当前位置:文档之家› 区域地壳稳定性定评价

区域地壳稳定性定评价

区域地壳稳定性定评价
区域地壳稳定性定评价

区域地壳稳定性定评价

研究生姓名周冀

学生学号20152201078

学科专业15级地质工程

论文提交日期2016年 5月 13 日

区域地壳稳定性定评价

国资学院 15级地质工程专硕周冀 20152201078

摘要:区域地壳稳定性评价是工程地质重要的分支学科,是在我国几十年的工程地质实践中发展起来的一项特有的区域工程地质理论方法体系,在重大工程场地选址、国土资源规划、减灾防灾等地质工作中发挥了积极的作用,已经形成了一套较完善的理论方法,被广大工程地质工作者所广泛接受使用。本文通过对区域地壳稳定性研究的回顾和总结,划分了理论发展的四个阶段:上世纪 50 ~70 年代的孕育期、60 ~80 年代的形成期、80 年代~21 世纪初的发展期、21 世纪以来的徘徊期,并分析了目前区域地壳稳定性研究存在的主要问题。在此基础上,结合中国地质调查局第一部区域地壳稳定性调查评价规范的制定,对规范的社会需求、编制理念、主要内容结构等进行了说明,对存在较大争议的问题进行了探讨并给出解决意见,目的为这项我国特有的区域工程地质理论的发展和规范的贯彻实施助一臂之力。关键词:区域地壳稳定性构造稳定性安全岛地质灾害区域地壳稳定性研究是随着我国大型工程和规模经济规划建设的区域地质条件和地质环境论证而逐渐发展起来的具有中国特色的工程地质的分支学科(领域)。本文综合概括目前区域地壳稳定性评价的研究现状和发展趋势,重点论述区域地壳稳定性评价理论体系的3种代表性理论,即“安全岛”理论,构造控制理论和区域稳定工程地质理论。结合面临的主要任务,提出未来区域地壳稳定性评价的几个重要发展方向和趋势,即区域地壳稳定性评价的国际化趋势、理论和

技术多样化趋势、城市三维稳定性评价与小区划趋势、基于GIS 技术的信息系统趋势及为国家重大工程规划选址、建设、运营和管理全程服务的趋势。

区域地壳稳定性分析是地壳稳定性评价的基础,主要涉及稳定性条件和因素的识别,重点是分析影响地壳稳定性的各种因素和标志,包括区域地质环境、地壳结构、构造格架、新构造活动和现今构造活动及其构造应力场等;同时还涉及多学科的相关理论,其中比较成熟且具有代表性的理论有3种。

“安全岛”理论以李四光倡导的活动构造体系与“安全岛”理论为主体,进行区域地壳稳定性分析评价。其核心思想是在现今构造活动强烈地区,寻找活动相对微弱的“安全岛”;而在现今构造活动性微弱地区,圈出活动性相对较强的活动带。这一理论用简要的关键词将区域地壳稳定性评价的实质内含表达出来,通俗易懂,因此,得到快速发展,特别是经过胡海涛等人在研究实践中的发展,使“安全岛”理论在层次上含义更为明确,理论思路和技术方法获得进一步发展和完善,逐渐成为区域地壳稳定性评价的主导理论之一。

构造控制理论以构造稳定性分析评价作为区域地壳稳定性评价的核心内容,强调内动力产生的构造活动性和构造块体稳定状态是区域地壳稳定性研究的主体。根据研究思路的差别又可以分为两种观点:其一,以断裂活动性、地震活动性和断块稳定状态分析评价为主导的思路,主要观点是内动力作用所产生的地震、断裂活动、火山活动、新构造和现今构造变形及其应力场是决定区域地壳表层稳定程度差

异的关键因素。其核心是研究地壳现今活动性( 稳定性的反义词 ) 及其对工程安全的影响,与国外地震稳定性和断裂活动性评价相类似。以现今地壳活动的断裂活动性和地震、火山活动性研究为主线,分析地壳稳定性条件及其影响因素,探讨地震过程与地壳稳定性的关系,评价构造断块稳定性。这方面的研究思路与国际上地震危险性和地质灾害风险评估相类似,有利于国内外的交流和推广。其二,以构造应力场研究为主线,进行区域地壳稳定性评价。强调现今构造应力场是决定区域构造现今活动、断裂活动、地震活动和构造稳定状态的根本因素;其核心是以现今构造应力场、形变场、地热场研究为基础,揭示现在地壳稳定状态的根本原因和规律,进而评价区域地壳稳定性。在理论上,

以物理学的“场论”为核心,用应力场、变形场、能量场和热场等等反映各种内动力作用所导致地壳表层变形的时空分布趋势和规律,揭示构造稳定性的机制和相互影响; 在实践上,用仪器现场测量、地震机制解译与数学、物理模拟实验相结合,以现今构造应力场分析研究为中,新构造以来的构造应力场演化研究为辅,在分析揭示现今构造活动性、地震活动性规律和原因的基础上,评价区域地壳稳定性。

区域稳定工程地质理论以区域稳定性工程地质评价为核心,将区域地壳稳定性评价分为构造稳定性评价、地面稳定性评价和场地稳定性评价3个层次,强调地球内动力作用是影响区域地壳稳定性主导因素的同时,考虑外动力和特殊物理地质现象对地面和场地稳定性的影响。其核心是围绕地球内外动力综合作用的灾变过程及其对区域地壳

稳定性影响因素研究, 从新构造、活动断裂、地震活动性等方面为主研究构造稳定性,从地壳表层地质灾害和工程岩土性质为主研究地面和场地稳定性,而3者综合考虑多层次评价区域地壳稳定性,使地壳稳定性研究贯穿于工程地质研究的全过程,工程地质意义更为明显。区域地壳稳定性评价是地壳稳定性研究的核心,其基本理论主要包括区域地壳稳定评价指标的确定、稳定性分级分区原则、定量化评价模型的建立等。( 1 )确定区域地壳稳定性评价指标,目前遵循以构造稳定性评价指标为主,地面稳定性、岩土体稳定性指标为辅的原则。

评价指标的数值化同样服从这一原则。在实践过程中,某一单体评价指标及其数值化可以根据研究区域的实际要求灵活处理。( 2 )稳定性分级分区原则,目前认识已趋于一致,并制订了国家统一规范,即四级划分原则。对于具体工程区地壳稳定性评价,一级分区还不能满足精度要求,需要进行二级或者三级分区。二级分区原则可根据构造稳定性和地面稳定性的不协调性加以确定。其中从等级A、B… G、H,稳定程度逐渐降低。( 3 )地壳稳定性定量化评价模型研究近几年发展迅速。80年代末期以模糊数学评判为主,至90年代初又增加了专家系统、信息模型、灰色模型等。利用多种评价模型相互补充、验证,可以提高地壳稳定性评价的精度和可靠性。

区域地壳稳定性评价作为一门实用性很强的学科在研究目的和发展方向上应和工程建设的实际要求相结合 ,为工程选址及布局提供定量的地质数据 ;在理论上 ,结合地质力学和槽台学说优点的同时, 应紧密和当代地球科学发展的前沿相结合 , 评价方法及评价指

标的选取 ,考虑内外地球动力作用的耦合,将内外动力地质灾害分析统一起来, 建立统一地质灾害分析评价及预测动力学模型, 同 GIS 结合起来 ,吸收现代自然科学的成果实现区域地壳稳定性研究从平面到多维、线性到非线性、定性到定量的研究思维方法和技术的转变, 更好的为工程建设服务。

参考文献

[1] 孙叶等.区域地壳稳定性定量化评价[ M] .北京:地质出版社,1998.

[2]胡海涛,殷跃平.区域地壳稳定性评价“安全岛”理论与方法.地学前缘,1966.

[3]吴树仁、陈庆宣等.我国区域地壳稳定性研究的新进展[ J] .地

质力学学报, 1995, 1(1):31~ 36

地应力及其分布规律分解

地应力及其分布规律 1 、地应力的基本概念 地应力是存在于地层中的未受工程扰动的天然应力,也称岩体初始应力、绝对应力或原岩应力。广义上也指地球体内的应力。它包括由地热﹑重力﹑地球自转速度变化及其他因素产生的应力。 地应力是各种岩石开挖工程变形和破坏的根本作用力;是确定工程岩体力学属性,进行围岩稳定性分析,实现开挖设计和决策科学化的必要前提条件。此外地应力状态对地震预报、区域地壳稳定性评价、油田油井的稳定性、核废料储存、岩爆、煤和瓦斯突出的研究以及地球动力学的研究等也具有重要意义。 2、地应力的成因 产生地应力的原因是十分复杂的,地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆浸入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其它物理化学变化等也可引起相应的应力场。其中,构造应力场和自重应力场为现今地应力场的主要组成部分。 当前的地应力状态主要由最近的一次构造运动所控制,但也与历史上的构造运动有关。由于亿万年来,地球经历了无数次大大小小的构造运动,各次构造运动的应力场也经过多次的叠加、牵引和改造,另外,地应力场还受到其他多种因素的影响,造成地应力状态的复杂性和多变性, 地应力成因之一:地幔热对流(图1、图2) 地应力成因之一:板块边界受压(图3)

地应力成因之一:岩浆浸入(图4) 3、地应力的影响因素 地壳深层岩体地应力分布复杂多变,造成这种现象的根本原因在于地应力的多来源性和多因素影响,但主要还是由岩体自重、地质构造运动和剥蚀决定。1)岩体自重的影响 岩体应力的大小等于其上覆岩体自重,研究表明:在地球深部的岩体的地应力分布基本一致。但在初始地应力的研究中人们发现,岩体初始应力场的形成因素众多,剥蚀作用难以合理考虑,在常规的反演分析中,通常只考虑岩体自重和地质构造运动 2)地形地貌和剥蚀作用对地应力的影响 地形地貌对地应力的影响是复杂的,剥蚀作用对地应力也有显著的影响,剥蚀前,岩体内存在一定数量的垂直应力和水平应力,剥蚀后,垂直应力降低较多,但有一部分来不及释放,仍保留一部分应力数量,而水平应力却释放很少,基本上保留为原来的应力数量,这就导致了岩体内部存在着比现有地层厚度所引起的自重应力还要大很多的应力数值。 3)构造运动对地应力的影响 在地壳深层岩体,其地应力分布要复杂很多,此时由于构造运动引起的地应力对地应力的大小起决定性的控制作用。研究表明:岩体的应力状态,一般其铅垂应力分量是由其上覆岩体自重产生的,而水平应力分量则主要由构造应力所控制,其大小比铅垂应力要大得多。 4)岩体的物理力学性质的影响 从能量的角度看,地应力其实是一个能量的积聚和释放的过程。因为岩石中地应力的大小必然受到岩石强度的限制,可以说,在相同的地质构造中。地应力的大小是岩性因素的函数,弹性强度较大的岩体有利于地应力的积累,所以地震和岩爆容易发生在这些部位,而塑性岩体因容易变形而不利于应力的积累。 5)水、温度对地应力的影响 地下水对岩体地应力的大小具有显著的影响,岩体中包含有节理、裂隙等不连通层面,这些裂隙面里又往往含有水,地下水的存在使岩石孔隙中产生孔隙水压力,这些孔隙水压力与岩石骨架的应力共同组成岩体的地应力。温度对地应力的影响主要体现在地温梯度和岩体局部受温度的影响两个方面。由于地温梯度而产生的地温应力,岩体的温度应力场为静压力场,可以与自重应力场进行代数迭加,如果岩体局部寒热不均,就会产生收缩和膨胀,导致岩体内部产生应力。4、地应力的分布规律

桂林市典型危岩体稳定性及危险性评价2讲解

桂林喀斯特危岩体发育特征及稳定性分析 刘宝臣1 ,郑金1 (1.桂林理工大学土建学院,桂林541004) 摘要:危岩体是由多组的结构面组合而形成,在地表风化作用、卸荷作用、重力、地震、降雨等诱发因素作用下处于不稳定、欠稳定或极限平衡状态的岩体。笔者对桂林市15座山的326块危岩体发育情况进行实地调查,测绘等手段得到几组重要数据,根据危岩体的结构特征和状态特征,将桂林市的危岩体类型分为悬挂式式、倾倒式、贴坡式、孤立式三种基本类型,本文以屏风山1号危岩体为对象进行研究,并采用极限平衡法对该危岩体稳定性进行定量验算,综合分析评价桂林市危岩体的发育特征及稳定性。 关键词:危岩;极限平衡状态;稳定性;定量验算 Stability analysis and risk assessment for three typical rocks in the Guilin city liuBao-chen1 Zheng-jin1 (1.Guilin University of Technology,Guilin 541004) Abstract:Dangerous rock is combined to form groups of the structure surface ,In the Unstable, less stable or equilibrium state of the rock and the factors of Surface weathering, unloading, gravity, earthquake, rainfall and so on. Through the investigation and mapping on the 326 dangerous rocks of fifteen mountains of the Guilin city,the writer get some important data ,According to the structure and State features of dangerous rocks ,Guilin dangerous rocks are divided into Hanging-type , dumping-type、posted slope -type and Isolated style. using the three typical rocks as the research object and checking the stability of the dangerous rocks by Limit equilibrium method, analyze the stability of the dangerous rocks. Key word:dangerous rock;Limit equilibrium;Stability;Quantitative Checking 0前言 危岩崩塌灾害是我国三大地质灾害之一,已成为我国山地开发和建设的重要制约因素。由于危岩崩塌灾害分布零散, 通常规模有限, 爆发随机性强,难以有一个准确的灾害统计数据,但是其危害程度并不亚于泥石流、滑坡等灾害。我区石灰岩出露面积广大,这些地区岩溶山峰和地下洞穴非常发育,形成了独特的喀斯特旅游风景名胜区。举世瞩目的桂林景区以其独特秀丽的风景吸引了广大的国内外游客参观,其中岩溶山峰和洞穴景观占景区主要部分。但其独特的喀斯特区山体岩石突露、奇峰林立,在特殊的地质条件下风化剥蚀已形成大量危岩,严 重威胁山体附近居民及游人的人身和财产安全,严重影响喀斯特景区特色旅游业的稳定快速发展。而国内外对此种危岩的研究甚少。为此,研究岩溶地区岩质边坡和洞穴危岩发生发展的机理、致灾因素,显得非常必要。本文通过地质灾害勘查、物探、室内模拟试验与计算机模拟等,确定危岩失稳破坏的过程与临界条件,提出桂林市危岩体的类型,确定危岩的稳定性判别指标,并对区内典型的危岩体作出稳定性评价,为后期区内危岩体的治理防控技术体系的研究创造条件。 1.1危岩体发育特征分析

危岩体稳定性分析

附件2 危岩体稳定性分析 1、WY-01危岩体稳定性定量评价 1 计算模型 从工程防治的角度按照危岩失稳类型进行分类,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩3 类。WY-01危岩体为滑移式危岩;其软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力、地震和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图3-1)。 图3-1 滑移式危岩示意图 危岩体 危岩前缘 扬压力U 静水压力V 地下水位 后缘裂隙 危岩后缘 软弱结 构面 W c o s θ W W s i n θh w θ 图3-2 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙) 2 计算公式 ①后缘有陡倾裂隙、滑面缓倾时,滑移式危岩稳定性按下式计算:

(cos sin sin )sin cos cos W Q V V tg c l K W Q V θθθφθθθ---+?= ++ 2 21w w h V γ= 式中:V ——裂隙水压力(kN/m),; w h ——裂隙充水高度(m),取裂隙深度的1/3。 w γ——取10kN/m 。 Q ——地震力(kN/m),按公式e Q W ξ=?确定,式中地震水平作用系数七 级烈度地区 e ξ取0.075; K ——危岩稳定性系数; c ——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未贯通 段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍; φ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和未贯 通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍; θ——软弱结构面倾角(°),外倾取正,内倾取负; W ——危岩体自重(kN/m3)。 3 危岩稳定性计算结果 根据危岩结构特征和形态特征,②区危岩破坏模式主要为滑移式。 (1)计算参数: 崩塌区出露地层为第四系崩坡积物和石炭系太原组,根据附近工程岩体参数及工程类比得出物理力学参数见表: 表3-2 岩体物理力学参数表 岩石 名称 密度 g/cm3 抗压强度σ MPa 抗剪强度 抗拉强度 (KPa) 软化 系数 C(MPa) ф(°) 灰岩 2. 70 32 0.110~0.271 30.3~40.2 698.5 0.53 结构面 灰岩结构面 0.03-0.10 23-29

四类地区稳定性试验要求

The stability of finished pharmaceutical products depends on environmental and product-related factors ICH and WHO started discussions in 2000 to harmonise the number of stability tests and conditions employed worldwide……but there was little agreement from interested parties on an ICH proposal regarding long-term storage conditions in zone IV (hot and humid countries)Stability Testing of Pharmaceutical Products in a Global Environment Dr Sabine Kopp reports on the development of World Health Organization policy on stability testing. Following lengthy discussions, the World Health Organization (WHO) has revised its guidelines on stability testing conditions for climatic zone IV , ie hot and humid countries. The guidelines are expected to be made available shortly. This article summarises the key events that have marked the WHO’s work on developing international stability testing guidelines. The stability of finished pharmaceutical products depends on several factors. On the one hand, it depends on environmental factors such as ambient temperature, humidity and light. On the other, it depends on product-related factors such as the chemical and physical properties of the active substance and pharmaceutical excipients, the dosage form and its composition, the manufacturing process, the nature of the container-closure system and the properties of the packaging materials. For established drug substances in conventional dosage forms, literature data on the decomposition process and degradability of the active substance are generally available together with adequate analytical methods. Thus, the stability studies may be restricted to the dosage forms. The actual stability of a dosage form will depend to a large extent on the formulation and packaging-closure system selected by the manufacturer. Stability considerations, for example selection of excipients, determination of their level and process development, should therefore be given high priority in the developmental stage of the product. The possible interaction of the drug product with the packaging material in which it will be delivered, transported and stored throughout its shelf-life must also be investigated. The shelf-life should be established with due regard to the climatic zone(s) in which the product is to be marketed. For certain preparations, specific storage instructions must be complied with if the shelf-life is to be guaranteed. The storage conditions recommended by manufacturers on the basis of stability studies should guarantee the maintenance of quality, safety and efficacy throughout the shelf-life of a product. The effect on products of the extremely adverse climatic conditions in certain countries to which they may be exported calls for special consideration. T o ensure both patient safety and the rational management of drug supplies, it is important that the expiry date and, where necessary, the storage conditions are indicated on the label.The beginning Work on stability of pharmaceutical products was initiated by the WHO in 1988 and the WHO Guidelines on Stability Testing for Well Established Drug Substances in Conventional Dosage Forms were adopted in 1996 by the WHO Expert Committee on Specifications for Pharmaceutical Preparations following extensive consultation 1. In 2000, discussions began between the International Conference on Harmonization (ICH)expert working group Q1 (stability) and the WHO to harmonise the number of stability tests and conditions employed worldwide. The working group, when developing guidance Q1F Stability Data Package for Registration Applications in Climatic Zones II and IV , proposed a modification to the WHO guidelines. The proposal concerned the long-term storage conditions for climatic zone IV (hot and humid countries). The group suggested that the WHO change its conditions from 30°C and 70% relative humidity (RH) to 30°C and 60% RH. A detailed paper including the rationale for the change was widely circulated for comment. Non-governmental organisations, international professionals’bodies and specialists, and members of the WHO expert advisory panel on the international pharmacopoeia and pharmaceutical preparations were among those consulted. Responses to the proposal varied. A number of experts agreed that the proposal constituted a sound scientific approach. It was recognised that packaging was very important and common testing conditions should be agreed upon for WHO and ICH guidelines. Others criticised the approach as being too scientific and impractical while pointing out that actual meteorological and physical storage conditions in these countries would not allow simulation of long-term storage conditions as defined by the new proposal. Arguments were also put forward against the application of some parameters used in the calculations.

崩塌山体变形破坏模式及稳定性分析

崩塌山体变形破坏模式及稳定性分析 1. 崩塌灾害 崩塌是指陡峻的山坡上的岩块、土体在重力作用下,发生突然的急剧的倾落运动,这里所说的崩塌灾害是指由于崩塌的发生已经或者可能对人民的生命财产安全造成危害的地质灾害,否则就是一种普通到地质现象。 崩塌多发生在大于60-70度得斜坡上。崩塌的物质称为崩塌体。崩塌体与坡体的分离面称为崩塌面,崩塌面往往就是倾角很大或者裂隙很深的界面,如节理、片理、劈理、层面、破碎带等。 崩塌的分类:1、崩积物崩塌:山坡上已有崩塌岩屑和沙土等物质组成的堆积,由于它们的质地很松散,当有雨水侵湿或受地震震动时,可再一次形成崩塌。此类崩塌常发生在水易渗透和汇集的地点。其性质是有其母岩的性质决定的,由花岗岩、变质岩、凝灰岩、泥岩

形成的崩积土最易崩塌。 2、表层风化物崩塌:是在基岩表层生产的风化物的崩塌,是崖崩中常见的类型。这是因为在表层有风化层,它与基岩之间的渗透系数不同。在水流汇集或者地下水沿风化层下部的基岩面流动时,可引起风化层沿基岩面崩塌。崩落的土层较浅,是一种小规模的滑动,但发生的次数最多。大多发生在从缓变陡的斜坡变化点的地方。 3、沉积物崩塌:有些由厚层的冰积物、冲积物或火山碎屑物组成的陡坡,结构松散,按沉积时的状态形成性质不同的沉积土层,透水性和土的强度有差异,在积水的地方引起崩塌。 4、基岩崩塌:一般在坚硬的岩石的斜坡上,由于节理、层理面、断层面等方面的原因也有可能产生崩塌,在这种裂隙是沿容易崩塌的方向伸展时和在夹有粘土、泥岩等成分时容易发生崩塌。落石属于小规模的岩石崩塌。 2. 崩塌山体变形破坏模式分析 危岩体失稳方式,受多方面因素的影响。通常失稳方式有三种,即坠落式、倾倒式和滑塌式。根据对工作区内崩塌危岩总体形态、发育规模、基底和底界层特征和空间分布特征分析,区内危岩的失稳破坏方式以坠落、倾倒-滚落和滑移-倾倒-滚落方式居多。

危岩稳定性计算(2020年整理).pdf

4.2危岩体稳定性计算及评价 4.2.1计算模型 目前,按照不同的标准,危岩分类系统多样,但是,从工程防治的角度按照危岩失稳类型进行分类更有价值,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩3 类。计算公式参考重庆市地方标准《地质灾害防治工程勘察规范》(DB50/143-XXXX)中(30)~(50)计算公式。 勘查区内主要为滑移式危岩、倾倒式危岩;当软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图4.2-1);当软弱夹层形成岩腔后,上覆盖体重心发生外移,在动水压力和自重作用下,上覆盖体失去支撑,拉裂破坏向下倾倒,形成倾倒式危岩(图4.2-2)。 图4.2-1 滑移式危岩示意图图4.2-2 倾倒式危岩示意图 1、滑移式危岩体计算 (1)计算模型 图4.2-3 滑移式危岩稳定性计算示意图(后缘无陡倾裂隙)

图4.2-4 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙) (2) 计算公式 ① 后缘无陡倾裂隙(滑面较缓)时按下式计算 (cos sin )sin cos W Q U tg cl K W Q θθ?θθ ??+= + (4.2.1) 式中:V ——裂隙水压力(kN/m),2 2 1w w h V γ=; w h ——裂隙充水高度(m),取裂隙深度的1/3。 w γ——取10kN/m 。 Q ——地震力(kN/m),按公式e Q W ξ=?确定,式中地震水平作用系数e ξ取 0.05; K ——危岩稳定性系数; c ——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未贯 通段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍; φ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和未 贯通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍; θ——软弱结构面倾角(°),外倾取正,内倾取负; W ——危岩体自重(kN/m 3)。 ② 后缘有陡倾裂隙、滑面缓倾时,滑移式危岩稳定性按下式计算: (cos sin sin )sin cos cos W Q V U tg c l K W Q V θθθφθθθ ???+?= ++ (4.2.2)

危岩稳定性计算教学内容

危岩稳定性计算

4.2危岩体稳定性计算及评价 4.2.1计算模型 目前,按照不同的标准,危岩分类系统多样,但是,从工程防治的角度按照危岩失稳类型进行分类更有价值,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩 3 类。计算公式参考重庆市地方标准《地质灾害防治工程勘察规范》(DB50/143-2003)中(30)~(50)计算公式。 勘查区内主要为滑移式危岩、倾倒式危岩;当软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图4.2-1);当软弱夹层形成岩腔后,上覆盖体重心发生外移,在动水压力和自重作用下,上覆盖体失去支撑,拉裂破坏向下倾倒,形成倾倒式危岩(图4.2-2)。 图4.2-1 滑移式危岩示意图图4.2-2 倾倒式危岩示意图 1、滑移式危岩体计算 (1)计算模型

图4.2-3 滑移式危岩稳定性计算示意图(后缘无陡倾裂隙) 图4.2-4 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙) (2) 计算公式 ① 后缘无陡倾裂隙(滑面较缓)时按下式计算 (cos sin )sin cos W Q U tg cl K W Q θθ?θθ --+=+ (4.2.1) 式中:V ——裂隙水压力(kN/m),22 1w w h V γ=; w h ——裂隙充水高度(m),取裂隙深度的1/3。 w γ——取10kN/m 。 Q ——地震力(kN/m),按公式e Q W ξ=?确定,式中地震水平作用系数 e ξ取0.05; K ——危岩稳定性系数;

c ——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未 贯通段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍; φ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和 未 贯通段内摩擦角标准值按长度加权和加权平均值,未贯通段内 摩擦角标准值取岩石内摩擦角标准值的0.95倍; θ——软弱结构面倾角(°),外倾取正,内倾取负; W ——危岩体自重(kN/m 3)。 ② 后缘有陡倾裂隙、滑面缓倾时,滑移式危岩稳定性按下式计算: (cos sin sin )sin cos cos W Q V U tg c l K W Q V θθθφθθθ ---+?=++ (4.2.2) 式中符号同前。 2、 倾倒式危岩计算 (1) 计算模型 图4.2-5a 倾到式危岩稳定性计算示意图(后缘岩体抗拉强度控制)

基础设计之关于场地稳定性及适宜性

问题一:场地稳定性与适宜性如何评价 本人认为主要是考虑以下几个方面1)场地的地形起伏情况2)场地内或进场地区域(按抗震规范要求的距离)内是否存在全新世活动断裂,及其对工程的影响;3)区域内是否存在不良地质作用,对工程是否有影响? 因为看到有些单位采用地壳稳定性分级或《城市规划工程地质勘察规范》对场地的稳定性及适宜性分级定性评价,我知道这都是想找一个可靠的依据来分析评价但是不知对错与否?以下是我看到的几个报告场地稳定性及适宜性评价的主要内容,看看大家有什么看法。(一)采用《城市规划工程地质勘察规范》对场地的稳定性及适宜性分级定性评价 (二)采用地壳稳定性分级对场地的稳定性及适宜性分级定性评价 6.1场地适宜性评价按《建筑抗震设计规范》GB50011-2010和《中国地震动参数区划图》(GB18306-2001)划分,乌鲁木齐地区抗震设防烈度为8度,设计基本地震动峰值加速度为0.20g,设计地震分组为第二组。拟建场地内地下水位埋深大于15m,场地土为杂填土和基岩层,可不考虑地震液化。根据拟建场地地基土覆盖层厚度,场地土特征综合判定:地基土属中硬场地土,建筑场地类别为Ⅱ类, 地段类别属于建筑抗震有利地段。综合判定,拟建场地适宜作为建筑场地。6.

2场地稳定性评价根据拟建场区地震烈度和区域地壳稳定性分区和判别指标一览表(表4),确定拟建场区区域地壳稳定性属次不稳定区Ⅲ,工程建设适宜,但需抗震设计。 区域地壳稳定性分区和判别指标一览表表4

(三)如我所述评价 6.2场地稳定性评价 拟建场地位于剥蚀低山丘陵区,南侧紧临低丘,地形略有起伏,场地内无滑坡、崩塌、泥石流、地陷、地裂等不良地质作用,地基土为中硬场地土,场地及周边无断裂通过。综合判定,拟建场地为抗震一般地段,适宜做建筑场地。 问题二:场地的稳定性和适宜性是作为一个整体来写,还是分为场地的稳定性评价和场地的适宜性评价两个小节来写?

区域地壳稳定性分区和判别指标一览表

根据拟建场区地震烈度和区域地壳稳定性分区和判别指标一览表(表6-1),确定拟建场区区域地壳稳定性属基本稳定区Ⅱ,工程建设条件适宜,但需做抗震设计。 区域地壳稳定性分区和判别指标一览 表6-1 稳 定性地壳结构 新生代地壳 变形火山、地热 迭加 断裂角 α 布格异常 梯度Bs (105ms〃km2) 最大 震级 基本 烈度 地震动 峰值加 速度 工程 建设 条件 稳定区Ⅰ块状结构, 缺乏深大断 裂或仅有基 底断裂,地 壳完整性好 缺乏第四系断 裂,大面积上 升,第四纪地壳 沉降速率<0.1 毫米/年,缺乏 第四纪火山。 0-10° 70-90° 比较均匀变 化,缺乏梯 度带 M<5.5 ≤Ⅵ≤0.05 良好 基本稳定区Ⅱ镶嵌结构, 深断裂连续 分布,间距 大,地壳较 完整 存在第四纪断 裂长度不大,第 四纪地壳沉降 速率0.1-0.4 毫米/年,缺乏 第四纪火山。 11-24° 51-70° 地段性异常 梯度带Bs= 0.5-2.0 5.5≤M ≤6.0 Ⅶ 0.1-0. 15 适宜 但需 抗震 设计 次不 稳定区Ⅲ块状结构, 深断裂成带 出现,长度 以大于百公 里,地块呈 条形、菱形 地壳破碎 发育晚更新世 和全新世以来 活动断裂,延伸 长度大于百公 里,存在近代活 动断引起的M> 6级地震,第四 纪地壳沉降速 率大于0.4毫 米/年,存在第 四纪火山,温泉 带。 25-50° 区域性异常 梯带Bs= 2.0- 3.0 6.0≤M ≤7.0 Ⅷ-Ⅸ 0.20-0 .4 中等 适宜, 须加 强抗 震和 工程 措施 不 稳定区Ⅳ区域性异常 梯度带Bs> 3.0 M≥7.25 ≥Ⅸ≥0.4 不适 宜

场地的稳定性和适宜性怎么评价

1.场地的稳定性和适宜性怎么评价 在《建筑岩土工程勘察基本术语标准》中是这样:场地稳定性:拟建场地是否存在能导致场地滑移、大的变形及破坏等严重情况的地质条件。在实际进行评价时又要牵涉到工程的类型、规模、场地的工程地质条件、地形地貌等诸多因素。例如在平原土质地基,就没有必要去考虑岩溶、土洞、崩塌等问题。工程实践中的场地的稳定性和适宜性评价大致如下: 一、场地的稳定性评价。就是看场地及其临近又没有影响场地性稳定性的因素。 1、不良地质作用和地质灾害:岩溶、土洞、滑坡、泥石流、崩塌、大的沉降、地下洞室(采空区、人防洞室等)、断层、地震效应等等; 2、有无边坡稳定性问题; 3、有无可能影响拟建物安全的地形地貌。 二、场地的适宜性:这个问题与场地的稳定性密切相关。但从理论的角度说,没有不能建筑的场地。有的场地虽然存在稳定性问题或其他不利条件,但经过工程处理,仍然可以建筑,问题是需要处理的工程量和造价与拟建物的价值比。例如我们要建一栋投资500万的多层建筑,但勘察发现场地处于一滑坡体上,如果要对滑坡进行处理,需要1000万的投资,显然不合适。我就遇到过这类问题,最后建筑方放弃了该场地的使用。我们在做场地和地基基础的选择评价时所要尊守的原则就是:技术经济原则。也就是在技术上可行,经济上合理。场地的适宜性评价还要考虑一个水的问题。这里的水包括了地面水与

地下水。林宗元先生给我们讲过一个工程实例。早年一个厂区在建设时由于考虑不周,选在了一个沟谷里,结果发生大的山洪,造成灾害,最后不得不迁建。这类事例在媒体上也时有报道。 三、有些朋友在对场地进行评价时忽略了地基均匀性与稳定性的评价,这也是场地的适宜性评价必须考虑的一个方面。例如场地总体稳定性较好,但地基存在局部均匀性与稳定性的问题,仍然会对拟建物产生不良影响。所以我们在勘察报告中,地基均匀性与稳定性的评价是不可或缺的内容。 2.岩土工程勘察报告编写提纲与具体内容参考 岩土工程勘察报告编写提纲与具体内容参考 根据《岩土工程勘察规范》GB50021-2001,特别是其中14.3.3条关于岩土工程勘察报告规定的内容,结合CECS99:98《岩土工程勘察报告编制标准》,参考众多勘察报告中的优秀者,提出下面这个编写提纲及每个标题应有的内容和数据,以使勘察报告内容更充实,论证更合理,岩土参数更有适用性和可靠性,特编写本勘察报告编写提纲及有关内容指南,供勘察单位参考。 ⅩⅩⅩⅩ岩土工程勘察报告(建议稿) 1、前言 1.1 任务依据 1.2 工程概况 1.3 岩土工程勘察等级 1.4 勘察目的要求及需要提供的成果资料 1.5 勘察方法和勘探点的布置 1.6 勘察工作过程及完成工作情况 本节应插表格展示成果 钻孔(个)总进尺 取样及试验标贯 数量水位测量孔数钻孔位置测量 完成孔数技术 孔数鉴别孔数土样 数量水样 数量原岩数量

岩体的稳定性分析

幻灯片1 第四节:岩体的稳定性分析 一、岩体稳定性与区域稳定性的关系 区域稳定性的主要控制因素,也制约岩体的稳定性。 1)地壳板块的相对运动的强弱导致构造变动和产生高构造应力,从大范围控制了区域地层和岩体变形、位移或失稳。 2)活动性深大断裂活动(水平或垂直位移)引起区域地壳及其表层发生水平或升降运动,可引起位于断裂带的岩体变位或失稳。 3)地震活动在我国有些地区十分强烈,常引起大范围的构筑物的失稳和破坏。 幻灯片2 二、岩体破坏类型分析 1.岩体失稳的主要影响因素 ①受区域地壳稳定性控制。 ②受岩体的结构特征、变形特征、强度特性、水稳性等控制。 ③失稳的边界条件:岩体失稳要有一定的边界条件,即存在临空面和结构面组成的分离体。 ④荷载的类型、大小和方向决定了岩体的受力状态。 ⑤工程类别对岩体失稳方式有重要影响。 幻灯片3 2. 岩体破坏类型分析 ①当区域稳定性为相对稳定,工程岩体条件较好时,岩体失稳破坏的类型取决于边界条件、工程类型及工程荷载性质的组合特点,岩体失稳破坏的方式往往以剪切滑移方式为主。 ②当区域稳定性为相对活动,工程的场地条件较好时 ③区域环境和工程场地均处于突出的高水平构造应力状态时 ④当区域相对稳定,岩体抗压强度较高,不具备滑移的边界条件,地面建筑物承受强大的风荷载时,可能发生张拉破坏导致建筑物倾倒。 幻灯片4 ⑤区域相对稳定,工程场地为河流之滨,岩体本身条件较差,在建筑物荷载的作用下,建筑持力层将发生过大的压缩沉陷变形,与其侧向膨胀变形相对应的侧向压力将使岸坡前持力层发生压缩破坏,导致建筑物向河中倾覆,或沿可能的滑动面滑动。 幻灯片5 3. 岩体稳定分析 国内外应用于岩体稳定性分析的方法有: 地质分析类比法 岩体结构分析与计算法 岩体稳定性分类法 数值模拟计算法 地质模拟试验法等。

DD 2015-02 活动断层与区域地壳稳定性调查评价规范(5W、25W)

中国地质调查局地质调查技术标准 D D2015-02 活动断层与区域地壳稳定性调查评价规范(1:50 000、1:250 000) 中国地质调查局 2015年12月

目次 前言............................................................................... III 引言................................................................................ IV 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 总则 (2) 4.1 目的 (2) 4.2 任务 (2) 4.3 活动断层调查评价基本要求 (3) 4.4 区域地壳稳定性调查评价基本要求 (3) 4.5 一般工作流程 (3) 5 设计编审 (4) 5.1 资料搜集 (4) 5.2 技术定额 (5) 5.3 设计书编写 (6) 5.4 设计书审查与审批 (7) 6 活动断层调查评价 (7) 6.1 一般规定 (7) 6.2 活动断层判别 (7) 6.3 活动断层调查 (8) 6.4 活动断层评价 (8) 7 区域地壳稳定性调查评价 (10) 7.1 一般规定 (10) 7.2 评价指标调查 (10) 7.3 单指标数据准备 (11) 7.4 构造稳定性评价 (11) 7.5 地表稳定性评价 (12) 7.6 区域地壳稳定性评价 (13) 8 调查评价数据管理 (15) 8.1 基本要求 (15) 8.2 数据分类 (15) 8.3 数据内容 (15) 8.4 数据组织 (15) 8.5 数据库集成 (15) I

凉山州区域地质

四川省凉山州地质概况 工程地质凉山州幅员范围内南北向断裂发育,并与北东和北西构造交汇,同时存在东西向古老构造,经地震和证实,南北向和北西向断裂具有持续活动性。 以高山、高中山为主,河系发育,山高坡陡,沟谷深切。除河谷平原和山间盆地展布松散土石外,岭脊斜坡地域为、变质岩、碳酸盐岩和岩浆岩所展露。构造复杂,断裂纵横交错,断隙发育,岩石破碎。此外,崩塌、滑坡、泥石工程地质现象发育,区域工程地质条件复杂。 河、则木河、水江等活动断裂分布区工程地质条件差,每逢雨季,河谷两侧常有崩塌、泥石流、滑坡发生,给铁路、造成极大困难。岩浆岩和变质岩及活动性断裂非常展布区,地基良好,边破稳定,工程地质条件较好。 区域工程地质条件 域稳定性(1)活动性断裂,在东西向应力场作用下,形成各种活动性断裂构造,控制区内山脉、河流、盆地的形成,地质灾害十分频繁。境内共有活动性断裂26条,均为压性和压扭性断裂。其中南北向10条,安宁河东、西两支活,余此如磨盘山、甘洛——美姑断裂活动程度较强至弱;北东向8条,除卧罗河、金河——箐河等3条活动程度强河、里庄等断裂均属强烈至弱;北西向断裂8条,活动程度除石棉、辣子乡等3条强烈外,其余5条均属较强。 地震,有安宁河地震断裂带、盐源地震断裂带、理塘地震带南端(木里地区)及马边地震带,构造地震活动强烈。区内111年至公元1981年共记载了大于或等于7级的强震2次,最大震级7.7级。 程地质岩组特征境内出露地层齐全,岩浆活动明显,岩组众多,据其岩石类型、岩体结构及其工程地质特征将区个工程地质岩类。 松散软弱土石类主要为第四系不同成因的粘性土、砂类土和卵漂(碎石)石层和第三系弱胶结的粘土岩粉砂岩和砂岩等散体和软塑结构。岩层的稳定性主要取决于岩性、成层组合条件和饱水情况。特别是含水砂层对岩层的稳定性影响程建设的地下边坡部分需采取专门的加固和维护措施。 土石主要分布于河漫滩阶地及山前地带。由全新世冲积、冲洪积亚粘土、亚砂土、砂砾卵石组成,局部地段有淤泥。具二元结构,土层厚1~8米,可塑;砂砾石层结构松散,孔隙度大,透水性强。水位埋深0.53~6.74米,可塑,量1.49~6.74升/秒·米,渗透系数一般17.4~83.8米/日。 石。有更新世冰碛泥砾及冰水堆积土、亚糍土、砂砾石组成。有的具双层结构,物理力学性质不均,粘性土具中等缩性。第三纪的粘土岩、砾岩粉砂岩,局部还有泥炭,成岩性差,干时固结,遇水软化及流散。 坚硬半坚硬工程地质组主要为碎屑岩或沉积变质岩,有时为火山岩所组成。以层状碎屑结构为主,岩面的厚度比较稳间结构面发育,岩体的稳定性主要取决于层间软弱面、软弱夹层、构造碎破带及其岩层的风化程度。 类岩性组成主要为砂岩、粉砂岩、泥岩、页岩、片岩、千枚岩组成。岩石物理力学性质的强弱与其矿物成分胶结程大小风化程度有关。如石英砂岩的力学强度高于绿泥石石英砂岩,致密坚硬砂岩高于粗、中粒砂岩。 坚硬的碳酸盐岩工程地质岩组岩溶化碳酸盐岩类,层状结构为主,岩层厚度变化不大,但层间结构发育,岩体稳定性间软弱面、软弱夹层及其岩溶发育程度和充填情况。岩体的富水性与导水能力和岩溶发育不均,有一定的关系。岩质纯,软弱夹层少强度才高,与碎屑岩互层则强度相对低。不同岩性力学强度也不一致。 坚硬的岩浆岩工程地质岩组境内展布侵入岩的喷出岩,有不同期次的花岗岩、石英闪长岩、正长岩、辉长岩、辉绿岩、凝灰岩等。岩体呈块状构造,结晶和一般较好。工程地质性质新鲜岩体强度高,受构造作用或脉岩穿插部位岩体质下降。其稳定性取决于岩体受构造作用的破坏和风化程度的深浅。 不良物理地质现象州内挽近构造活动强烈,岩石破碎,风化厉害,在干雨季节分明、降雨集中的特定气候条件下,坡、泥石流等不良物理地质现象活动频繁,规模巨大,密集成群,分布广泛。主要集中在雅砻江中、上游,金沙江宁河、则木河、普雄河—尼日河、昭觉—西溪河、美姑—溜筒河流域范围内的沟谷地区。崩塌、滑坡为泥石流提供固体物源,降雨及自然地理条件提供了动力条件而爆发泥石流。 工程地质分区特征 地质条件和工程地质问题与地质构造特征、岩石建造类型及其工程地质性质、地貌特征与表层物质运动规律,以及经济活动程度等背景条件密切相关。以此为依据,结合地质资源和开发条件将州范围划分为五个工程地质区,22个亚区,区限是以区域性大断裂所围限的地质体,在区的基础上,依据区域地壳稳定性,地表稳定性,地貌、水文地相似性划分为亚区,以服务于区域经济发展的国土整治规划,及其生产厂址布局为目的。 木里—锦屏山区(1)锦屏山亚区。西界以锦屏山断裂为界,与大河边—白碉亚区为邻;东以小金河断裂为界,与盐。锦屏山主体山脉两侧为雅砻江环流,山势险峻。

相关主题
文本预览
相关文档 最新文档