当前位置:文档之家› 电渗析水处理脱盐技术的应用

电渗析水处理脱盐技术的应用

电渗析水处理脱盐技术的应用
电渗析水处理脱盐技术的应用

电渗析水处理脱盐技术的应用

反渗透技术是世界上世纪六十年代后期开始应用的一项新技术。反渗透(RO)亦称逆渗透,主要由高压泵和反渗透膜两部分组成。在足够高压力的情况下,除水分子外、水中其他矿物质、有机及各种离子几乎都被拒之于膜外,并被高压水流冲出。渗透另一面的水即是安全、卫生、纯净的水。其原理相当于人体内的半透膜,使有用的物质透过膜得以利用,而无用物质则予以排出。因为它和自然渗透的方向相反。故称为反渗透。它已成为现代纯水、高纯水制备、海水淡化、苦咸水淡化及其他行业分离工程中重要的技术设备。电渗析技术从五十年代确立以来,在工程技术应用过程中迅速崛起,在海水淡化苦咸水脱盐、海水浓缩制盐、废水处理以及食品、医药、电子、电力等行业中所起的作用与日俱增。它以许多出色的应用实例,证实了其在技术上的先进性以及其他分离方法所不能替代的若干优异的特点。现在正在开发和将着手开发的若干神功妙用,更是绚丽多彩。我国是从1958年开始电渗析工程的研究开发工作,属于世界上起步较早的国家之一。它至少有如下四方面的用途:

1、从电解质溶液中分离出部分离子,使电解质溶液浓度降低。如海水淡化、苦咸水淡化、制取工业用纯水或饮用纯净水、放射性废水处理等。

2、把溶液中部分电解质、离子转移到另一溶液中去,并使其浓度增高。如海水浓缩制、化工产品的精制、工业残液中有用成分的回收等。

3、从有机溶液中去除电解质离子。目前主要用于食品和医药工业。在乳清脱盐、糖类脱盐和氨基酸精制中应用十分成功。

4、电解质溶液中,同电性但具有不同电荷的离子的分离和同性电荷离子的分离,只允许一价离子透过的离子交换膜浓缩海水制盐,是前者工业化应用的实例。

它有如下五方面的特点:

1、耗能低,经济效益显著。实践证明将2000-5000mg/L的苦咸水脱盐至5000mg/L 的饮用水是最经济的。

2、系统应用灵活,操作维修方便根据不同的条件要求,可以灵活地采用不同形式的系统设计,并联可增产水量,串联可提高脱盐率,循环或部分循环可缩短工艺流程。在运行过程中,控制电压、电流、浓度、流量、压力与温度几个主要参数,可保证稳定运行。

3、不污染环境。

4、使用寿命长。膜一般可用3-5年,电极可用7-8年,隔板可用15年左右。

5、原水率高。海水、高浓度苦咸水回收率可达到60%以上。一般苦咸水回收率可达65%-80%。

中空纤维超滤膜分离技术是一种广泛应用于溶液和气体物质分离、浓缩和提纯的分离技术。它利用具有选择透过能力的薄膜做分离介质,膜壁密布微孔,原液在一定压力下通过膜的一侧,溶剂及小分子溶质透过膜壁为滤出液,而较大分子的溶质被膜截留,从而达到物质分离及浓缩的目的。

膜分离过程为动态过滤过程,大分子溶质被膜壁阻隔,随浓缩液流出膜组件,膜不易被堵塞,可连续长期使用。过滤过程可在常温、低压下运行,无相态变化,高效节能。

中空纤维膜是分离膜的一种重要形式。在单位体积膜组件中,中空纤维膜的有效膜面积最大,过滤分离效率高,容易清洗,结构简单,操作方便,在生产过程中不产生二次污染。该结构是中空纤维膜结构,由纤维挤压形成。这种纤维具有非对称结构且细如发丝。数百万支纤维形成一束,将等长的多孔塑料管插入束中作给水分布器。纤维束两端用环氧树脂封装,一头密闭,一头开口形成产水流道。中空纤维膜采用进口聚砜材质膜元件,外压式结构,化学稳定性优越,耐氧化剂能力强,亲水性好,污堵后容易清洗恢复。原水经前级过滤后进入中空纤维膜元件,产水由中空纤维膜中心出水孔流出,浓水流出,同时带走膜表面的污染物。

电渗析脱盐所用的半透膜,除要求电阻低、透过的选择性高、交换容量大和水的电渗小之外,还要求有一定的机械强度、尺寸不变和化学稳定性高等。

在电渗析脱盐过程中,反离子(电荷与膜内交换基团相反的离子)在膜内的迁移速度比在溶液里大,致使淡化夹层的内膜半身,溶液界面上的离子浓度低于主体溶液浓度而形成浓度差。当电流升至某值时,扩散迁移的离子不足以补充界面上离子的缺额,而使界面浓度趋近于零,这时的电流称为极限电流。如再增加电流,就会迫使界面上的水分子解离,由解离出的H和OH来承担超过极限值那部分电流的输送。这种现象称为极化现象。这不仅使电流白白消耗在无助于脱盐的H和OH的迁移上,而且会引起溶液的pH值发生变化,使钙盐镁盐之类的离子浓度的乘积超过溶度积,而在浓缩海水夹层的阴膜和阳膜的表面沉淀,阻塞水流通道,甚至被迫停机拆洗。防止极化沉淀的根本措施,是设法增加夹层溶液的搅拌作用和布水的均匀性,并把操作电流控制在极限电流之下。此外,定期倒换电极的极性,在浓缩海水夹层中加酸和进行不拆装的化学清洗等,均能延长运转周期。

脱盐水处理工艺

脱盐水处理工艺 脱盐水处理工艺,又称纯水处理工艺或深度脱盐水,一般系指将水中易于去除的强导电质去除又将水中难以去除的硅酸及二氧化碳等弱电解质去除至一定程度的水。脱盐水处理工艺很多,主要有电渗析法、离子交换法、反渗透法、EDI法等目前市场上的石化行业脱盐水处理系统中,已成熟的几种工艺都存在着这样或那样的缺点,企业如果选择了不利于本地水质或不利于本厂实际情况的处理方案,就会造成不可弥补的损失。针对这种情况,笔者将传统的离子交换处理方案与先进的膜法处理方案进行经济技术比较,以供大家参考。 一、脱盐水处理工艺简单介绍 1:离子交换工艺 早期人们所熟知的脱盐水处理 工艺主要为预处理+阳床+阴床+混床的全离子交换工艺,即传统法处理流程。对于地表水,常规的预处理方法多是多介质过滤+活性炭过滤,用阳床+阴床+混床的全离子交换可确保出水水质稳定达标。长期实践已证明,传统法处理工艺是一种成熟有效的水处理工艺。但传统法因预处理和离子交换工艺的局限,存在着设备占地面积大、系统操作维护频繁复杂、出水水质呈周期性波动的缺陷,并且需要投加絮凝剂和耗费大量的酸碱,不利于环境保护;同时,离子交换器多为直径较大的罐体,体积大、重量大,不便于运输及安装调试,施工周期长。 2:膜法工艺 膜法工艺是指超滤+反渗透+混床除盐(EDI)的脱盐水处理工艺,该工艺主要采用膜分离技术制取脱盐水。 超滤原理是一种膜分离过程原理,超滤是利用一种压力活性膜,在外界推动力(压力)作用下截留水中胶体、颗粒和分子量相对较高的物质,而水和小的溶质颗粒透过膜的分离过程。通过膜表面的微孔筛选可截留分子量为3×10000~1×10000的物质。当被处理水借助于外界压力的作用以一定的流速通过膜表面时,水分子和分子量小于300~500的溶质透过膜,而大于膜孔的微粒、大分子等由于筛分作用被截留,从而使水得到净化。也就是说,当水通过超滤膜后,可将水中含有的大部分胶体硅除去,同时可去除大量的有机物等。超滤对原水的适应性好,浊度在200以下的地表水均可有效处理,对于胶体硅的去除率大大高于传

电渗析脱盐技术应用简述

电渗析脱盐技术应用简述 电渗析是电场驱动的水溶液离子脱除/浓缩的分离技术,电渗析器的核心部件是由多张阴离子交换膜、淡化室隔板、阳离子交换膜和浓缩室隔板交替排列组成的膜堆。在电场的作用下可实现淡化室水溶液盐分的脱除和浓缩室水溶液盐分的富集。 电渗析膜和电渗析器,可用于脱除水溶液的盐分(淡化)或者浓缩水溶液的盐分(制盐),具体的应用包括各种化工/食品/医药生产过程中的物料脱盐(比如乳清蛋白脱盐、甘露醇脱盐、大豆低聚糖脱盐、氨基酸脱盐等)、苦咸水淡化、天然水纯化、工业废水净化、小规模海水淡化、海水或卤水制盐等。在这些应用中,均相膜电渗析法具有其它方法不可比拟的优势。(a)对于生产过程中的物料脱盐,现有的方法是采用离子交换树脂进行离子交换。由于离子交换树脂对于物料不可避免的吸附,导致物料收率低,并且离子交换树脂再生过程中产生大量含盐废水,不易处理。均相膜电渗析法的优势是物料收率高,产生的含盐废水少。(b)对于苦咸水淡化,同世界的很多其它地区相似,我国西北干旱内陆地区由于降水稀少,蒸发强烈,水资源天然匮乏,作为主要供水水源的地下水普遍含盐含氟,成为苦咸水,水质低劣,不符合饮用水标准。在山东,苦咸水分布面积达1.09万平方公里,主要分布在鲁西北及潍坊市“三北”地区;山东省黄泛平原和滨海平原区,由于受地下水径流条件和古沉积环境的影响,在内陆和滨海区形成了各种类型的盐水。与反渗透法相比,电渗析法苦咸水淡化的优势在于膜抗有机污染、水收率高以及较低运行费用。(c)

对于小规模海水淡化,电渗析技术适用于在海岛、酒店、渔船、舰艇和潜艇等生产饮用水。与反渗透法相比,电渗析法的优势在于低操作压力和预处理简单,系统易操作、易维护、安全、无噪音。(d)反渗透法已经广泛应用于海水淡化和苦咸水淡化,一个普遍的问题是浓水的处理。浓水可以排入海水,但需要非常谨慎以避免对环境造成冲击。电渗析膜较反渗透膜,更耐有机污染和无机结垢,因此可通过电渗析器处理浓水,进一步生产出淡水,提高水收率,同时可将盐水中氯化钠浓度提高到18%以上,再通过多效蒸发等方式制备工业盐或食用盐。因此均相膜电渗析技术与反渗透技术结合,可突破膜法海水淡化的技术瓶颈,实现海水的综合利用。 目前国内市场的离子交换膜90%以上为异相离子交换膜,异相膜由离子交换树脂与聚乙烯粉共混挤出制备,电阻很高,选择性不足,寿命短;异相膜电渗析用于脱盐制备纯水运行能耗过高,用于生产过程的物料脱盐物料损失率高、设备使用寿命短。相比于异相膜,均相离子交换膜具有非常明显的优势,电阻低,选择性高,使用寿命长;在美国、日本及欧洲地区,大多数应用中异相膜已经被均相膜取代。目前,国际上规模化的均相电渗析膜生产厂家仅限美国GE 公司、日本ASTOM 公司、日本Asahi Glass 公司和德国FuMA-Tech 公司,而国内也仅有中国科学技术大学、山东天维膜技术有限公司等数家高校、企业从事开发研究。

电渗析水处理技术的优点和不足

电渗析水处理技术的优点和不足 1、能量消耗少: 电渗析器在运行中,不发生相的变化,只是用电能来迁移水中已解离的离子。它耗用的电能一般是与水中含盐量成正比的。大多数人认为,对含盐量4000~5000mg/L以下的苦咸水的变化,电渗析技术是耗能少的较经济的技术。 2、药剂耗量少,环境污染小: 离子交换技术在树脂交换失效后要用大量酸、碱进行再生,水洗时有大量废酸、碱排放,而电渗析系统仅酸洗时需要少量酸。 3、设备简单,操作方便: 电渗析器是用塑料隔板与离子交换膜剂电极板组装而成的,它的主体配套设备都比较简单,而且膜和隔板都是高分子材料制成,因此,抗化学污染和抗腐蚀性能均较好。在运行时通电即可得淡水,不需要用酸碱进行繁复的再生处理。 4、设备规模和除盐浓度适应性大: 电渗析水处理设备可以从每日几吨的小型生活饮用水淡化水站到几千吨的大、中型淡化水站。 5、用电较易解决、运行成本较低:电渗析技术也存在以下不足:

1、对离解度小的盐类及不离解的物质难以去除,例如,对水中的硅酸和不离解的有机物就不能去除掉,对碳酸根的迁移率就小一些。 2、电渗析器是由几到几百张较薄的隔板和膜组成。部件多,组装要求较高,组装不好,会影响配水均匀。 3、电渗析设备是使水流在电场中流过,当施加一定电压后,靠近膜面的滞留层中电解质的盐类含量较少。此时,水的离解度增大,易产生极化结垢和中性扰乱现象,这是电渗析水处理技术中较难掌握又必须重视的问题。 4、电渗析器本身耗水量还是较大的。虽然采取极水全部回收,浓水部分回收或降低浓水进水比例等措施,但本身的耗水量仍达20%~40%。因此,缺水地区,应用电渗析水处理技术会受到一定限制。 5、电渗析水处理对原水净化处理要求较高,需增加精密过滤设备。

电渗析技术

电渗析技术的发展及应用 08食科汪强 20080808132 摘要:电渗析技术属于膜分离技术, 广泛应用于食品、化工、废水处理等行业的分离纯化的生产过程中, 有效率高、清洁卫生及经济节能等优点。本文简述了电渗析技术的类型, 重点论述了电渗析技术的原理, 介绍了电渗析技术在食品行业以及在废水处理中应用研究, 并对其发展前景进行了展望。 关键词:电渗析;膜;应用 电渗析是在外加直流电场的作用下, 利用离子交换膜的选择透过性, 使离子从一部分水中迁移到另一部分水中的物理化学过程。电渗析器, 就是利用多层隔室中的电渗析过程达到除盐的目的。电渗析器由隔板、离子交换膜、电极、夹紧装置等主要部件组成。离子交换膜对不同电荷的离子具有选择透过性。阳膜只允许通过阳离子, 阻止阴离子通过, 阴膜只允许通过阴离子, 阻止阳离子通过。在外加直流电场的作用下, 水中离子作定向迁移。由于电渗析器是由多层隔室组成, 故淡室中阴阳离子迁移到相邻的浓室中去, 从而使含盐水淡化。在食品及医药工业, 电渗析可用于从有机溶液中去除电解质离子, 在乳清脱盐、糖类脱盐和氨基酸精制中应用得都比较成功[ 1] 。电渗析作为一种新兴的膜法分离技术, 在天然水淡化, 海水浓缩制盐, 废水处理等[ 2] 方面起着重要的作用, 已成为一种较为成熟的水处理方法。 1 .电渗析技术的类型 1.1倒极电渗析( EDR) 倒极电渗析就是根据ED 原理,每隔一定时间(一般为15~20 min) ,正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。 1.2液膜电渗析( EDLM) 液膜电渗析是用具有相同功能的液态膜代替固态离子交换膜[3 ] ,其实验模型就是用半透玻璃纸将液膜溶液包制成薄层状的隔板,然后装入电渗析器中运行。利用萃取剂作液膜电渗析的液态膜,可能为浓缩和提取贵金属、重金属、稀有金属等找到高效的分离方法,因为寻找对某种形式离子具有特殊选择性的膜与提高电渗析的提取效率有关。提高电渗析的分离效率,直接与液膜结合起来是很有发展前途的。 1.3填充床电渗析( EDI) 填充床电渗析( EDI) 是将电渗析与离子交换法结合起来的一种新型水处理方法,它的最

(发展战略)国内外水处理技术的状态 发展方向

国内外相关技术的现状发展趋势世界上许多地区正面临着最严重的缺水。据世界银行的统计,全球80%的国家和地区都缺少民用和工业用淡水。随着资源成本不断上升和环保意识逐渐增强,许多企业开始运用绿色技术,降低碳排放,尽量减少废物产生。其中水处理技术就是其中非常重要的一项绿色技术。 根据联合国统计,到2025年,三分之二的世界人口可能会面临水资源短缺,因此水处理技术将会越来越得到重视,这包括了高效率的水资源管理和污水处理。例如:在北美尤其在加拿大,水管理及污水处理设施的面临的问题十分急切。63%的目前运行的设施都在超期运行,他们的平均运行时间已经达到18.3年。其中52%污水处理设施在超期运行。在美国的干旱地区,对海水淡化技术的需求越来越高。海水淡化技术主要局限在于效率,而随着淡水的短缺,这些局限逐渐被淡化和忽视。水处理技术的发展拥有巨大的前景,许多国家都在实施水处理的政策和项目。根据全球知名增长咨询公司的预测,至2010年,全球水资源管理和污水处理技术市场规模预计将达到3,500亿美元。 目前先进的水管理和污水处理技术及其发展趋势包括了循环用水、反渗透海水淡化和臭氧化等。例如,反渗透海水淡化技术正在迅速占领的大型设施市场,而这一领域过去主要以热工过程设备为主。

处理效率的提升和渗透膜价格的回落,促使反渗透海水淡化市场在过去5年中迅速发展,现在应用反渗透海水淡化技术的已不再是小规模的工厂,大型反渗透海水淡化厂已是司空见惯。 在污水处理方面,澳大利亚的研究人员在生物发电领域提出了一种新的旋转生物电化学接触器,这项技术能够将已经运用于污水处理行业30年的旋转生物污水处理技术的效率提高15%;此外,一种能够处理高污染废水的技术也已经问世,这种技术能够处理污染物浓度超过300,000ppm的污水,而处理成本仅有原先通过储存和化学处理方法的十分之一。这种技术目前被认为是最简单、最易于使用及经济的处理技术. 中国目前同样也面临巨大的淡水短缺和水污染的问题。作为一个人均拥有水资源量最小的国家,必须采取措施以避免未来严重危机的发生。中国北方缺水问题极度严重,因此国家启动了浩大的“南水北调”工程,整个工程耗资达到几十亿美元,预计2050年建成。污水问题同样困扰着中国,估计有3亿人口的饮用水是被污染的。2004年至2008年,污水排放量年增长率达到18%,从482亿吨增长至572亿吨。预计在2010年,中国的污水排放将达到640亿吨。中国持续的工业化、城市化进程和经济的快速增长,是导致污水排放量连年上升的主要原因;而与此相对的是,中国的污水处理厂却基本上未能实现满负荷的运行。以2008年为例,中国污水处理厂的处理污

反渗透、电渗析技术比较

反渗透、电渗析、电吸附技术比较 一、原理比较 1、反渗透(RO)除盐原理 当纯水和盐水被理想半透膜隔开,理想半透膜只允许水通过而阻止盐通过,此时膜纯水侧的水会自发地通过半透膜流入盐水一侧,这种现象称为渗透,若在膜的盐水侧施加压力,那么水的自发流动将受到抑制而减慢,当施加的压力达到某一数值时,水通过膜的净流量等于零,这个压力称为渗透压力,当施加在膜盐水侧的压力大于渗透压力时,水的流向就会逆转,此时,盐水中的水将流入纯水侧,上述现象就是水的反渗透处理的基本原理。 2、电渗析除盐原理 电渗析是膜分离技术的一种,是利用离子交换膜对阴、阳离子的选择透过性能,在外加直流电场力的作用下,使阴、阳离子定向迁移透过选择性离子交换膜,从而使电介质离子自溶液中分离出来的过程。 除盐原理如图所示,电渗析器中交替排列着许多阳膜和阴膜,分隔成小水室。当原水进入这些小室时,在直流电场的作用下,溶液中的离子就作定向迁移。阳膜只允许阳离子通过而把阴离子截留下来;阴膜只允许阴离子通过而把阳离子截留下来。结果这些小室的一部分变成含离子很少的淡水室,出水称为淡水。而与淡水室相邻的小室则变成聚集大量离子的浓水室,出水称为浓水。从而使离子得到了分离和浓缩,水便得到了净化。

二、反渗透、电渗析在污水回用领域的技术特点比较 序号项目电渗析反渗透RO(双膜法) 1 除盐原理利用离交换膜和直流电场,使 水中电解质的离子产生选择 性迁移,从而达到使水淡化的 装置。 以分子扩散膜为介质,以静 压差为推动力将溶剂从溶 液中取出 2 透过物溶质,盐溶剂,水 3 截留物溶剂,水溶质,盐 4 膜类型离子膜不对称膜,复合膜 5 除盐率60%-90%80%-95%(废水)6 处理污水膜通量与 处理净水膜通量比 10.5-0.7 7 经济回收率45%-70%60%-75% 8 工作温度大于5℃小于40℃大于4℃小于40℃ 9 随温度降低通量衰 减无 每降低1℃膜通量下降 2-3%

反渗透水处理设备工艺说明讲解.doc

【奥凯反渗透设备】流程说明:Reverse osmosis equipment advantage In 1, the recovery rate of >75%RO machine design; In 2, RO inlet low pressure protection, prevent the high-pressure pump water idling; In 3, RO system boot automatic flushing, automatic flushing system to run continuously for 1hours; 4, pretreatment, backwash regeneration RO system for automatic shutdown; raw water pump auto start; In 5, the water level is low or the pure water tank water level when the RO machine automatically shut down, the pure water tank level low when RO machine automatic boot; 6, fault alarm indication; In 7, the built-in PLC lights, easy maintenance; 反渗透设备优点 1、RO 机设计回收率>75%; 2、RO 进水低压保护,防止高压泵缺水空转; 3、RO 系统开机自动冲洗,系统连续运行1小时自动冲洗; 4、预处理再生、反冲洗时RO 系统自动关机;原水泵自动启动; 5、原水箱水位低或纯水箱水位高时RO 机自动关机,纯水箱水位低时RO 机 自动开机; 6、设置故障报警指示; 7、内置PLC 有灯示,维护更容易;

最新北京华彦邦提供脱盐水处理技术

北京华彦邦提供脱盐水处理技术

北京华彦邦提供脱盐水处理技术 目录 第一章:水处理主要设备及装置结构 第一节:水处理概述 第二节:双室固定床系统主要设备及装置结构第三节:双室浮动床系统主要设备及装置结构 第二章:水处理及主要装置工作原理 第一节:离子工作原理 第二节:双室固定床主要装置工作原理 第三节:双室浮动床主要装置工作原理 第三章:水处理系统工艺流程及控制参数 第一节:双室固定床系统工艺流程及控制参数 第二节:双室固定床系统工艺流程及控制参数 第四章:水处理系统开停机 第一节:双室固定床系统开机前的准备及开停机第二节:双室浮动床系统开机前的准备及开停机第五章:水处理正常操作要点 第一节:双室固定床系统操作要点 第二节:双室浮动床系统操作要点 第六章:常见故障排除 第七章:水处理主要设备及装置一览(列表)

第一章:水处理主要设备及装置结构 第一节:水处理概述 自然界中的水可分为地面水和地下水。无论是何种水源都不可避免的带有悬浮物质、胶体物质和溶解物质,为了使水中的这些物质有效的除去,必须对水进行处理。 为了满足锅炉用水的需要,对水进行净化、软化和脱盐处理的方法称之为水处理。目前我们主要使用的水处理装置有离子交换器和反渗透装置。 第二节:双室固定床系统主要设备及装置结构 双室双层固定床设有上、中、下三层多孔板,将交换器分为上、下两室。上室装填弱酸(碱)树脂,下室装填强酸(碱)树脂。为了防止细碎的树脂堵塞水帽,在强型树脂的上面填充惰性树脂(白球)。 1、无阀过滤器:直径5600mm,它由筒体、进水分配箱、滤料层、承托层、格栅、集水箱、虹吸管等组成。内填有石英砂、无烟煤、橡胶粒等滤料。(结构见图纸) 2、纤维过滤器:直径3000mm,它由筒体、多孔板、视镜、人孔、进水管和出水管、排汽管等组成,内填纤维绳过滤物。(结构见图纸)

电渗析技术说明

电渗析技术说明 在外加直流电场的作用下利用阴离子膜和阳离子交换膜的选择透水性,使一部分离子透过离子交换膜迁移到另一部分水中,从而使一部分淡化使另一部分浓缩的过程。电渗析利用半透膜的选择透过性来分离不同的溶质粒子(如离子)。在电场作用下进行渗析时,溶液中的带电的溶质粒子(如离子)通过膜而迁移的现象称为电渗析。 电渗析与反渗透相比,它的价格便宜,但脱盐率低。当前国产离子交换膜质量亦很稳定,运行管理也很方便,自动控制频繁倒极电渗析(EDR),运行管理更加方便。原水利用率可达80%,一般原水回收率在45%~70%之间。电渗析主要用于水的初级脱盐,脱盐率在45%~80%之间。它广泛被用于海水与苦咸水淡化;制备纯水时的初级脱盐以及锅炉、动力设备给水的脱盐软化等。 基本性能∶操作压力0.5~3.0kg/em2;操作电压100~250V,电流1~3A;本体耗电量每吨淡水0.2~2.0kW·h。 电渗析法的特点为∶ a.可以同时对电解质水溶液起淡化、浓缩、分离、提纯作用; b.可以用于蔗糖等非电解质的提纯,以除去其中的电解质; c.在原理上,电渗析器是一个带有隔膜的电解池,可以利用电极 上的氧化还原,效率高。 在电渗析过程中也进行以下次要过程∶ a.同名离子的迁移,离子交换膜的选择透过性往往不可能是百分

之百的,因此总会有少量的相反离子透过交换膜; b.离子的浓差扩散,由于浓缩室和淡化室中的溶液中存在着浓度差,总会有少量的离子由浓缩室向淡化室扩散迁移,从而降低了渗析效率; c.水的渗透,尽管交换膜是不允许溶剂分子透过的,但是由于淡化室与浓缩室之间存在浓度差,就会使部分溶剂分子(水)向浓缩室渗透; d.水的电渗析,由于离子的水合作用和形成双电层,在直流电场作用下,水分子也可从淡化室向浓缩室迁移; e.水的极化电离,有时由于工作条件不良,会强迫水电离为氢离子和氢氧根离子,它们可透过交换膜进入浓缩室; f.水的压渗,由于浓缩室和淡化室之间存在流体压力的差别,迫使水分子由压力大的一侧向压力小的一侧渗透。显然,这些次要过程对电渗析是不利因素,但是它们都可以通过改变操作条件予以避免或控制。

国内外水处理技术的现状发展趋势

国内外相关技术的现状发展趋势 世界上许多地区正面临着最严重的缺水。据世界银行的统计,全球80%的国家和地区都缺少民用和工业用淡水。随着资源成本不断上升和环保意识逐渐增强,许多企业开始运用绿色技术,降低碳排放,尽量减少废物产生。其中水处理技术就是其中非常重要的一项绿色技术。 根据联合国统计,到2025年,三分之二的世界人口可能会面临水资源短缺,因此水处理技术将会越来越得到重视,这包括了高效率的水资源管理和污水处理。例如:在北美尤其在加拿大,水管理及污水处理设施的面临的问题十分急切。63%的目前运行的设施都在超期运行,他们的平均运行时间已经达到18.3年。其中52%污水处理设施在超期运行。在美国的干旱地区,对海水淡化技术的需求越来越高。海水淡化技术主要局限在于效率,而随着淡水的短缺,这些局限逐渐被淡化和忽视。水处理技术的发展拥有巨大的前景,许多国家都在实施水处理的政策和项目。根据全球知名增长咨询公司的预测,至2010年,全球水资源管理和污水处理技术市场规模预计将达到3,500亿美元。 目前先进的水管理和污水处理技术及其发展趋势包括了循环用水、反渗透海水淡化和臭氧化等。例如,反渗透海水淡化技术正在迅速占领的大型设施市场,而这一领域过去主要以热工过程设备为主。

处理效率的提升和渗透膜价格的回落,促使反渗透海水淡化市场在过去5年中迅速发展,现在应用反渗透海水淡化技术的已不再是小规模的工厂,大型反渗透海水淡化厂已是司空见惯。 在污水处理方面,澳大利亚的研究人员在生物发电领域提出了一种新的旋转生物电化学接触器,这项技术能够将已经运用于污水处理行业30年的旋转生物污水处理技术的效率提高15%;此外,一种能够处理高污染废水的技术也已经问世,这种技术能够处理污染物浓度超过300,000ppm的污水,而处理成本仅有原先通过储存和化学处理方法的十分之一。这种技术目前被认为是最简单、最易于使用及经济的处理技术. 中国目前同样也面临巨大的淡水短缺和水污染的问题。作为一个人均拥有水资源量最小的国家,必须采取措施以避免未来严重危机的发生。中国北方缺水问题极度严重,因此国家启动了浩大的“南水北调”工程,整个工程耗资达到几十亿美元,预计2050年建成。污水问题同样困扰着中国,估计有3亿人口的饮用水是被污染的。2004年至2008年,污水排放量年增长率达到18%,从482亿吨增长至572亿吨。预计在2010年,中国的污水排放将达到640亿吨。中国持续的工业化、城市化进程和经济的快速增长,是导致污水排放量连年上升的主要原因;而与此相对的是,中国的污水处理厂却基本上未能实现满负荷的运行。以2008年为例,中国污水处理厂的处理污

除盐水处理工艺

除盐水处理工艺 除盐水处理工艺介绍 1 前言 目前除盐水处理工艺主要有蒸馏法、离子交换法及膜分离法等,除盐水处理工艺是根据不同的入水水质和出水要求而设计的,针对不同的原水水质特点而设计水处理方案才是最经济有效的方案,同时也是出水水质长期稳定达到要求的保证。本文就除盐水处理工艺(离子交换法和RO膜分离法)对比介绍各自的特点: 在70年到80年代末离子交换法在我国除盐水处理领域得到广泛应用。 离子交换法处理有以下特点: 优点: ◇预处理要求简单、工艺成熟,出水水质稳定、设备初期投入低; ◇由于制水原理类同于用酸碱置换水中离子,所以在原水低含盐量的应用区域运行成本较低。 缺点: ◇由于离子交换床阀门众多,操作复杂烦琐; ◇离子交换法自动化操作难度大,投资高; ◇需要酸碱再生,再生废水必须经处理合格后排放,存在环

境污染隐患; ◇细菌易在床层中繁殖,且离子交换树脂会长期向纯水中渗溶有机物 ◇在含盐量高的区域,运行成本高 从80年末开始,膜法水处理在我国得到了广泛应用,反渗透就是除盐处理工艺的膜法水处理工艺之一。 反渗透法处理有以下特点: 优点: ◇反渗透技术是当今较先进、稳定、有效的除盐技术; ◇与传统的水处理技术相比,膜技术具有工艺简单、操作方便、易于自动控制、无污染、运行成本低等优点,特别是几种膜技术的配合使用,再辅之经其他水处理工艺,如石英砂、活性炭吸附、脱气、离子交换、UV杀菌等 ◇原水含盐量较高时对运行成本影响不大 ◇缺点: ◇预处理要求较高、初期投资较大 本文以地下水为原水,生产250m3/h除盐水(5MΩ.cm)为例,就离子交换和反渗透两种处理方法在工艺、占地方面、和运行成本作简要比较。 2 除盐水处理工艺比较 2.1离子交换法 1)离子交换处理工艺流程:

电渗析(ED)技术及操作简介

电渗析(ED)技术及操作简介 电渗析原理 电渗析器是在外加直流电场的作用下,当含盐分的水流经阴、阳离子交换膜和隔板组成的隔室时,水中的阴、阳离子开始定向运动,阴离子向阳极方向移动,阳离子向阴极方向移动,由于离子交换膜具有选择透过性,阳离子交换膜(简称阳膜)的固定交换基团带负电荷,因此允许水中阳离子通过而阻挡阴离子,阴离子交换膜(简称阴膜)的固定交换基团带正电荷,因此允许水中的阴离子通过而阻挡阳离子,致使淡水隔室中的离子迁移到浓水隔室中去,从而达到淡化的目的。电渗析器通电以后,电极表面发生电极反应,致使阳极水呈酸性,并产生初生态的氧O2和氧气Cl2。阴极水呈减性,当极节水中有Ca=+和Ng++时由生成CaCO3和Ng(OH)2水垢,结集在阴极上,阴极室有氧气H2排出。因此极水要畅通,不断排出电极反应产物,有利于电渗析器正常运行。 三、电渗析的结构 电渗析不论其规格怎样,形式如何,均由膜堆、电极、夹紧装臵三大部件组成。 1.膜堆 一张阳膜、一张隔膜、一张阴膜,再一张隔板组成一个膜对,一对电极之间所有的膜对之和称膜堆。它是电渗析器的心脏部件,也是电渗析器性能好、坏的关键部件。 在此简单介绍组成膜对零件的主要材料: (1)阴、阳离子交换膜:按膜中活性基团的均一程度可分为异相膜(非均质),均相膜与半均相膜。理论上讲均相膜优越,事实上由于各制膜厂技术水平不齐,生产经验不等,制出来的膜性能相关很大,即使同一家厂的产品由于批号不一样性能差别也不小。本所通过试制比较确定采用上海化工厂生产的异相膜,该膜性能相对比较稳定。 (2)隔板:本所电渗析器隔板流进均为无回路短流形式。其边框采用0.9毫米聚丙烯板冲压成型。内烫二聚丙烯丝编织网构成水流通道,有时根据用户需要选用0.5或1.2毫米聚丙烯板加工成型(一般说隔板愈薄脱盐效果越好,但对进水水质要求也愈高)。 2.电极 一般电渗析的电极采用石墨、铅、不锈钢材料,这些电极材料易得,造价低,制作方便;但电化学性能不好,寿命短。本所产品电极使用优质钛为基材、表面涂履镣、铱等稀土金属,具有电化学性能好,耐腐蚀、寿命长、形状如图四所示。 3.夹紧装臵

脱盐水处理

目录 第一章:水处理主要设备及装置结构 第一节:水处理概述 第二节:双室固定床系统主要设备及装置结构第三节:双室浮动床系统主要设备及装置结构第二章:水处理及主要装置工作原理 第一节:离子工作原理 第二节:双室固定床主要装置工作原理 第三节:双室浮动床主要装置工作原理 第三章:水处理系统工艺流程及控制参数 第一节:双室固定床系统工艺流程及控制参数第二节:双室固定床系统工艺流程及控制参数第四章:水处理系统开停机 第一节:双室固定床系统开机前的准备及开停机第二节:双室浮动床系统开机前的准备及开停机第五章:水处理正常操作要点 第一节:双室固定床系统操作要点 第二节:双室浮动床系统操作要点 第六章:常见故障排除 第七章:水处理主要设备及装置一览(列表)

第一章:水处理主要设备及装置结构 第一节:水处理概述 自然界中的水可分为地面水和地下水。无论是何种水源都不可避免的带有悬浮物质、胶体物质和溶解物质,为了使水中的这些物质有效的除去,必须对水进行处理。 为了满足锅炉用水的需要,对水进行净化、软化和脱盐处理的方法称之为水处理。目前我们主要使用的水处理装置有离子交换器和反渗透装置。 第二节:双室固定床系统主要设备及装置结构 双室双层固定床设有上、中、下三层多孔板,将交换器分为上、下两室。上室装填弱酸(碱)树脂,下室装填强酸(碱)树脂。为了防止细碎的树脂堵塞水帽,在强型树脂的上面填充惰性树脂(白球)。 1、无阀过滤器:直径5600mm,它由筒体、进水分配箱、滤料层、承托层、格栅、集水箱、虹吸管等组成。内填有石英砂、无烟煤、橡胶粒等滤料。(结构见图纸) 2、纤维过滤器:直径3000mm,它由筒体、多孔板、视镜、人孔、进水管和出水管、排汽管等组成,内填纤维绳过滤物。(结构见图纸) 3、阳离子交换器:直径3000mm,它由筒体、双头水帽、中间多孔板、下部多孔板、单头水帽、排汽管、进出水管、人孔、视镜

电渗析技术的简介

电渗析技术的简介 一、电渗析技术简介及其发展背景 电渗析(eletrodialysis,简称ED) 技术是膜分离技术的一种,它将阴、 阳离子交换膜交替排列于正负电极之间,并用特制的隔板将其隔开,组成除盐(淡化)和浓缩两个系统,在直流电场作用下,以电位差为动力,利用离子交换膜的选择透过性,把电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。 电渗析技术的研究始于德国,1903年,Morse和Pierce把2根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去;1924年,Pauli采用化工设计的原理,改进了Morse的实验装置,力图减轻极化,增加传质速率。但直到1950年Juda首次试制成功了具有高选择性的离子交换膜后,电渗析技术才进入了实用阶段,其中经历了三大革新: (1) 具有选择性离子交换膜的应用; (2) 设计出多隔室电渗析组件; (3) 采用频繁倒极操作模式。 现在离子交换膜各方面的性能及电渗析装置结构等不断革新和改进,电渗析技术进入了一个新的发展阶段,其应用前景也更加广阔。 电渗析器由隔板、离子交换膜、电极、夹紧装置等主要部件组成。离子交换膜对不同电荷的离子具有选择透过性。阳膜只允许通过阳离子,阻止阴离子通过,阴膜只允许通过阴离子,阻止阳离子通过。在外加直流电场的作

用下,水中离子作定向迁移。由于电渗析器是由多层隔室组成,故淡室中阴阳离子迁移到相邻的浓室中去,从而使含盐水淡化。在食品及医药工业,电渗析可用于从有机溶液中去除电解质离子, 在乳清脱盐、糖类脱盐和氨基酸精制中应用得都比较成功。 电渗析作为一种新兴的膜法分离技术,在天然水淡化,海水浓缩制盐,废水处理等方面起着重要的作用,已成为一种较为成熟的水处理方法。 二、几种电渗析技术 1 倒极电渗析( EDR) 倒极电渗析就是根据ED 原理,每隔一定时间(一般为15~20 min) ,正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。在20 世纪80 年代后期,倒极电渗析器的使用, 大大提高了电渗析操作电流和水回收率,延长了运行周期。EDR 在废水处理方面尤其有独到之处,其浓水循环、水回收率最高可达95 %。 2 液膜电渗析( EDLM) 液膜电渗析是用具有相同功能的液态膜代替固态离子交换膜,其实验模型就是用半透玻璃纸将液膜溶液包制成薄层状的隔板,然后装入电渗析器 中运行。利用萃取剂作液膜电渗析的液态膜,可能为浓缩和提取贵金属、重金属、稀有金属等找到高效的分离方法,因为寻找对某种形式离子具有特殊选择性的膜与提高电渗析的提取效率有关。提高电渗析的分离效率,直接与液膜结合起来是很有发展前途的。例如,固体离子交换膜对铂族金属

纯水处理工艺流程-基础-培训版

给水处理的目地和对象 。给水处理的目的与任务是什么? 答:目的与任务是对从水源取得的水进行适当的净化处理,得到质量符合用户要求的水质。 。天然水杂质按它们在水中存在的状态分为哪三类? 答:分为悬浮物、胶体杂质和溶解物三类。 悬浮物 1.什么是悬浮物 --指杂质颗粒直径在10-4㎜以上的微粒。它们常悬浮于水中,产生浑浊现象。2. 悬浮物的构成 --漂浮的:如草本植物等; 悬浮的:如一些动植物的微小碎片,纤维或死亡的腐烂产物等; 沉降的:如泥沙、粘土之类的无机化合物。 3. 悬浮物的特点 --在水中很不稳定,分布也很不均匀,是一种比较容易除去的杂质。 悬浮物是造成水质浊度、色度、气味的主要来源。它们在水中的含量也不稳定,往往随着季节、地区的不同而变,这些杂质凭肉眼可以看见。水静止的时候,较重的微粒(主要是沙子和泥土一类的无机物质)会沉淀下去,轻的微粒(主要是动植物及其残骸的一类有机化合物)会浮在水面上,这些用过滤分离的方法可以除去。 一、沉降类的混砂、粘土的危害: (1)使水浑浊,沉积于各配管装置系统的锅炉,热交换器中; (2)产生粘泥; (3)沉积在树脂中,影响离子交换,使工交下降。 二、漂浮、悬浮类的藻类、微生物的危害: (1)产生色度,并有臭味; (2)产生粘泥。 三、还有某些有机物的危害: (1)产生沉积; (2)污染树脂; (3)进入锅炉,发生起泡现象,从而产生汽水共腾现象,影响蒸汽品质。

胶体 1.什么是胶体 --分散质粒子在1nm—100nm之间的分散系;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系。 通俗的讲,用一束激光从胶体射出,如果能看到一条光亮的通路,那就是胶体。 2. 胶体的构成 --分散剂类:气溶胶,固溶胶,液溶胶; 分散质类:分子胶体、粒子胶体; 1、气溶胶:烟、云、雾; 固溶胶:烟水晶、有色玻璃; 液溶胶:蛋白溶液,淀粉溶液,肥皂水,人体的血液。 2、分子胶体:淀粉胶体,蛋白质胶体; 粒子胶体:土壤。 3. 胶体的特点 --能发生丁达尔现象,聚沉,产生电泳,可以渗析。 刚才胶体的通俗讲法所用检验方法就是丁达尔现象。 最大的危害就是容易堵塞反渗透膜,十分不利于RO的清洗工作。 (天然水中的胶体等大多带有负电荷,这种胶体由带正电的胶核与带负电荷的外层所构成,由于胶体的多层结构及水化作用,因而胶体能悬浮于水中,由于胶体带负电荷的外层与其他胶体带正电荷的胶核相互吸引,使许多带有相同电荷的胶体粒子同时存在,但粒子之间并不实际接触。) 地下水及地表水均含有铁、铝、硅、有机质等物质,它们和预处理时加入的混凝剂、助凝剂、阻垢剂等形成胶体沉积在膜表面造成胶体污染。 胶体物污染难处理是由于带有同种电荷,比较稳定,不易沉降,易污染膜,导致水通量下降。一般这种趋向用污染指数(SDI)进行评价。通常当SDI<3时,膜表面不产生此类污;当SDI>3时,会发生污堵。 给水处理前后期对象 。给水处理中,前期净化要去除的对象是什么? 答:悬浮物和胶体杂质。 。给水处理中,后期淡化和除盐的对象是什么? 答:水中各种溶解盐类包括阴阳离子。

几种脱盐水处理工艺

脱盐水处理工艺,又称纯水处理工艺或深度脱盐水,一般系指将水中易于去除的强导电质去除又将水中难以去除的硅酸及二氧化碳等弱电解质去除至一定程度的水。工艺很多,主要有电渗析法、离子交换法、反渗透法、EDI法等目前市场上的石化行业脱盐水处理系统中,已成熟的几种工艺都存在着这样或那样的缺点,企业如果选择了不利于本地水质或不利于本厂实际情况的处理方案,就会造成不可弥补的损失。针对这种情况,笔者将传统的离子交换处理方案与先进的膜法处理方案进行经济技术比较,以供大家参考。 纯水水处理工艺简单介绍 1、离子交换工艺 早期人们所熟知的脱盐水处理工艺主要为预处理+阳床+阴床+混床的全离子交换工艺,即传统法处理流程。对于地表水,常规的预处理方法多是多介质过滤+活性炭过滤,用阳床+阴床+混床的全离子交换可确保出水水质稳定达标。长期实践已证明,传统法处理工艺是一种成熟有效的水处理工艺。但传统法因预处理和离子交换工艺的局限,存在着设备占地面积大、系统操作维护频繁复杂、出水水质呈周期性波动的缺陷,并且需要投加絮凝剂和耗费大量的酸碱,不利于环境保护;同时,离子交换器多为直径较大的罐体,体积大、重量大,不便于运输及安装调试,施工周期长。 2、膜法工艺 膜法工艺是指超滤+反渗透+混床除盐(EDI)的脱盐水处理工艺,该工艺主要采用膜分离技术制取脱盐水。 超滤原理是一种膜分离过程原理,超滤是利用一种压力活性膜,在外界推动力(压力)作用下截留水中胶体、颗粒和分子量相对较高的物质,而水和小的溶质颗粒透过膜的分离过程。通过膜表面的微孔筛选可截留分子量为3×10000~1×10000的物质。当被处理水借助于外界压力的作用以一定的流速通过膜表面时,水分子和分子量小于300~500的溶质透过膜,而大于膜孔的微粒、大分子等由于筛分作用被截留,从而使水得到净化。也就是说,当水通过超滤膜后,可将水中含有的大部分胶体硅除去,同时可去除大量的有机物等。超滤对原水的适应性好,浊度在200以下的地表水均可有效处理,对于胶体硅的去除率大大高于传统法的多介质和活性炭过滤。超滤的采用大大提升了预处理的效果,可保证其出水SDI 值稳定在3以下,增强了对反渗透系统的产水率,膜的使用寿命更可从传统法保证的3年延长到5年。 反渗透装置是用足够的压力使溶液中的溶剂(一般是水)通过反渗透膜而分离出来,这个过程和自然渗透的方向相反,因此称为反渗透。经过反渗透处理,使水中杂质的含量降低,提高水中的纯度,其脱盐率达到99%以上,并能将水中大部分的细菌、胶体及大分子量的有机物去除。反渗透法能适应各类含盐量的原水,尤其是在高含盐量的水处理工程中,这种脱盐水处理工艺能获得很好的技术经济效益。 反渗透广泛应用于海水及苦咸水淡化,锅炉给水、工业纯水及电子级超纯水制备,饮用纯净水生产,废水处理及特种分离等过程,在离子交换前使用反渗透可大幅度降低操作费用和废水排放量。如此进行初步除盐后再采用混床进行深度除盐,则混床的工作负担明显降低,运行周期延长,从根本上降低了酸、碱以及酸碱废水的环境污染问题,且出水水质稳定可靠,运行费用低。超滤及反渗透装置均采用模块化设计,可任意拆卸、组装,配置灵活,安装调试方便;且设备结构紧凑,占地少,重量轻,便于运输和安装调试;因超滤和反渗透均为撬装设备,出厂前已进行了调试检验,大大减少了现场的安装调试工作,缩短了施工周期。与传统法处理工艺相比,有着极大的经济、技术和环保优势。经过反渗透的水,其99%以上的离子已被除去,但要想进一步提高水质,制造出超纯水,目前更为先进的用来替代混床的脱盐水处理工艺方法为EDI。 3、连续电脱盐水处理工艺

工业水处理技术

给水工程 1.(概念)硬度是水质的一个重要指标。生活用水与生产用水均对硬度指标有一定的要求,特别是锅炉用水中若含有硬度盐类,会在锅炉受热面上生成水垢,从而降低锅炉热效率、增大燃料消耗,甚至因金属壁面局部过热而烧损部件、引起爆炸。因此,对于低压锅炉,一般要进行水的软化处理;对于中、高压锅炉,则要求进行水的软化与脱盐处理。硬度盐类包括Ca2+、Mg2+、Fe2+、Mn2+、Fe3+、Al3+等易形成难溶盐类的金属阳离子。一般天然水中其他离子含量很少,将钙、镁离子的总含量称为水的总硬度。硬度又可分为碳酸盐硬度和非碳酸盐硬度,前者在煮沸时易沉淀析出,称为暂时硬度;后者在煮沸时不沉淀析出,称为永久硬度。 2.(经典题目。看起来像大题)P395-396石灰软化》》为除去水中钙、镁离子,反而加入Ca(OH)2,似乎存在着矛盾。而其中道理可从下列反应中看出:(请记住反应式,自己看书记式子)1)Ca(OH)2——Ca2++2OH-2)2HCO3-+2OH-——2CO32-+2H2O 3)Ca2++CO32-——CaCO3沉淀》》》》》》Ca(OH)2+2HCO3-——CaCO3沉淀+CO32-+2H2O(此4式,可记住最后一条足以证明)根据上述反应,每投加1molCa(OH)2,可去除水中1molCa2+。此式说明熟石灰能去除碳酸盐硬度;熟石 灰虽亦能跟水中非碳酸盐的镁硬度起反 应生成氢氧化镁,但同时又产生了等物 质量的非碳酸盐的钙硬度: MgSO4+Ca(OH)2——Mg(OH)2沉淀+CaSO4 MgCl2+Ca(OH)2——Mg(OH)2沉淀+CaCl2 (这两条式子,考试时写出一个足以证 明)。综上所述,石灰软化主要是去除水 中的碳酸盐硬度以及降低水的碱度。但 过量投加石灰,反而会增加水的硬度。 石灰软化往往与混凝同时进行,有利于 混凝沉淀。 3.离子交换树脂是由空间网状结构骨架 (即母体)与附属在骨架上的许多活性 基团所构成的不溶性高分子化合物。活 性基团遇水电离,分成两部分》1)固定 部分,仍与骨架牢固结合,不能自由移 动,构成所谓固定离子;2)活动部分, 能在一定空间内自由移动,并与其周围 溶液中的其它同性离子进行交换反应, 称为可交换离子或反离子。 4.离子交换的实质是不溶性的电解质 (树脂)与溶液中的另一种电解质所进 行的化学反应。(大概在P397-398,请记 住一条公式做例子) 5.离子交换树脂的基本性能:1)外观, 呈不透明或半透明球状颗粒。2)交联度, 取决于制造过程。30含水率,相应地反 应了孔隙率,交联度越小,孔隙率越大, 含水率也越大。4)溶胀性。5)通常所 谓树脂真密度和视密度是指湿真密度和 湿视密度。6)交换容量是树脂最重要的 性能,定量地表示树脂交换能力的大小。 7)由于树脂活性基团分为强酸、强碱、 弱酸、弱碱性,水的 pH值势必对其交换 容量产生影响。 6.(莫非是填空)逆流再生操作步骤:1) 小反洗2)放水3)顶压4)进再生液5) 逆向清洗6)正洗。 7.(名词解释)水的纯度常以水中含盐 量或水的电阻率来衡量。电阻率是指断 面1cmX1cm,长1cmX1cm体积的水所测得 的电阻。电导率是电阻率的倒数。 8.(见提纲排水部分22条,老师再次提 到这个名词,极可能是名词解释)污染 指数FI值表示在规定压力和时间的条件 下,滤膜通过一定水量的阻塞率。(数 值小于4为可用) 9.(P424,估计是选择题,这么简单,必 记)强碱树脂的选择性顺序一般为: SO42->NO3->Cl->F->HCO3->HSiO3- 10.强碱阴离子交换器的运行过程曲线。 (我也不清楚怎么考。自己看图,大概 在P425) 11.弱碱阴离子交换器的运行过程曲线。 (同上) 12.(名词解释)复床是指阳、阴离子交 换器串联使用,达到水的除盐的目的。

电渗析法综述

电渗析技术综述 摘要:电渗析技术属于膜分离技术,广泛应用于食品、化工、废水处理等行业的分离纯化的生产过程中,有效率高、经济节能等优点。本文重点介绍电渗析技术的原理和分类,还有电渗析技术在食品行业中的应用及对其发展的展望。 关键词:电渗析原理分类应用展望 1、电渗析 电渗析是在直流电场作用下,利用离子交换膜的选择透过性,带电离子透过离子交换膜定向迁移,从水溶液和其他不带电组分中分离出来,从而实现对溶液的浓缩、淡化、精制和提纯的目的。目前电渗折技术己发展成一个大规模的化工单元过程,在膜分离领域占有重要地位。广泛应用于化工脱盐,海水淡化,食品医药和废水处理等领域,在某些地区已成为饮用水的主要生产方法,具有能量消耗少,经济效益显著;装置设计与系统应用灵活,操作维修方便,不污染环境,装置使用寿命长,原水的回收率高等优点。[1] 2、电渗析技术的发展简介 电渗析技术的研究始于20世纪初的德国,1903年,Morse和Pierce把两根电极分别置于透析袋内部和外部的溶液中发现带点杂质能迅速地从凝胶中除去;1924年,Pauli采用化工设计的原理,改进了Morse的试验装置,力图减轻极化,增加传质速率,直至20世纪50年代离子交换膜的制造进入工业化生产后,电渗析技术才进入实用阶段。其中经历了三大革新:一是具有选择性离子交换膜的应用,二是设计出多层电渗析的组件,三是采用倒换电极的操作式。目前电渗析技术已发展成一个大规模的化工单元过程,在膜分离领域占有重要地位。电渗析技术的分类 3.1、倒极电渗析 倒极电渗析就是根据电渗析原理,每隔一定时间(一般为15~20min),正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。在20世纪80年代后期,倒极电渗析器的使用,大大提高了电渗析操作电流和水回收率,延长了运行周期。EDR在废水处理方面尤其有独到之处,其浓水循环、水回收率最高可达95%。 3.2、液膜电渗析 液膜电渗析是用具有相同功能的液态膜代替固态离子交换膜,其实验模型就是用半透玻璃纸将液膜溶液包制成薄层状的隔板,然后装入电渗析器中运行。利用萃取剂作液膜电渗析的液态膜,可能为浓缩和提取贵金属、重金属、稀有金属等找到高效的分离方法,因为寻找对某种形式离子具有特殊选择性的膜与提高电渗析的提取效率有关。提高电渗析的分离效率,直接与液膜结合起来是很有发展前途的。例如,固体离子交换膜对铂族金属(锇、钌等)的盐溶液进行电渗析时,会在膜上形成金属二氧化物沉淀,这将引起膜的过早损耗,并破坏整个工艺过程,应用液膜则无此弊端。 3.3、填充床电渗析 填充床电渗析是将电渗析与离子交换法结合起来的一种新型水处理方法,它的最大特点是利用水解离产生的H+和OH-自动再生填充在电渗析器淡水室中的混床离子交换树脂,从而实现了持续深度脱盐。它集中了电渗析和离子交换法的优点,提高了极限电流密度和电流效率。1983年Ke2dem.o.及其同事们提出了填充混合离子交换树脂电渗析过程除去离子的思想,1987年,Mlillpore公司推出了这一产品。填充床电渗析技术具有高度先进性和实用性,在电子、医药、能源等领域具有广阔的应用前景,可望成为纯水制造的主流技术。 3.4、双极性膜电渗析

相关主题
文本预览
相关文档 最新文档