢材的半精加工。添加稀土元素后硬质合金的组织比较致密;室温硬度和高温硬度有所改善;断裂韧性和抗弯强度显著提高,分别提高20%和10%以上。 3.稀土硬质合金YW1R YW1R和YW1刀具车削不锈钢1Cr18Ni9Ti(抗拉强度sb=0.55GPa)和高温合金GH3128(sb=0.84GPa),v=30~60m/min,ap=0.7~1.5mm,f=0.08mm/r。YW1R的使用寿命为YW1的2倍以上,且已加工表面质量略有改善。 由此,我们可以看出稀土硬质合金的冲击韧性、抗弯强度及工作时的抗冲击

金属切削刀具常识及使用方法【干货】

金属切削刀具常识及使用方法 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 金属切削刀具常识及使用方法 在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。通常讲的刀具角度,是指制造和测量用的标注角度在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小。 制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。 通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用广的刀具材料,其次是硬质合金。 聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。硬质合金可转位刀片现在都已用化学气相沉积法涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。

刀具论文

剃齿刀修形新方法 许成强 0801011431 摘要: 剃齿是齿轮齿形精加工的高效传统工艺, 分析剃齿的原理及剃齿过程存在的问题, 提出一种用齿轮式金刚石修磨轮修形剃齿刀的新方法, 并说明制作金刚石修磨轮的方法,通过试验证明可行。 关键词: 剃齿; 修形; 齿轮式金刚石修磨轮 1 剃齿的基本原理 剃齿是利用一对交错斜轴齿轮啮合时齿面产生相对滑移原理, 使用剃齿刀从被加工齿轮的齿面上剃去一层很薄金属的精加工方法。剃齿时, 应先将被加工齿轮装 在心轴上, 再连心轴一起安装到机床工作台的两顶尖间, 使其可自由转动, 齿侧面作相对滑移。因剃齿刀的齿侧面上有许多小槽, 槽与齿面的交棱就是切削刃, 所以齿轮的齿侧面沿其滑移时就被切去极细的切屑。剃齿的加工范围较广, 可加工内、外啮合的直齿圆柱齿轮和斜齿圆柱齿轮、多联齿轮等; 且剃齿的生产率很高。由于剃齿能修正齿圈径向跳动误差、齿 距误差、齿形误差和齿向误差等, 故经过剃齿齿轮的工作平稳性精度和接触精度会较大提高, 同时可获得较精细表面。 2 剃齿刀的修磨新方法 被剃齿轮的精度和廓形在很大程度上取决于剃齿刀的精度和廓形, 而剃齿刀的精度和刀齿廓形又是通过剃齿刀的修磨获得的, 因此, 剃齿刀的修磨及剃齿刀磨床的性能对于保证 剃齿质量十分重要。剃齿工艺的主要问题是剃齿中凹现象 , 即剃出的齿轮在中部节圆附近出现不同程度的切入量( 约为0. 01~ 0. 03mm )。目前生产中解决的方法多采用靠模板法, 即用大平面磨齿机上利用靠模板将剃齿刀齿形修磨成中凹状, 再用磨好的剃齿刀加工出中凸齿形的工件。此方法费时费力, 须用专

门的磨齿机和技术工人, 剃齿刀修磨1次需6~ 8h。在大型齿轮加工企业中, 已开始使用数控剃齿机, 但进口价格极为昂贵, 仅限于少数进口国外相应机床的大型企业。 为较好地解决剃齿中凹现象, 笔者提出一种剃齿刀修磨新方法在机修磨法。修形原理: 用一个与所剃齿轮几何参数完全一致, 制造精度较高的齿轮式金刚石修整轮装在剃齿机上, 取代工序加工中的工件齿轮与剃齿刀啮合。在剃削运动中, 由于修磨轮的齿面硬度大于剃齿刀的齿面硬度, 根据反切原理, 对剃齿刀进行修形, 而本应使被剃齿轮产生的中凹、挖根、削顶效应, 反映到剃齿刀齿形上, 使剃齿刀的相应部位被修形, 不再是标准的渐开线齿形。用这种修磨成的剃齿刀再加工齿轮, 因工艺系统基本没有变化, 工件齿轮齿形的误差就可得到相应补偿, 在很大程度上消除前述的各种加工缺陷, 提高剃削精度。此种修形方法还有以下特点: ①新工艺修形过程简单, 不需将剃齿刀取下单独修形, 修形时间短, 操作容易, 修形成本也不高。②当基体轮的精度较高时, 经过精心研究制造工艺, 金刚石修磨轮镀后齿形精度经修形可达5 级( GB10095- 88) 以上, 镀层经使用未发现不牢固缺陷, 1个修磨轮可磨刀数百次, 镀层用尽后, 还可以重新镀覆金刚石。③新工艺由于在剃齿机上直接修形, 剃齿工艺系统中的一些随机误差都可得到及时补偿和调整。 济南第一机床厂、济宁机床厂、济宁齿轮厂、鲁南机床厂等多家企业的试验证明, 此方法完全满足剃齿刀的修形要求。 3 金刚石修磨轮的制作方法 剃齿刀修磨新方法在机修磨法的实现关键技术是金刚石修磨轮的制作, 齿轮式金刚石修整滚轮是指在齿轮形钢不用机械式行程开关或机械式的微动开关。而应采用接近开关或感应开关, 因为后者的寿命远远高于前者, 这样可靠性才有保证。制基体齿面上镀覆一层金刚石颗粒而形成一种高精度修形工具, 这种修磨轮具有与被加工工件相同的几何参数, 可用来对砂轮、珩磨轮、剃齿刀等齿轮加工工具进行修形。为保证被加工齿轮的加工精度, 齿轮形金刚石修磨轮应达到以下要求: ①尺寸精度和形位精度高; ②磨粒分布均匀且等高性好; ③镀层与基体、镀层与磨粒结合牢。 目前, 其制作方法主要为电镀,根据工艺, 又可分为内镀法和外镀法。外镀

刀具论文报告

机床工具结构及其夹紧特性的研究 今天下午,我们听取了有关刀柄夹具的报告。了解高速机床工具系统结构及其夹紧特性的研究。我对这一部分的内容较为感兴趣。查阅了相关的文献,并且做出以下整理。 1.高速机床工具系统概述 机床工具系统的基本功能主要是:能够实时保证机床中的刀具进行准确定位,并能够完成工作所需动力以及运动位移的任务。从工具系统的基本功能分析,工具系统应该能够具备以下的基本功能:首先,刀具系统要能够具备足够的运动传输能力,在进行加工的时候,刀具的最终受力都集中在刀具系统中,因此,要能够保证刀具系统具备足够的夹紧力;其次,工具系统应该具备高速的运动能力,因为器件不平衡在高速运动时候产生的巨大离心力会影响系统的定位准确度;最后,良好的刚度、阻尼特性以及介质传递能力对于系统的正常工作也具有重要的意义,因为在高速运转中,工具系统发生变形必然导致刀具的位置发生相对移动,从而导致了加工精度的下降,良好的阻尼特性对于工具系统的动刚性具有重要的影响,传递系统要能准确及时传输在加工过程中机械、电气等控制信号。此外,系统的环境适应性以及可维护性等也是工具系统重要的性能要求。 2.机床高速工具系统的结构选择及优化 高速工具系统的优越性能是以其先进的结构作为实现的基础的,优化合理的结构是保证高速工具系统稳定工作的重要前提。在工具系统连接中,要求刀柄能在主轴中进行准确的定位。因为定位的基本方案主要依赖于工具的轴向截面,而工具轴向截面形状的确定应该综合考虑轴向定位的精确度、磨损补偿能力、制造的可行性等多个相关要素。高速机床的工具系统主要包含纵截面以及横截面的形状这两个基本组成要素。 3.工具系统横截面形状的选择 工具系统的扭转传递能力主要依赖于刀柄横截面的形状,同时对于具有端面的工具系统其能力与端面的实际结构也具有一定的关系。由以上的分析以及实际工程实践总结,目前可以采用的刀柄横截面的形状主要有以下几种,如图1 所示。图1 中的第一种为方形截面的刀柄,其突出优点是不需要进行键槽的设置就可以完成扭矩的直接传递,具有较好的刚度且不易发生变形。但是方形的截面具有对主轴孔以及刀柄的精度要求过高,工艺性较差的问题,同时在扭矩传递的过程中,不同接触面所收到的应用大小不均匀,在实际生产过程中会造成局部设备的损坏;第二种为圆形截面的刀柄具,其具有工艺性能优越,并且具备较高的抗纽刚度的优点;第三中为棱形截面的刀柄,三棱形的截面与方形截面一样,具有无需设置扭矩传递键槽的优点,在传递过程 中所收到的应力也较为均衡, 但是同时存在刀具与主轴配合 精度要求过高、公益性较差以 及刚度不高的缺点;第四种为 多齿花键截面的刀柄,多齿花 键与三棱形相比较,刚度以及抗扭性能都有较大的提升,但是同样存在着工艺性方面的问题。以上分析的四种横向截面的刀柄,在实际应用中一般采用空心结构,具有质量较轻,自动补偿能力较强,便于安装以及工艺性能较好的优点,从扭矩的传递和工艺性以及平衡性等多个方面进行综合考虑,圆形的刀柄截面是较为理想的截面。 4.工具系统纵截面形状的选择

硬质合金刀具材料的研究现状与发展思路【深度解读】

硬质合金刀具材料的研究现状与发展思路【深度解读】

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500——600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢至今仍是一种常用刀具材料。高速钢是一种加

入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%——1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40——60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10——20倍,其红硬性比硬质合金高2——6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93——95HRC,

常用刀具材料分类特点及应用

金属切削原理读书报告 常用刀具材料分类特点及应用 姓名: 班级: 学号: 2014年5月7日

摘要 本文在阅读有关论文和专著的基础上对现阶段常用的刀具材料进行了总结和分析,总结出了碳素工具钢、合金工具钢、高速钢、硬质合金、陶瓷、金刚石、立方碳化硼等刀具材料的特点及应用范围,同时针对几种常见的切削工序中刀具材料的应用做了简单的分析。

目录 摘要 (1) 1刀具材料的发展历史 ......................................................... 错误!未定义书签。 2 常用刀具材料及特点 ........................................................ 错误!未定义书签。 碳素工具钢 ................................................................... 错误!未定义书签。 合金工具钢 ................................................................... 错误!未定义书签。 高速钢 ........................................................................... 错误!未定义书签。 硬质合金 ....................................................................... 错误!未定义书签。 陶瓷 ............................................................................... 错误!未定义书签。 超硬材料 ....................................................................... 错误!未定义书签。 3 刀具材料的典型应用 ........................................................ 错误!未定义书签。 工件材料与刀具材料 ................................................... 错误!未定义书签。 加工条件与刀具材料 ................................................... 错误!未定义书签。 4 总结 .................................................................................... 错误!未定义书签。 5 参考文献 ............................................................................ 错误!未定义书签。

机加工刀具管理规定(0001)

机加工刀具管理规定

机加工刀具管理规定 1目的 为了有效规范刀具的请购、保管、领用及报废等程序,特制定刀具管理规定。 2 范围 适用于机加工所有刀具的请购、保管、领用、退库及报废等操作。 3 权责 3.1机加工责对刀具的请购、检验、入库、领用、退库手续的办理。 3.2采购部负责刀具的采购及外发返修。 3.3刀具使用者负责保管所领用的刀具。 4 程序 4.1刀具的请购 4.1.1机加工根据《刀具控制》,筛选出低于安全库存的刀具,同时根据生产计划,确定请购刀具数量,填写《请购单》经部门经理签名确认后交采购部。 4.1.2对于未定安全库存的刀具,应先查询有无库存,在无库存或库存不够的情况下,使用部门填写《请购单》经部门经理签名确认后交采购部采购。 4.1.3对样品的刀具,则由工程部请购。批量生产后,由工程部提供相关刀具图纸或型号,生产部请购。 4.2 刀具的来料检验 4.2.1 刀具到厂后由刀具管理员负责接收,同时通知刀具管理工程师对刀具进行检验。 4.2.2 刀具管理工程师对刀具的外观/型号等有能力的检验内容进行检验确认,合格后方可入仓。 4.2 刀具的入库 4.2.1刀具检验完成后,刀具管理员根据刀具的名称、编号,在《刀具控制》中找到相应刀具,将刀具的数量累加到刀具库存数中。 4.2.2将入好帐的刀具放入到刀具刀具室中相应的位置,该位置可以在《刀具控制》中找到。 4.2.3 在相应位置的刀具存卡上追加入库数量,并作相应记录。

4.3刀具的领用 4.3.1刀具的领用 刀具管理员凭领用人开具的《领料单》发放相应型号的物品,并做好相关的记录,做到随时可查刀具的来源和去向; 领用者的权限为使用者,非使用者不能领用;刀具的二次领用要以旧换新,没有旧刀具必须有上级主管的批准,同时上级主管要出说明没有的理由,刀具管理员才可发放; 4.3.2工具的领用、移交及退还: 相关人员领用各类工具时应在相应的《机加工机加工工具领/借用记录表》上登记。领用人领用工具时要填写《机加工机加工工具领/借用记录表》,并注明用途和保管责任人。刀具管理员应在相应《机加工工具领/借用记录表》上核实该工具的名称、型号、数量等,让领用人签字确认,《机加工工具领/借用记录表》一份刀具室留底,一份交领用人,领用人将此单交部门文员保存。 各加工单元要登记领用工具,并确定工具保管责任人。各责任人负责此工具的日常保管、正常损坏后换领等工作,并对工具限期内损坏、遗失等负责。 以旧换新领料时,使用部门用旧工具到刀具室换领。刀具室人员在其《机加工工具领/借用记录表》上注销旧工具并签名确认,同时登记新《机加工工具领/借用记录表》并由车间主管签字确认。 原工具丢失或在最低使用限期内损坏,按规定赔偿后方可再重新领用新工具。工具交接、退还及借用(有如下情况) a调任交接:部门内或部门外人员调动(包含离职交接),需填写“工具移交表”,应由部门主管确认后,到刀具室办理退仓手续。 b工具转交:原保管人到刀具室《机加工工具领/借用记录表》上签名并注明转交**人,被交接人签字确认。 c工具借用:对于不经常使用的工具,相关部门可通过《机加工工具领/借用记录表》办理借用手续。对于借出的工具,由借出部门负责催还,并于归还后做好相关记录。 4.4刀具的退库 4.4.1为了有效的利用资源,对于常用、共用工具及近期不使用的工具、刀具等,刀具管理员督促使用者及时退还,到刀具室办理退库手续,以免防碍其它人员使用。 4.4.2 每月各加工单元指定专人应于月末与刀具管理员核对各车间领用工具、刀具情况,双方签名确认留一份备查。

刀具材料论文

刀具材料论文

现代工程材料成形与机械设计制造基础——《关于新型刀具材料论文》 目录 摘要: 0 关键词: (1) 简析刀具材料和性能 (1) 一、刀具材料应具备的性能 (2) 二、现代新型刀具材料 (3) (一)高速钢 (3) (二)硬质合金 (4) (三)涂层刀具 (6) (四)陶瓷 (8) (五)超硬刀具材料 (8) 展望强度最高的物质——石墨烯,氮化碳(β—C3N4) (10) 摘要: 随着工件材料的力学性能不断提高,产品的品种和批量逐渐增多,加工精度的要求日益提高,工件的结构和形状不断复杂化和多样化,各种难加工材料的出现和应用,先进制造系统、高速切削、超精

密加工、绿色制造的发展和付诸实用,都对刀具提出了更高、更新的要求,预计,在今后很长时期内,切削加工工艺不会衰退,刀具和刀具材料将有更新的发展。以下让我来论述了刀具和刀具材料回顾早期机械制造中的刀具材料,重点阐述现代产品加工中所用新型刀具材料(高速钢、硬质合金、陶瓷、超硬材料)的性能及其应用范围。对二十一世纪新型刀具材料发展的动向作出预测和展望。 关键词:刀具材料;新型;常用刀具;展望。 刀具材料的发展在人类的生活、生产和战争中有着很大的重要性。在古代,“刀”和“火”是两项最伟大的发明,它们的发明和应用是人类登上历史舞台的重要标志。刀具材料的进步曾推动着人类社会文化和物质文明的发展。例如,在人类历史中曾有过旧石器时代、新石器时代、青铜器时代和铁器时代等。 材料、结构和几何形状是决定刀具切削性能的三要素。其中,刀具材料的性能起着关键作用。20世纪是刀具材料大发展的历史时期。各种难加工材料的出现和应用,先进制造系统、高速切削、超精密加工、绿色制造的发展和付诸实用,都对刀具提出了更高、更新的要求,预计,在今后很长时期内,切削加工工艺不会衰退,刀具和刀具材料将有更新的发展。 简析刀具材料和性能

数控刀具论文

数控铣刀的发展特点 近年来,随着数控机床的不断发展,数控刀具的种类越来越多,但无论样式如何改变,从总体上看,数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,而数控刀具中又以数控铣刀应用最为广泛,下面就介绍一下数控铣刀的发展特点: 一、数控铣刀的分类: (一)按制造铣刀所用的材料可分为 1.高速钢刀具; 2.硬质合金刀具; 3.其他材料刀具,如立方氮化硼刀具、陶瓷刀具等 4.金刚石刀具; 。 (二)按铣刀结构形式不同可分为 1.镶嵌式:可分为焊接式和机夹式。 2.。整体式:将刀具和刀柄制成一体 3.内冷式:切削液通过刀体内部由喷孔喷射到刀具的切削刃部;。 4.减振式当刀具的工作臂长与直径之比较大时,为了减少刀具的振动,提高加工精度,多采用此类刀具 5.特殊型式:如复合刀具、可逆攻螺纹刀具等。 (三)按铣刀结构形式不同可分为: 1.模具铣刀:模具铣刀由立铣刀发展而成,可分为圆锥形立铣刀、圆柱形球头立铣刀和圆锥形球头立铣刀三种,其柄部有直柄、削平型直柄和莫氏锥柄。它的结构特点是球头或端面上布满切削刃,圆周刃与球头刃圆弧连接,可以作径向和轴向进给。铣刀工作部分用高速钢或硬质合金制造。 2.面铣刀(也叫端铣刀):面铣刀的圆周表面和端面上都有切削刃,端部切削刃为副切削刃。面铣刀多制成套式镶齿结构和刀片机夹可转位结构,刀齿材料为高速钢或硬质合金,刀体为40Cr。钻削刀具,包括钻头、铰刀、丝锥等; 3.成形铣刀:切削刃与待加工面形状一致。 4.。键槽铣刀:用于铣削键槽 二、常用数控铣刀发展特点: 现就几种目前比较常用的铣刀类型就其应用场合加以说明。 (一)两刃立铣刀和四刃立铣刀: 该类刀具一般采用整体合金结构,其特点是拥有很强的稳定性,刀具可在加工面上稳固地工作,使加工质量得以有效的保证。适用材料范围广,如碳素钢、模具钢、合金钢、工具钢、不锈钢、钛合金、铸铁、适用于一般模具、机械零件加工。 (二)单刃铣刀: 该刀具加工效率高,采用优质的硬质合金作刀体,一般采用刃口锐磨工艺,以及高容量的排屑,使刀具在高速切割中有不粘屑,低发热,光洁度高等特点。它广泛应用于工艺品、电子、广告、装饰和木业加工等行业,适合工厂批量加工以及高要求的产品。 (三)螺纹铣刀 随着中国数控机床的发展,螺纹铣刀越来越得到人们的认可,它很好的加工性能,成为降低螺纹加工成本、提高效率、解决螺纹加工难题的有力加工刀具。由于目前螺纹铣刀的制造材料为硬质合金,加工线速度可达80~200m/min,而高速钢丝锥的加工线速度仅为10~30m/min,故螺纹铣刀适合高速切削,加工螺纹的表面光洁度也大幅提高。高硬度材料和高

硬质合金刀具材料的研究现状与发展思路

硬质合金刀具材料的研究现状与发展思路 作者:佚名来源:不详发布时间:2008-11-21 23:35:38 发布人:admin 减小字体增大字体 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500~600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢 至今仍是一种常用刀具材料。高速钢是一种加入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%~1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40~60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93~95HRC,为提高韧性,常添加少量Co、Ni等金属。②氮化硅基陶瓷。常用的氮化硅基陶瓷为Si3N4+TiC+Co复合陶瓷,其韧性高于氧化铝基陶瓷,硬度则与之相当。③氮化硅—氧化铝复合陶瓷。又称为赛阿龙(Sialon)陶瓷,其化学成分为77%Si3N4+13%Al2O3,硬度可达1800HV,抗弯强度可达1.20GPa,最适合切削高温合金和铸铁。 3) 金属陶瓷 金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、M o等构成。金属陶瓷的硬度和红硬性高于硬质合金,低于陶瓷材料;其横向断裂强度大于

新型刀具论文

论文题目 新型数控刀具材料的创新设计对提高企业效益的影响所在学院机电工程学院 专业机械电子工程 年级 10级 学生姓名邓方兴 学号 102261013005 2011年11月11日

新型数控刀具材料的创新设计对提高企业效益的影响 [摘要] 刀具材料的进步极大的推动着人类社会文化和物质文明的发展。就世界范围来看,数控机床的应用越来越广,数控加工技术代表了现代切削加工技术的发展方向,而切削加工技术的进步与数控机床刀具材料的发展和应用密不可分,只有把数控机床和数控刀具材料结合起来,才能充分发挥数控加工技术的潜力,也是推动企业技术进步及提高市场竞争实力的有效手段。 [关键词] 数控机床刀具材料创新设计效益 数控刀具是指与先进高效的数控机床相配套使用的各种刀具的总称,是数控机床不可缺少的关键配套产品。数控加工刀具以其高效、高速、耐磨、长寿命和良好的综合切削性能取代了传统的刀具,已逐步标准化和系列化。近年来,快速发展的数控加工促进了数控刀具的发展。每当一种新型数控刀具产品问世,都会使数控加工技术跃上一个新台阶,产生巨大的经济和社会效益。世界各国都十分重视数控刀具的研究开发。 一、数控刀具材料的新发展 进入21世纪以来,随着制造技术的全球化趋势,制造业的竞争更加激烈,对制造技术必然带来巨大的挑战,首当其冲的是切削刀具的变化,为了适应高精化、高速化、自动化、多功能化、高生产率化,缩短交货期等要求,要求切削刀具材料的强度和韧性要高,具有寿命长、高可靠、耐高温、耐破损、抗氧化和抗冲击等特点。特别为了适应当前对环境保护的要求,提出了条件苛刻的干式切削。切削刀具的设计和制造等方面日新月异,不断推陈出新。数控刀具材料的发展主要体现在刀具的切削性能大幅度提高以适应各项切削技术要求。数控刀具的分类有多种方法,按刀具材料分类有金刚石刀具、立方氮化硼刀具、陶瓷刀具、硬质合金刀具、涂层刀具。超细晶粒硬质合金、粉末冶金高速钢刀具等。 1.超硬刀具 超硬材料是指人造金刚石和立方氮化硼(简称CBN),以及用这些粉末与结合剂烧结而成的聚晶金刚石(简称PCD)和聚晶立方氮化硼(简称PCBN)等。超硬材料的出现,不仅在高速切削上起到了突破性的作用,更重要的是能够适应了较难加工材料的切削需要。 (1)聚晶金刚石(PCD)刀具 聚晶金刚石(PCD)刀具是通过金属结合剂等金刚石微粉末聚合而成的多晶体材料,在烧结过程中由于结合剂的加入,使PCD晶体间形成以Co、Mo、W、WC和Ni等为主要成分的结合桥,其作用是牢固的把持金刚石,并且使PCD硬度和韧性大幅度提高,增加耐性、提高切削效率。由于天然金刚石价格昂贵、在很多场合下天然金刚石刀具已经被人造聚晶金刚石刀具所代替。PCD刀具是精密加工有色金属及其合金、陶瓷、玻璃材料、石墨等非金属材料的最佳刀具。目前铝合金等产品零件已经无法离开这类刀具。 (2)CVD金刚石渡膜涂层刀具 CVD金刚石是指用化学气相沉积法在异质基体上合成金刚石膜,基体材料可以是硬质合金或陶瓷等。CVD金刚石具有与天然金刚石完全相同的结构和特性。具有超硬耐磨性和良好的韧性。目前,CVD金刚石渡膜涂层数控刀具多用于航空、航天、汽车及电子信息技术行业。对于高强度铝合金、纤维金属层板、镁合金、石墨、陶瓷等零部件进行加工,达到了高速、高寿命、干式加工技术要求。 (3)立方氮化硼(CBN)刀具与聚晶立方氮化硼(PCBN)刀具

数控刀具材料的选用

3.3 数控刀具材料及选用 先进的加工设备与高性能的数控刀具相配合,才能充分发挥其应有的效能,取得良好的经济效益。随着刀具材料迅速发展,各种新型刀具材料,其物理、力学性能和切削加工性能都有了很大的提高,应用范围也不断扩大。 3.3.1刀具材料应具备基本性能 刀具材料的选择对刀具寿命、加工效率、加工质量和加工成本等的影响很大。刀具切削时要承受高压、高温、摩擦、冲击和振动等作用。因此,刀具材料应具备如下一些基本性能:(1)硬度和耐磨性。刀具材料的硬度必须高于工件材料的硬度,一般要求在60HRC以上。刀具材料的硬度越高,耐磨性就越好。 (2)强度和韧性。刀具材料应具备较高的强度和韧性,以便承受切削力、冲击和振动,防止刀具脆性断裂和崩刃。 (3)耐热性。刀具材料的耐热性要好,能承受高的切削温度,具备良好的抗氧化能力。 (4)工艺性能和经济性。刀具材料应具备好的锻造性能、热处理性能、焊接性能;磨削加工性能等,而且要追求高的性能价格比。 3.3.2刀具材料的种类、性能、特点、应用 1.金刚石刀具材料的种类、性能和特点及刀具应用

金刚石是碳的同素异构体,它是自然界已经发现的最硬的一种材料。金刚石刀具具有高硬度、高耐磨性和高导热性能,在有色金属和非金属材料加工中得到广泛的应用。尤其在铝和硅铝合金高速切削加工中,金刚石刀具是难以替代的主要切削刀具品种。可实现高效率、高稳定性、长寿命加工的金刚石刀具是现代数控加工中不可缺少的重要工具。 ⑴金刚石刀具的种类 ①天然金刚石刀具:天然金刚石作为切削刀具已有上百年的历史了,天然单晶金刚石刀具经过精细研磨,刃口能磨得极其锋利,刃口半径可达0.002μm,能实现超薄切削,可以加工出极高的工件精度和极低的表面粗糙度,是公认的、理想的和不能代替的超精密加工刀具。 ②PCD金刚石刀具:天然金刚石价格昂贵,金刚石广泛应用于切削加工的还是聚晶金刚石(PCD),自20世纪70年代初,采用高温高压合成技术制备的聚晶金刚石(Polycrystauine diamond,简称PCD刀片研制成功以后,在很多场合下天然金刚石刀具已经被人造聚晶金刚石所代替。PCD原料来源丰富,其价格只有天然金刚石的几十分之一至十几分之一。 PCD刀具无法磨出极其锋利的刃口,加工的工件表面质量也不如天然金刚石,现在工业中还不能方便地制造带有断屑槽的PCD刀片。因此,PCD只能用于有色金属和非金属的精切,很难达到超精密镜面切削。 ③CVD金刚石刀具:自从20世纪70年代末至80年代初,CVD金刚石技术在日本出现。CVD金刚石是指用化学气相沉积法(CVD)在异质基体(如硬质合金、陶瓷等)上合成金刚石膜,CVD金刚石具有与天然金刚石完全相同的结构和特性。 CVD金刚石的性能与天然金刚石相比十分接近,兼有天然单晶金刚石和聚晶金刚石(PCD)的优点,在一定程度上又克服了它们的不足。 ⑵金刚石刀具的性能特点: ①极高的硬度和耐磨性:天然金刚石是自然界已经发现的最硬的物质。金刚石具有极高的耐磨性,加工高硬度材料时,金刚石刀具的寿命为硬质合金刀具的lO~100倍,甚至高达几百倍。 ②具有很低的摩擦系数:金刚石与一些有色金属之间的摩擦系数比其他刀具都低,摩擦系数低,加工时变形小,可减小切削力。 ③切削刃非常锋利:金刚石刀具的切削刃可以磨得非常锋利,天然单晶金刚石刀具可高达0.002~0.008μm,能进行超薄切削和超精密加工。 ④具有很高的导热性能:金刚石的导热系数及热扩散率高,切削热容易散出,刀具切削部分温度低。 ⑤具有较低的热膨胀系数:金刚石的热膨胀系数比硬质合金小几倍,由切削热引起的

金属切削刀具材料的选择

金属切削刀具材料的选 择 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

金属切削刀具材料的选择金属切削加工时利用刀具切除被加工零件多余材料从而获得合格零件的加工方法,它是机械制造业中最基本的方法。而在金属切削加工中,刀具是必不可少的一部分,而刀具材料的选择更是重要的一部分。 在现代机械制造业中,机械加工的切削刀具对于提高生产效率,改进产品质量起到关键的作用。由于目前国家各工厂所应用的刀具材料非常复杂,又由于刀具材料的性能优劣能够影响加工零件表面的切削效率,刀具寿命等,而在金属切削过程中刀具切削部分在高温下承受着很大的切削力与剧烈摩擦,所以为了提高工件表面质量,刀具寿命及切削效率因此刀具材料应具备以下性能: ①高的硬度和耐磨性②足够的强度和韧性③高的耐热性④良好的工艺性与经济性⑤好的导热性和小的膨胀系数。因此面对刀具所应具备的性能,刀具材料选择时很难找到各方面的性能都是最佳的,因为各种材料性能之间有的是相互制约的,面对如此情况只能根据工艺的需要保证主要需求性能。 当前使用的刀具材料主要分为四大类:工具钢(包括碳素工具钢、合金工具钢、高速钢)、硬质合金、陶瓷、超硬质刀具材料,一般的机加工使用最多的是高速钢与硬质合钢。 1、工具钢 用来制造刀具的工具钢主要有三种即碳素工具钢,合金工具钢和高速钢。工具钢的主要特点是耐热性差但抗弯强度高,价格便宜焊接与刃磨性能好故广泛用于中低速切削的成形刀具,不宜高速切削。

⑴碳素工具钢 碳素工具钢按化学成分分类,碳素工具钢负属于非合金钢,按主要质量等级和主要性能及使用特性分类,碳素工具钢属于特殊质量非合金钢,碳素工具钢常用于制作刀具、模具和量具的碳素钢,其加工性良好价格低廉,使用范围广泛所以它在工具钢中用量较大。由于碳素工具钢生产成本极低,原材料来源方便易于冷热加工,在热处理后可获得相当高的硬度,由于碳素工具钢在切削温度高于250~300℃时,马氏体要分解,使得硬度降低,碳化物分布不均匀,淬火后变形较大,易产生裂纹,淬透性差,淬硬层薄所以只适于用于切削速度很低的刀具,如锉刀、手用锯条等。 ⑵合金工具钢 合金工具钢是在碳素工具钢基础上加热铬、钨、钒等合金元素,以提高淬透性,韧性,耐磨性和耐热性的一类钢种,它主要用于制造量具、刀具、耐冲击工具和冷热模具及一些特殊用途的工具。由于合金工具钢热硬性达325~400℃,允许切削速度为10~15m/min,所以其目前主要用于低速工具如丝锥、板牙等 ⑶高速钢 高速钢是含有W、Mo、Cr、V等元素较多,具有高硬度,高耐磨性的工具钢,又称高速工具钢为白钢或锋钢。高速钢的综合性能较好,应用范围最广的一种刀具材料,因此主要用来制造复杂的薄刃和耐冲击的金属切削刀具也可制造高温轴承和冷挤压模具等,高速钢经过热处理后硬度达62~66HRC,抗弯强度约为,耐热性为600℃左右,此外还具有热处理变形小,

相关主题
文本预览
相关文档 最新文档