当前位置:文档之家› 电渗析脱盐技术应用简述

电渗析脱盐技术应用简述

电渗析脱盐技术应用简述
电渗析脱盐技术应用简述

电渗析脱盐技术应用简述

电渗析是电场驱动的水溶液离子脱除/浓缩的分离技术,电渗析器的核心部件是由多张阴离子交换膜、淡化室隔板、阳离子交换膜和浓缩室隔板交替排列组成的膜堆。在电场的作用下可实现淡化室水溶液盐分的脱除和浓缩室水溶液盐分的富集。

电渗析膜和电渗析器,可用于脱除水溶液的盐分(淡化)或者浓缩水溶液的盐分(制盐),具体的应用包括各种化工/食品/医药生产过程中的物料脱盐(比如乳清蛋白脱盐、甘露醇脱盐、大豆低聚糖脱盐、氨基酸脱盐等)、苦咸水淡化、天然水纯化、工业废水净化、小规模海水淡化、海水或卤水制盐等。在这些应用中,均相膜电渗析法具有其它方法不可比拟的优势。(a)对于生产过程中的物料脱盐,现有的方法是采用离子交换树脂进行离子交换。由于离子交换树脂对于物料不可避免的吸附,导致物料收率低,并且离子交换树脂再生过程中产生大量含盐废水,不易处理。均相膜电渗析法的优势是物料收率高,产生的含盐废水少。(b)对于苦咸水淡化,同世界的很多其它地区相似,我国西北干旱内陆地区由于降水稀少,蒸发强烈,水资源天然匮乏,作为主要供水水源的地下水普遍含盐含氟,成为苦咸水,水质低劣,不符合饮用水标准。在山东,苦咸水分布面积达1.09万平方公里,主要分布在鲁西北及潍坊市“三北”地区;山东省黄泛平原和滨海平原区,由于受地下水径流条件和古沉积环境的影响,在内陆和滨海区形成了各种类型的盐水。与反渗透法相比,电渗析法苦咸水淡化的优势在于膜抗有机污染、水收率高以及较低运行费用。(c)

对于小规模海水淡化,电渗析技术适用于在海岛、酒店、渔船、舰艇和潜艇等生产饮用水。与反渗透法相比,电渗析法的优势在于低操作压力和预处理简单,系统易操作、易维护、安全、无噪音。(d)反渗透法已经广泛应用于海水淡化和苦咸水淡化,一个普遍的问题是浓水的处理。浓水可以排入海水,但需要非常谨慎以避免对环境造成冲击。电渗析膜较反渗透膜,更耐有机污染和无机结垢,因此可通过电渗析器处理浓水,进一步生产出淡水,提高水收率,同时可将盐水中氯化钠浓度提高到18%以上,再通过多效蒸发等方式制备工业盐或食用盐。因此均相膜电渗析技术与反渗透技术结合,可突破膜法海水淡化的技术瓶颈,实现海水的综合利用。

目前国内市场的离子交换膜90%以上为异相离子交换膜,异相膜由离子交换树脂与聚乙烯粉共混挤出制备,电阻很高,选择性不足,寿命短;异相膜电渗析用于脱盐制备纯水运行能耗过高,用于生产过程的物料脱盐物料损失率高、设备使用寿命短。相比于异相膜,均相离子交换膜具有非常明显的优势,电阻低,选择性高,使用寿命长;在美国、日本及欧洲地区,大多数应用中异相膜已经被均相膜取代。目前,国际上规模化的均相电渗析膜生产厂家仅限美国GE 公司、日本ASTOM 公司、日本Asahi Glass 公司和德国FuMA-Tech 公司,而国内也仅有中国科学技术大学、山东天维膜技术有限公司等数家高校、企业从事开发研究。

电渗析脱盐技术应用简述

电渗析脱盐技术应用简述 电渗析是电场驱动的水溶液离子脱除/浓缩的分离技术,电渗析器的核心部件是由多张阴离子交换膜、淡化室隔板、阳离子交换膜和浓缩室隔板交替排列组成的膜堆。在电场的作用下可实现淡化室水溶液盐分的脱除和浓缩室水溶液盐分的富集。 电渗析膜和电渗析器,可用于脱除水溶液的盐分(淡化)或者浓缩水溶液的盐分(制盐),具体的应用包括各种化工/食品/医药生产过程中的物料脱盐(比如乳清蛋白脱盐、甘露醇脱盐、大豆低聚糖脱盐、氨基酸脱盐等)、苦咸水淡化、天然水纯化、工业废水净化、小规模海水淡化、海水或卤水制盐等。在这些应用中,均相膜电渗析法具有其它方法不可比拟的优势。(a)对于生产过程中的物料脱盐,现有的方法是采用离子交换树脂进行离子交换。由于离子交换树脂对于物料不可避免的吸附,导致物料收率低,并且离子交换树脂再生过程中产生大量含盐废水,不易处理。均相膜电渗析法的优势是物料收率高,产生的含盐废水少。(b)对于苦咸水淡化,同世界的很多其它地区相似,我国西北干旱内陆地区由于降水稀少,蒸发强烈,水资源天然匮乏,作为主要供水水源的地下水普遍含盐含氟,成为苦咸水,水质低劣,不符合饮用水标准。在山东,苦咸水分布面积达1.09万平方公里,主要分布在鲁西北及潍坊市“三北”地区;山东省黄泛平原和滨海平原区,由于受地下水径流条件和古沉积环境的影响,在内陆和滨海区形成了各种类型的盐水。与反渗透法相比,电渗析法苦咸水淡化的优势在于膜抗有机污染、水收率高以及较低运行费用。(c)

对于小规模海水淡化,电渗析技术适用于在海岛、酒店、渔船、舰艇和潜艇等生产饮用水。与反渗透法相比,电渗析法的优势在于低操作压力和预处理简单,系统易操作、易维护、安全、无噪音。(d)反渗透法已经广泛应用于海水淡化和苦咸水淡化,一个普遍的问题是浓水的处理。浓水可以排入海水,但需要非常谨慎以避免对环境造成冲击。电渗析膜较反渗透膜,更耐有机污染和无机结垢,因此可通过电渗析器处理浓水,进一步生产出淡水,提高水收率,同时可将盐水中氯化钠浓度提高到18%以上,再通过多效蒸发等方式制备工业盐或食用盐。因此均相膜电渗析技术与反渗透技术结合,可突破膜法海水淡化的技术瓶颈,实现海水的综合利用。 目前国内市场的离子交换膜90%以上为异相离子交换膜,异相膜由离子交换树脂与聚乙烯粉共混挤出制备,电阻很高,选择性不足,寿命短;异相膜电渗析用于脱盐制备纯水运行能耗过高,用于生产过程的物料脱盐物料损失率高、设备使用寿命短。相比于异相膜,均相离子交换膜具有非常明显的优势,电阻低,选择性高,使用寿命长;在美国、日本及欧洲地区,大多数应用中异相膜已经被均相膜取代。目前,国际上规模化的均相电渗析膜生产厂家仅限美国GE 公司、日本ASTOM 公司、日本Asahi Glass 公司和德国FuMA-Tech 公司,而国内也仅有中国科学技术大学、山东天维膜技术有限公司等数家高校、企业从事开发研究。

电渗析设备的工作原理及其基本概况

电渗析设备的工作原理及其基本概况 渗析法在海水和苦咸水淡化或初级除盐中,既能制取满足生产和生活用水要求,而且设备简单,运行管理方便,因此备受推广使用。 工作原理 电渗析是利用离子交换膜对溶液中阴阳离子的选择透过性,以直流电场为推动力的膜分离方法,它是使溶质和溶液分离的一种物理化学过程。 工艺选择及原水预处理说明 电渗析是脱盐工艺中的一个单元,可与其他脱盐技术配合,达到理想的目的。集中电渗析脱盐工艺如下: 1.原水→预处理→电渗析→脱盐水;这是制取工业用脱盐水或初级纯水的简单工艺。 2.原水→预处理→电渗析→消毒→脱盐水;由海水,苦咸水制取饮用水或从自来水制取食品,饮料用水可采取此工艺。 3.原水→预处理→电渗析→离子交换→脱盐水;此工艺用于制取纯水或高纯水。电渗析首先将水中含盐量去除80%~90%,剩余的少量盐

由离子交换树脂去除,这样可以大大减轻离子交换的负担,从而可以减少酸,碱的用量,利于环境保护。此工艺应用最为广泛。 4.原水→预处理→软化→电渗析→脱盐水;此工艺适用于处理高硬度,高硫酸水,或地硬度苦咸水(可用浓水作软化再生剂)。 5.其他:还可以与反渗透,超滤相配合,制取医药,电子工业用水。 预处理方法视原水水质而定 1.深井水一般水质透明,悬浮物较少,采用简单的过滤和精密过滤即可。 2.但地下水硬度高或含Fe 、Mn ,则需采用软化,除Fe 、Mn 措施。 3.自来水常含有微量的悬浮物质,有机物和游离氯,采用过滤和活性炭吸附过滤是必要的。 4.如采用地面水为水源,一般需采用混凝沉淀或微絮凝或加氯再过滤,活性炭和精密过滤等方法。 5.但不论采用何种水源水,在电渗析器前设置孔径为5-25μm 的精

电渗析水处理技术的优点和不足

电渗析水处理技术的优点和不足 1、能量消耗少: 电渗析器在运行中,不发生相的变化,只是用电能来迁移水中已解离的离子。它耗用的电能一般是与水中含盐量成正比的。大多数人认为,对含盐量4000~5000mg/L以下的苦咸水的变化,电渗析技术是耗能少的较经济的技术。 2、药剂耗量少,环境污染小: 离子交换技术在树脂交换失效后要用大量酸、碱进行再生,水洗时有大量废酸、碱排放,而电渗析系统仅酸洗时需要少量酸。 3、设备简单,操作方便: 电渗析器是用塑料隔板与离子交换膜剂电极板组装而成的,它的主体配套设备都比较简单,而且膜和隔板都是高分子材料制成,因此,抗化学污染和抗腐蚀性能均较好。在运行时通电即可得淡水,不需要用酸碱进行繁复的再生处理。 4、设备规模和除盐浓度适应性大: 电渗析水处理设备可以从每日几吨的小型生活饮用水淡化水站到几千吨的大、中型淡化水站。 5、用电较易解决、运行成本较低:电渗析技术也存在以下不足:

1、对离解度小的盐类及不离解的物质难以去除,例如,对水中的硅酸和不离解的有机物就不能去除掉,对碳酸根的迁移率就小一些。 2、电渗析器是由几到几百张较薄的隔板和膜组成。部件多,组装要求较高,组装不好,会影响配水均匀。 3、电渗析设备是使水流在电场中流过,当施加一定电压后,靠近膜面的滞留层中电解质的盐类含量较少。此时,水的离解度增大,易产生极化结垢和中性扰乱现象,这是电渗析水处理技术中较难掌握又必须重视的问题。 4、电渗析器本身耗水量还是较大的。虽然采取极水全部回收,浓水部分回收或降低浓水进水比例等措施,但本身的耗水量仍达20%~40%。因此,缺水地区,应用电渗析水处理技术会受到一定限制。 5、电渗析水处理对原水净化处理要求较高,需增加精密过滤设备。

电渗析技术

电渗析技术的发展及应用 08食科汪强 20080808132 摘要:电渗析技术属于膜分离技术, 广泛应用于食品、化工、废水处理等行业的分离纯化的生产过程中, 有效率高、清洁卫生及经济节能等优点。本文简述了电渗析技术的类型, 重点论述了电渗析技术的原理, 介绍了电渗析技术在食品行业以及在废水处理中应用研究, 并对其发展前景进行了展望。 关键词:电渗析;膜;应用 电渗析是在外加直流电场的作用下, 利用离子交换膜的选择透过性, 使离子从一部分水中迁移到另一部分水中的物理化学过程。电渗析器, 就是利用多层隔室中的电渗析过程达到除盐的目的。电渗析器由隔板、离子交换膜、电极、夹紧装置等主要部件组成。离子交换膜对不同电荷的离子具有选择透过性。阳膜只允许通过阳离子, 阻止阴离子通过, 阴膜只允许通过阴离子, 阻止阳离子通过。在外加直流电场的作用下, 水中离子作定向迁移。由于电渗析器是由多层隔室组成, 故淡室中阴阳离子迁移到相邻的浓室中去, 从而使含盐水淡化。在食品及医药工业, 电渗析可用于从有机溶液中去除电解质离子, 在乳清脱盐、糖类脱盐和氨基酸精制中应用得都比较成功[ 1] 。电渗析作为一种新兴的膜法分离技术, 在天然水淡化, 海水浓缩制盐, 废水处理等[ 2] 方面起着重要的作用, 已成为一种较为成熟的水处理方法。 1 .电渗析技术的类型 1.1倒极电渗析( EDR) 倒极电渗析就是根据ED 原理,每隔一定时间(一般为15~20 min) ,正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。 1.2液膜电渗析( EDLM) 液膜电渗析是用具有相同功能的液态膜代替固态离子交换膜[3 ] ,其实验模型就是用半透玻璃纸将液膜溶液包制成薄层状的隔板,然后装入电渗析器中运行。利用萃取剂作液膜电渗析的液态膜,可能为浓缩和提取贵金属、重金属、稀有金属等找到高效的分离方法,因为寻找对某种形式离子具有特殊选择性的膜与提高电渗析的提取效率有关。提高电渗析的分离效率,直接与液膜结合起来是很有发展前途的。 1.3填充床电渗析( EDI) 填充床电渗析( EDI) 是将电渗析与离子交换法结合起来的一种新型水处理方法,它的最

反渗透、电渗析技术比较

反渗透、电渗析、电吸附技术比较 一、原理比较 1、反渗透(RO)除盐原理 当纯水和盐水被理想半透膜隔开,理想半透膜只允许水通过而阻止盐通过,此时膜纯水侧的水会自发地通过半透膜流入盐水一侧,这种现象称为渗透,若在膜的盐水侧施加压力,那么水的自发流动将受到抑制而减慢,当施加的压力达到某一数值时,水通过膜的净流量等于零,这个压力称为渗透压力,当施加在膜盐水侧的压力大于渗透压力时,水的流向就会逆转,此时,盐水中的水将流入纯水侧,上述现象就是水的反渗透处理的基本原理。 2、电渗析除盐原理 电渗析是膜分离技术的一种,是利用离子交换膜对阴、阳离子的选择透过性能,在外加直流电场力的作用下,使阴、阳离子定向迁移透过选择性离子交换膜,从而使电介质离子自溶液中分离出来的过程。 除盐原理如图所示,电渗析器中交替排列着许多阳膜和阴膜,分隔成小水室。当原水进入这些小室时,在直流电场的作用下,溶液中的离子就作定向迁移。阳膜只允许阳离子通过而把阴离子截留下来;阴膜只允许阴离子通过而把阳离子截留下来。结果这些小室的一部分变成含离子很少的淡水室,出水称为淡水。而与淡水室相邻的小室则变成聚集大量离子的浓水室,出水称为浓水。从而使离子得到了分离和浓缩,水便得到了净化。

二、反渗透、电渗析在污水回用领域的技术特点比较 序号项目电渗析反渗透RO(双膜法) 1 除盐原理利用离交换膜和直流电场,使 水中电解质的离子产生选择 性迁移,从而达到使水淡化的 装置。 以分子扩散膜为介质,以静 压差为推动力将溶剂从溶 液中取出 2 透过物溶质,盐溶剂,水 3 截留物溶剂,水溶质,盐 4 膜类型离子膜不对称膜,复合膜 5 除盐率60%-90%80%-95%(废水)6 处理污水膜通量与 处理净水膜通量比 10.5-0.7 7 经济回收率45%-70%60%-75% 8 工作温度大于5℃小于40℃大于4℃小于40℃ 9 随温度降低通量衰 减无 每降低1℃膜通量下降 2-3%

电渗析(ED)技术及操作简介

电渗析(ED)技术及操作简介 电渗析原理 电渗析器是在外加直流电场的作用下,当含盐分的水流经阴、阳离子交换膜和隔板组成的隔室时,水中的阴、阳离子开始定向运动,阴离子向阳极方向移动,阳离子向阴极方向移动,由于离子交换膜具有选择透过性,阳离子交换膜(简称阳膜)的固定交换基团带负电荷,因此允许水中阳离子通过而阻挡阴离子,阴离子交换膜(简称阴膜)的固定交换基团带正电荷,因此允许水中的阴离子通过而阻挡阳离子,致使淡水隔室中的离子迁移到浓水隔室中去,从而达到淡化的目的。电渗析器通电以后,电极表面发生电极反应,致使阳极水呈酸性,并产生初生态的氧O2和氧气Cl2。阴极水呈减性,当极节水中有Ca=+和Ng++时由生成CaCO3和Ng(OH)2水垢,结集在阴极上,阴极室有氧气H2排出。因此极水要畅通,不断排出电极反应产物,有利于电渗析器正常运行。 三、电渗析的结构 电渗析不论其规格怎样,形式如何,均由膜堆、电极、夹紧装臵三大部件组成。 1.膜堆 一张阳膜、一张隔膜、一张阴膜,再一张隔板组成一个膜对,一对电极之间所有的膜对之和称膜堆。它是电渗析器的心脏部件,也是电渗析器性能好、坏的关键部件。 在此简单介绍组成膜对零件的主要材料: (1)阴、阳离子交换膜:按膜中活性基团的均一程度可分为异相膜(非均质),均相膜与半均相膜。理论上讲均相膜优越,事实上由于各制膜厂技术水平不齐,生产经验不等,制出来的膜性能相关很大,即使同一家厂的产品由于批号不一样性能差别也不小。本所通过试制比较确定采用上海化工厂生产的异相膜,该膜性能相对比较稳定。 (2)隔板:本所电渗析器隔板流进均为无回路短流形式。其边框采用0.9毫米聚丙烯板冲压成型。内烫二聚丙烯丝编织网构成水流通道,有时根据用户需要选用0.5或1.2毫米聚丙烯板加工成型(一般说隔板愈薄脱盐效果越好,但对进水水质要求也愈高)。 2.电极 一般电渗析的电极采用石墨、铅、不锈钢材料,这些电极材料易得,造价低,制作方便;但电化学性能不好,寿命短。本所产品电极使用优质钛为基材、表面涂履镣、铱等稀土金属,具有电化学性能好,耐腐蚀、寿命长、形状如图四所示。 3.夹紧装臵

电渗析操作规程

两钠废液电渗析操作规程 操 作 规 程

江苏华晖环保科技有限公司

目录 一岗位的基本任务 (1) 二工艺流程叙述 (1) 三中和调节系统 (1) 3.1中和调节系统原理 (1) 3.2中和调节系统工艺流程 (2) 3.3中和调节系统的设置 (2) 四电渗析工艺流程 (3) 4.1电渗析原理 (4) 4.2电渗析器(膜堆) (4) 4.3原理分析 (6) 4.4电渗析工艺流程 (7) 4.5电渗析系统 (9) 五开机前准备及操作 (10) 5.1 中和系统试开机前准备 (10) 5.2 电渗析联调准备及操作 (11) 六安全生产过程 (14) 6.1安全应急预案 (14) 6.2安全应急撤 (16) 6.3安全注意事项 (17) 6.4异常处理 (17)

一岗位的基本任务 将送来的表冷液中和到设定的pH值4.5~6.5,在电场作用下利用膜分离原理将表冷液分离成浓缩溶液和淡化合格水。浓缩溶液输送到生产系统进行回收利用;双钠含量≤25mg/L的淡化合格水输送到循环水池作为补充水。 二工艺流程叙述 硝酸铵产品的生产过程是用浓度50%左右的稀硝酸与气氨进行中和反应,反应过程中放出大量的热,产生的热量与硝酸浓度有关,中和液中的水吸热气化,最终得到75%左右的硝酸铵浓液,进一步蒸发,最终得到硝酸铵。生产硝酸铵产品过程中所产生的蒸汽,经冷却器冷凝后,得到冷凝废水,冷凝废水中含有可利用的硝酸铵及氨,如直接排放,严重污染环境,同时白白浪费其中可回收利用物质。 三中和调节系统 3.1 中和调节系统原理: 硝酸铵产品的生产过程:是用50%的稀硝酸与气氨进行中和反应,反应过程中释放出大量的热。释放出的热量与硝酸浓度有关,中和液中的水吸热气化,最终得到75%左右的硝酸铵浓液,进一步蒸发,所产生的蒸汽,经冷却后,得到冷凝废水,冷凝废水中含有少量的硝酸铵和氨直接进入电渗析系统会对电渗析膜堆体造成损坏,降低膜堆的使用寿命,经处理后排放水也不能达标,所以必须将冷凝废水进行中和处理,其中和处理的原理是:在冷凝液进入电渗析系统前加一套中和装置,加入少量的稀硝酸或少量的气氨,在常温常压下进行中和反应,生成硝酸铵。稀硝酸或氨与

电渗析技术说明

电渗析技术说明 在外加直流电场的作用下利用阴离子膜和阳离子交换膜的选择透水性,使一部分离子透过离子交换膜迁移到另一部分水中,从而使一部分淡化使另一部分浓缩的过程。电渗析利用半透膜的选择透过性来分离不同的溶质粒子(如离子)。在电场作用下进行渗析时,溶液中的带电的溶质粒子(如离子)通过膜而迁移的现象称为电渗析。 电渗析与反渗透相比,它的价格便宜,但脱盐率低。当前国产离子交换膜质量亦很稳定,运行管理也很方便,自动控制频繁倒极电渗析(EDR),运行管理更加方便。原水利用率可达80%,一般原水回收率在45%~70%之间。电渗析主要用于水的初级脱盐,脱盐率在45%~80%之间。它广泛被用于海水与苦咸水淡化;制备纯水时的初级脱盐以及锅炉、动力设备给水的脱盐软化等。 基本性能∶操作压力0.5~3.0kg/em2;操作电压100~250V,电流1~3A;本体耗电量每吨淡水0.2~2.0kW·h。 电渗析法的特点为∶ a.可以同时对电解质水溶液起淡化、浓缩、分离、提纯作用; b.可以用于蔗糖等非电解质的提纯,以除去其中的电解质; c.在原理上,电渗析器是一个带有隔膜的电解池,可以利用电极 上的氧化还原,效率高。 在电渗析过程中也进行以下次要过程∶ a.同名离子的迁移,离子交换膜的选择透过性往往不可能是百分

之百的,因此总会有少量的相反离子透过交换膜; b.离子的浓差扩散,由于浓缩室和淡化室中的溶液中存在着浓度差,总会有少量的离子由浓缩室向淡化室扩散迁移,从而降低了渗析效率; c.水的渗透,尽管交换膜是不允许溶剂分子透过的,但是由于淡化室与浓缩室之间存在浓度差,就会使部分溶剂分子(水)向浓缩室渗透; d.水的电渗析,由于离子的水合作用和形成双电层,在直流电场作用下,水分子也可从淡化室向浓缩室迁移; e.水的极化电离,有时由于工作条件不良,会强迫水电离为氢离子和氢氧根离子,它们可透过交换膜进入浓缩室; f.水的压渗,由于浓缩室和淡化室之间存在流体压力的差别,迫使水分子由压力大的一侧向压力小的一侧渗透。显然,这些次要过程对电渗析是不利因素,但是它们都可以通过改变操作条件予以避免或控制。

电渗析知识

电渗析知识 电渗析利用半透膜的选择透过性来分离不同的溶质粒子(如离子)的方法称为渗析。在电场作用下进行渗析时,溶液中的带电的溶质粒子(如离子)通过膜而迁移的现象称为电渗析。利用电渗析进行提纯和分离物质的技术称为电渗析法,它是20世纪50年代发展起来的一种新技术,最初用于海水淡化,现在广泛用于化工、轻工、冶金、造纸、医药工业,尤以制备纯水和在环境保护中处理三废最受重视,例如用于酸碱回收、电镀废液处理以及从工业废水中回收有用物质等。 电渗析与近年引进的另一种膜分离技术反渗透相比,它的价格便宜,但脱盐率低。当前国产离子交换膜质量亦很稳定,运行管理也很方便,自动控制频繁倒极电渗析(EDR),运行管理更加方便。原水利用率可达80%,一般原水回收率在45-70%之间。电渗析主要用于水的初级脱盐,脱盐率在45-90%之间。它广泛被用于海水与苦咸水淡化;制备纯水时的初级脱盐以及锅炉、动力设备给水的脱盐软化等。 实质上,电渗析可以说是一种除盐技术,因为各种不同的水(包括天然水、自来水、工业废水)中都有一定量的盐分,而组成这些盐的阴、阳离子在直流电场的作用下会分别向相反方向的电极移动。如果在一个电渗析器中插入阴、阳离子交换膜各一个,由于离子交换膜具有选择透过性,即阳离子交换膜只允许阳离子自由通过,阴离子交换膜只允许阴离子以通过,这样在两个膜的

中间隔室中,盐的浓度就会因为离子的定向迁移而降低,而靠近电极的两个隔室则分别为阴、阳离子的浓缩室,最后在中间的淡化室内达到脱盐的目的。 实际应用中,一台电渗析器并非由一对阴、阳离子交换膜所组成(因为这样做效率很低),而是采用一百对,甚至几百对交换膜,因而大大提高效率。 一、应用范围 目前电渗析器应用范围广泛,它在水的淡化除盐、海水浓缩制盐精制乳制品,果汁脱酸精和提纯,制取化工产品等方面,还可以用于食品,轻工等行业制取纯水、电子、医药等工业制取高纯水的前处理。锅炉给水的初级软化脱盐,将苦咸水淡化为饮用水。 电渗析器适用于电子、医药、化工、火力发电、食品、啤酒、饮料、印染及涂装等行业的给水处理。也可用于物料的浓缩、提纯、分离等物理化学过程。 电渗析还可以用于废水、废液的处理与贵重金属的回收,如从电镀废液中回收镍。 二、基本性能 (1)操作压力0.5─3.0kg /cm2左右 (2)操作电压、电流100─250V,1─3A (3)本体耗电量每吨淡水约0.2─2.0度 三、电渗析法的特点为

电渗析操作说明

电渗析系统操作说明 一、电渗析(ED)概述 电渗析是一种利用荷电膜的选择透过性和电场力作用对水中的离子型物质 进行分离而达到脱盐、浓缩等预期目的的一种膜分离设备。电渗析器的主要部件为阴 、阳离子交换膜、隔板、电极和直流电源四部分。隔板构成的隔室为液体流经过的 通道。物料经过的隔室为脱盐室,浓水经过的隔室为浓缩室。在直流电场的作用下 ,利用离子交换膜的选择透过性,阳离子透过阳膜,阴离子透过阴膜,脱盐室的离 子向浓缩室迁移,浓缩室的离子由于膜的选择透过性而无法向脱盐室迁移。这样淡 室的盐分浓度逐渐降低,相邻浓缩室的盐分浓度相应逐渐升高。经过这样的过程物 料中的盐分得以脱除。电渗析膜技术主要应用于化学制药工艺中物料的脱盐(灰份的去除) ,涉及的脱盐产品有阿斯巴甜、L-肉碱、碘海醇、甘露醇、各类氨基酸、各 种糖类、有机酸、醇类等。也可用于高含盐废水的进一步浓缩,含氨氮废水的零排 放处理,电镀废液中的金属回收,冶金行业的废水回用等。 二、电渗析安装示意图

1、膜堆组装顺序: 铁夹板-绝缘橡皮-电极板A-极室格网及极框-极膜-隔板正-阴膜-隔板反-阳膜-隔板正-阴膜-隔板反-……阴膜-隔板反-极膜-极室格网及极框-电极板B-绝缘橡皮-铁夹板。 膜堆组装顺序图 2、组装过程请注意隔板的正反和膜片的交替顺序,防止浓淡水室的混料。 3、紧固夹紧螺杆时,首先从电渗析中部的螺杆开始上紧螺母,要求对角上紧并均匀用力,切不可单边用力过猛。 4、上紧螺杆后,再把电渗析器用起吊设备吊起,安装到支撑架上。过程中需要注意电渗析器的重心位移,防止砸坏设备和造成人员的受伤。 -4- · 5、电渗析器安装完毕后,将极水管、浓水管、淡水管和相应的电渗析器上的接口连接牢固。

电渗析技术的简介

电渗析技术的简介 一、电渗析技术简介及其发展背景 电渗析(eletrodialysis,简称ED) 技术是膜分离技术的一种,它将阴、 阳离子交换膜交替排列于正负电极之间,并用特制的隔板将其隔开,组成除盐(淡化)和浓缩两个系统,在直流电场作用下,以电位差为动力,利用离子交换膜的选择透过性,把电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。 电渗析技术的研究始于德国,1903年,Morse和Pierce把2根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去;1924年,Pauli采用化工设计的原理,改进了Morse的实验装置,力图减轻极化,增加传质速率。但直到1950年Juda首次试制成功了具有高选择性的离子交换膜后,电渗析技术才进入了实用阶段,其中经历了三大革新: (1) 具有选择性离子交换膜的应用; (2) 设计出多隔室电渗析组件; (3) 采用频繁倒极操作模式。 现在离子交换膜各方面的性能及电渗析装置结构等不断革新和改进,电渗析技术进入了一个新的发展阶段,其应用前景也更加广阔。 电渗析器由隔板、离子交换膜、电极、夹紧装置等主要部件组成。离子交换膜对不同电荷的离子具有选择透过性。阳膜只允许通过阳离子,阻止阴离子通过,阴膜只允许通过阴离子,阻止阳离子通过。在外加直流电场的作

用下,水中离子作定向迁移。由于电渗析器是由多层隔室组成,故淡室中阴阳离子迁移到相邻的浓室中去,从而使含盐水淡化。在食品及医药工业,电渗析可用于从有机溶液中去除电解质离子, 在乳清脱盐、糖类脱盐和氨基酸精制中应用得都比较成功。 电渗析作为一种新兴的膜法分离技术,在天然水淡化,海水浓缩制盐,废水处理等方面起着重要的作用,已成为一种较为成熟的水处理方法。 二、几种电渗析技术 1 倒极电渗析( EDR) 倒极电渗析就是根据ED 原理,每隔一定时间(一般为15~20 min) ,正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。在20 世纪80 年代后期,倒极电渗析器的使用, 大大提高了电渗析操作电流和水回收率,延长了运行周期。EDR 在废水处理方面尤其有独到之处,其浓水循环、水回收率最高可达95 %。 2 液膜电渗析( EDLM) 液膜电渗析是用具有相同功能的液态膜代替固态离子交换膜,其实验模型就是用半透玻璃纸将液膜溶液包制成薄层状的隔板,然后装入电渗析器 中运行。利用萃取剂作液膜电渗析的液态膜,可能为浓缩和提取贵金属、重金属、稀有金属等找到高效的分离方法,因为寻找对某种形式离子具有特殊选择性的膜与提高电渗析的提取效率有关。提高电渗析的分离效率,直接与液膜结合起来是很有发展前途的。例如,固体离子交换膜对铂族金属

《电渗析器》word版

电渗析器 一、 电渗析器的主要结构 电渗析器的主要由膜堆、级区及夹紧装置组成,见图7-6。 图7- 6 电渗析器的基本结构及组装形式 1-压紧板;2-垫板;3-电极;4-垫圈; 5-导水、极水板;6-阳膜;7-淡水隔板框; 8-阴膜;9-浓水隔板框—极水;—浓水;……淡水 在电渗析器中“膜对”是最小电渗析工作单元,它由阴膜、淡水隔板、阳膜和浓水隔板组成。由若干个膜对组成的总体称为“膜堆”。置于电渗析器夹紧装置内侧的电极称为“端电极”。在电渗析器膜堆内,前后两极共同的电极称为“共电极”。 电渗析器的组装方式有串联、并联及串-并联相结合的几种形式。常用“级”和“段”来表示。“级”是指电极对的数目。“段” 是指水流方向,水流通过一个膜堆后,改变方向进入后一个膜堆,即 增加一段。电渗析器的组装方式有一级一段、一级多段、多级多段等。图7-7是电渗析器的组装方式示意图。 一级一段电渗析器即一台电渗析器仅含一段膜堆,由于只有一对端电极,通过每个膜对的电流强度相等。水流通过膜堆时,是平行地向同一方向通过各膜对,实际上这样的膜堆是以并联的形式组成一段。这种电渗析器的产水量大,整台脱盐率就是1张隔板流程长度的脱盐率,多用于大、中型制水场地。国内一级一段电渗析器一般含有200~360个膜对。 一级多段电渗析器通常含有2~3段,使用一对电极,膜堆中通过每个膜对的电流强度相等。这类电渗析器段与段之间的水流方向 图7-7 电渗析器的“级”和“段”示意图 相反,内部必须装有用来改变水流方向的导向隔板,使水流从一段出来改变方向流入另一段,这种方式实际是串联组装。在级内分段是为了增加脱盐流程长度,以提高脱盐率。这种形式的电渗析器单台产水量较小,压降较大,脱盐率较高,适用于中、小型制水场地。 多级多段电渗析器使用共电极使膜堆分级。一台电渗析器含有2~3级、4~6段。将一台电渗析器分成多级多段进行组装,是为了获得更高的脱盐率,多用于小型海水淡化器和小型纯水装置。 二、电渗析器的性能指标 1. 淡水产量 Q d = 0.0036 nvdb 7-22 式中 Q d ——单台电渗析器在单位时间内的淡水产量,m 3/h ;

电渗析设备操作流程及注意事项

电渗析设备的操作流程及注意事项 电渗析设备必须要做到先通水以后再通电,先停电后停水,否则就会烧坏设备。必须严格按照上述的方法进行操作,否则有可能使未经过处理的水或浓水进入用户或下道工序或损坏设备从而导 致较为严重的后果。每次开机前必须要检查整流控制柜的电压调节状态,确保电压调节为零,否则开机时会造成大电流冲击而烧坏整流控制柜。 电渗析设备带有直流电压,在工作的时候要时刻注意安全。切勿轻易触摸。全部设备停止使用时要做到定期通水(不超过2周)一次,防止设备脱水变形,冬季一定要做好防冻以避免设备被冻裂。 确保定期对电渗析进行酸洗再生,否则因内部严重结垢会导致脱盐率下降或流量减小直到严重堵塞。设备工作状态必须保证其正向、反向交替进行,绝对不允许连续工作在一个方向而不更换极性。否则会导致膜寿命降低并极易造成膜堆堵塞。产水量和脱盐率严重下降甚至膜对报废。 电渗析设备的操作流程: 1、开机前设备状态检查: 检查预处理的设备:阀门1开2关、3关4关、5开6关,7 关8关、9关10开、11关12开、阀13开。检查电渗析:阀门18及20必须为打开状态,27关、阀14、15和16处于开启状态。整流控制柜的电压调节钮确认在零位(逆时针旋转到头)。 通过改变整流控制柜输出极性可以设定正向工作时阀17侧为淡水或19为淡水,我们设定阀17侧为正向时出淡水。 2、开机运行: 在每次开机之前要做好预处理设备的冲洗工作,如果没有预处理则除外,首先需要做的是逆洗:打开阀2、3、4关闭阀1,再关

闭阀3直到冲洗排水干净为止。然后再打开阀3关闭阀4,再打开阀1后关闭阀2,待阀3的排放水干净后关闭它。以上是石英砂过滤器的冲洗方法,活性炭过滤器的冲洗方法同上。接下来再做精密过滤器的冲洗:打开阀11再关闭阀12,然后打开阀9关闭阀10 直到冲洗干净后打开阀10关闭阀9,再打开阀12及13后关闭阀11待水干净后准备将电渗析投入运行使用。每次的运行时间是2—4小时不能超过4小时。 调节阀门14—16使浓淡水流量达到要求的流量,开启整流控制柜,可以选择正向或反向开启运行,逐渐调节电压直到水质达到要求为止(工作电压在每级膜对总数的1.3—1.4倍之间最好)然后开启相应的17或19阀,在上述调节过程中必须保证电流工作在额定范围内,如果电流过大时可以稍等片刻待电流下降后再逐渐调升电压。否则就会烧坏电气设备。 在使用电渗析设备的时候,要严格遵守以下事项: 1、水的预处理是保证电渗析器正常运行的因素之一,因此水进入电渗析器前必要的预处理,保证进入电渗析器的原水水质符合以下指标。浊度:≯3mg/l;含铁总量:<0.3 mg/l;含锰总量:<0.1 mg/l;色度<15度;含氧量:<3mg /l(kMno4);水温:5-40℃;污染指数:<7。 2、注意起动时,必须先通水,后通电,停止时先断水,严禁停水不停电。 3、淡水流量与浓,极水流量的比例要调节适当,为防止浓水渗漏,浓水,极水的压力可适当减小,一般小0.2×9.38 ×104Pa。 4、视水质情况,电渗析器工作2-8小时后要调换一次电极。 5、膜堆上禁止放金物件,以防产生短路。 6、电渗析器运行使用,详见设备使用说明书。

电渗析法综述

电渗析技术综述 摘要:电渗析技术属于膜分离技术,广泛应用于食品、化工、废水处理等行业的分离纯化的生产过程中,有效率高、经济节能等优点。本文重点介绍电渗析技术的原理和分类,还有电渗析技术在食品行业中的应用及对其发展的展望。 关键词:电渗析原理分类应用展望 1、电渗析 电渗析是在直流电场作用下,利用离子交换膜的选择透过性,带电离子透过离子交换膜定向迁移,从水溶液和其他不带电组分中分离出来,从而实现对溶液的浓缩、淡化、精制和提纯的目的。目前电渗折技术己发展成一个大规模的化工单元过程,在膜分离领域占有重要地位。广泛应用于化工脱盐,海水淡化,食品医药和废水处理等领域,在某些地区已成为饮用水的主要生产方法,具有能量消耗少,经济效益显著;装置设计与系统应用灵活,操作维修方便,不污染环境,装置使用寿命长,原水的回收率高等优点。[1] 2、电渗析技术的发展简介 电渗析技术的研究始于20世纪初的德国,1903年,Morse和Pierce把两根电极分别置于透析袋内部和外部的溶液中发现带点杂质能迅速地从凝胶中除去;1924年,Pauli采用化工设计的原理,改进了Morse的试验装置,力图减轻极化,增加传质速率,直至20世纪50年代离子交换膜的制造进入工业化生产后,电渗析技术才进入实用阶段。其中经历了三大革新:一是具有选择性离子交换膜的应用,二是设计出多层电渗析的组件,三是采用倒换电极的操作式。目前电渗析技术已发展成一个大规模的化工单元过程,在膜分离领域占有重要地位。电渗析技术的分类 3.1、倒极电渗析 倒极电渗析就是根据电渗析原理,每隔一定时间(一般为15~20min),正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。在20世纪80年代后期,倒极电渗析器的使用,大大提高了电渗析操作电流和水回收率,延长了运行周期。EDR在废水处理方面尤其有独到之处,其浓水循环、水回收率最高可达95%。 3.2、液膜电渗析 液膜电渗析是用具有相同功能的液态膜代替固态离子交换膜,其实验模型就是用半透玻璃纸将液膜溶液包制成薄层状的隔板,然后装入电渗析器中运行。利用萃取剂作液膜电渗析的液态膜,可能为浓缩和提取贵金属、重金属、稀有金属等找到高效的分离方法,因为寻找对某种形式离子具有特殊选择性的膜与提高电渗析的提取效率有关。提高电渗析的分离效率,直接与液膜结合起来是很有发展前途的。例如,固体离子交换膜对铂族金属(锇、钌等)的盐溶液进行电渗析时,会在膜上形成金属二氧化物沉淀,这将引起膜的过早损耗,并破坏整个工艺过程,应用液膜则无此弊端。 3.3、填充床电渗析 填充床电渗析是将电渗析与离子交换法结合起来的一种新型水处理方法,它的最大特点是利用水解离产生的H+和OH-自动再生填充在电渗析器淡水室中的混床离子交换树脂,从而实现了持续深度脱盐。它集中了电渗析和离子交换法的优点,提高了极限电流密度和电流效率。1983年Ke2dem.o.及其同事们提出了填充混合离子交换树脂电渗析过程除去离子的思想,1987年,Mlillpore公司推出了这一产品。填充床电渗析技术具有高度先进性和实用性,在电子、医药、能源等领域具有广阔的应用前景,可望成为纯水制造的主流技术。 3.4、双极性膜电渗析

电渗析

1 电渗析技术概述 电渗析(ED)技术Il1是膜分离技术的一种, 1、1原理:是将阴、阳离子交换膜交替排列于正负电极之间,并用特制的隔板将其隔开,组成除盐(淡化)和浓缩两个系统,在直流电场作用下,以电位差为推动力,利用离子交换膜的选择透过性,把电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。 1、2优点是:①能量消耗低;②药剂耗量少,环境污染小;⑧对原水含盐量变化适应性强;④操作简单,易于实现机械化、自动化;⑤设备紧凑耐用,预处理简单;⑥水的利用率高。 电渗析也有它自身的缺点:与反渗透(RO)相比,脱盐率较低。在运行过程中易发生浓差极化而产生结垢; 1、3两个基本理论-解释离子交换膜的双电层理论和应用于膜两侧大分子渗透平衡以及离子交换树脂与电解质溶液间平衡的膜平衡理论 书本p118-119(规律) 1、4 传递现象书本p119 2 电渗析技术及其应用 2.1 电渗析技术发展简述 经历了三大革新:①具有选择性离子交换膜的应用网;②设计出许多层电渗析的组件;③采用倒换电极的操作式。 目前电渗析技术已发展成一个大规模的化工单元过程,在膜分离领域占有重要地位。应用前景非常广阔。 2.2 几种常见的电渗析过程(6种) 2.2.1 倒极电渗析(EDR) EDR为电渗析的应用前景提供了一个重要方向[,根据ED原理,每隔一定时间(一般为15-20min),正负电极极性相互倒换(频繁倒极),能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。在废水处理方面的应用有其独到之处,EDR 浓水循环,水回收率最高可达95%,它的服役寿命长,管理简单,与其他方法相比更有竞争力。 2.2.2 填充电渗析(EDI) 填充床电渗析(EDI),它是将电渗析与离子交换法结合起来的一种新型水处理方法,它集中了电渗析和离子交换法的优点,并克服了它们各自的缺点,提高了极限电流密度和电流效率的作用。

电渗析脱盐制备淡水

现代分离技术文献综述题目:电渗析脱盐制备淡水 姓名:XXX 学号:XXX 日期:20XX-XX-XX 前言

自1954年首台电渗析样机在美国问世以来,电渗析在世界各地得到广泛的应用。在1955年建立了中试厂并且运转成功随之在1957年有了工业规模的电渗析脱盐厂。目前,电渗析的主要应用仍是处理咸水提供应用水。在美国已广泛用于乳品工业的奶酪脱盐柑桔汁浓缩并正逐步用于工业废水处理;日本主要用于海水浓缩制取食盐,电渗析的实际应用潜力很大如经离子交换膜电解从己二酸制癸二酸丙烯睛制己二腊等都有引人注意的前景。我国1958年开始电渗析的理论研究工作,到70年代开始了工业化生产,至今已具备相当规模,主要用于海水淡化和纯水制备,为电渗析的广泛应用创造了有利条件。 主题 一、电渗析的基本原理及依据 (1)电渗析概念 渗析过程的速度较慢,如果在膜两边施加一个直流电塌就加快了离子的迁移速度。这种离子在电塌作用下通过膜进行的迁移过程,称为电渗析。根据所用膜种类的不同电渗又可分为如下两类: 1、非选择性膜电渗析非选择性膜电渗析,原来是溶胶的一种提纯方法。已经有几十年的历史。利用天然半透膜(如膀胧膜)或人工半透膜(如火棉胶膜羊皮纸等) 能透过离子而不能透过颗粒较大的胶体粒子的性质在外加直流电塌的作用下作为杂质的离子就从溶胶中穿过半透膜进入到水中被水流带走,从而使溶胶得到了纯化。 2、选择性膜电渗析为了使含盐水得以脱盐淡化,将非选择性伞透膜改为离子选择性透过膜。如图1所示靠近阴极的阳离子交换膜只允许通过阳离子而排斥阴离子靠近阳极的阴离子交换膜,只允许通过阴离子而排斥阳离子。阴膜和阳膜将容器分成三个隔室。靠阴极的一个隔室称为阴极室靠阳极的一个隔室称为阳极室,这样就构成了一个最简单的双膜三室电渗析淡化器。 图1 使用离子交换膜电渗析脱盐示意图 接上道流电源后在道流电爆作用下中间隔室中的阳离子不断穿过阳膜迁移到阴极室,而阴离子不断穿过阴膜迁移到阳极室,但是阳极室中的阳离子在向阴极迁移的过程中不能穿过阴膜,阴极室中的阴离子在往阳极迁移的过程中也不能穿过阳膜。结果使中间隔室的水中离子含量愈来愈少,最后可降低到所要求的含量标准成为淡水。而在两端极室中,由于离子迁入,浓度逐渐升高,成为浓水。 (2)原理 在直流电场作用下,溶液中的正离子移向负极、负离子移向正极。如果用中性的多孔膜状材料将正、负极隔离并不能阻止正负离子的定向移动。但用带电荷的多孔膜状材料隔离正负极,则带正电荷的多孔膜排斥溶液中的正离子,吸引负离子。在电场作用下负离子能顺利

电渗析器设备技术

电渗析器设备技术 电渗析技术不是过滤型的膜分离技术。对原水的水质要求相对较低,具有较强的抗污染能力。电渗析应用于饮用水、工程用水、苦咸水的脱盐。 一、电渗析器的工作原理 电渗析器是在外加直流电场的作用下,当含盐分的水流经阴、阳离子交换膜和隔板组成的隔室时,水中的阴、阳离子开始定向运动,阴离子向阳极方向移动,阳离子向阴极方向移动。由于离子交换膜具有选择透过性,阳离子交换膜(简称阳膜)的固定交换基团带负电荷,因此允许水中阳离寸通过而阻挡阴离子; 阴离子交换膜(简称阴膜)的固定交换基团带正电荷,因此允许水中的阴离子通过而阻挡阳离子,致使淡水隔室中的离子迁移到浓水隔室中去,从而达到淡化的目的,见图4-18. 根据电渗原理制取淡水时,要消耗一定量的浓水和极水,为了减少水耗量可以采用浓水循环和极水循环以及减少浓水和极水的方法。由于浓水的浓度提高了,降低了膜的选择透过性,因而降低了电流效率,增加了耗电量,表4-34、表4-35。在浓浓水直,排放条件下,水量比为淡水:浓水:极水==1:1.2:0.2(或1:0.6:0.2)。这时水的利用率约45.5%~55.5%。采用浓水循环可降低水耗量。 二、电渗析器的结构 电渗析器由膜堆、极区、夹紧装置三大部件组成。电渗析器的组装型式与膜堆水流方向见图4-19。 (一)膜堆 一张阳膜、一张隔板、一张阴膜,再一张隔板组成一个膜对。一对电极之间所有的膜对之和称为膜堆,它是电渗析器性能的关键部件。 组成膜对零件的主要材料如下: (1)阴、阳离子交换膜。按膜中活性基团的均一程度可分为异相膜(非均质)、均相膜两类。异相膜是把粉状树脂与胶黏剂混合后制成的膜;均相膜是直接使离子交换树脂的合成与成膜工艺结合制成的膜,异相膜与均相膜性能比较表4-36。 (2)隔板。隔板常用1~2mm的硬聚氯乙烯板制成,板上开有配水孔、布水槽、流水道、集水槽和集水孔。隔板的作用是使两层膜间形成水室,构成流水通道,并起配水和集水的作用。 (二)极区 极区由托板、电极、极框和弹性垫板组成。极区的主要作用是给电渗析器供直流电,将原水导人膜堆的配水孔,将淡水和浓水排出电渗析器,并通人和排出极水。电极托板的作用是加固极板和安装进出水接管,常用厚的硬聚氯乙烯板制成。电极的作用是接通内外电路,在电渗析器内造成均匀的直流电场。阳极常用石墨,铅、铁丝涂钉等材料;阴极可用不锈秀钢等材料制成。极框用来在极板和膜堆之间保持一定的距离,构成极室,也是极水的通道。极框常用厚5~7mm的粗网多水道式塑料板制成。垫板起防止漏水和调整厚度不均的作用,常用橡胶或软聚氯乙烯板制成。电渗析器通电后,电极表面发生电才电极反应,致使阳极水

电渗析

电渗析是膜分离技术的一种,它是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择透过性,把电解质从溶液中分离出来,从而实现溶液的谈化、浓缩、精制或纯化的目的。在水处理方面,这项技术首先用于苦咸水淡化,而后逐渐扩大到海水淡化及制取饮用水和工业纯水的给水处理中,并且在里金属废水处理、放射性废水处理等工业废水处理中部巳得到应用,目前已成为一种重要的膜法水处理方法,愈来愈受到重视。 对电渗析基本概念的研究始于本世纪初,但在相当长的一段时间内,一直采用动物皮、膀肋膜或人造纤维、羊皮纸等进行实验室研究,而这些膜都没有工业应用价值‘随着合成树脂的发展,1950年w.朱达试制出具有高选择性的明、阳离子交换膜后,才奠定了电渗析技术的实用基础。1954年美、英等国将电渗析首先用于生产实践中,淡化苦咸水、制备工业用水和饮用水。此后,电渗析技术逐步引入中东和北非。自1959年起前苏联也开始研究和推广应用。日本主要利用电渗桥法浓编制盐,1969年日本国内食盐有30%是用离于交换膜电渗析法生产的,1970年才将电渗新技术用于苦咸水淡化。 目前高于交换膜的研究、生产和应用均已达到很高的水乎。电渗析技术领先的国家是美国和日本。生产离子交换膜和电渗析器最多的国家是日本,如日本的旭化成、旭硝于和德山曹达等公司。美国的Lo础c化学公司、AMF公司(机械和铸造公司)、Ionlcs(离子)公司等也都是生产离子交换膜的大企业。电渗析器的发展韧期以小型化为主,如美国、前苏联、以色列等国均制造小型电渗析器,用于提供家庭饮用水。美国还将电渗析用在人造卫星上,即将人体诽出的汗水和小便,用电渗析与活性炭床联合装置处理后再用作饮用水。而目前电渗桥装置主要向大型化、高膜堆方向发展,发展高温电渗桥,提高电导,减少电耗,发展新型电渗析装置等。同时正着重于膜的改性和特殊用途膜的开发研制,如耐高温、耐氧化、耐酸碱、耐辐射及抗有机污染等膜的研制。 我国电渗析技术的发展始于1958年*最初中国科学院化学所、上海医药工业研究院及海军某科研单位相继开展研究。首先开展了海水淡化和苦咸水谈化的研究,并以组织攻关、会战等形式,大大推动了电渗析技术的发展。到1966年上海化工厂开始工业化试生产聚乙烯异相离子交换膜,从此电渗忻技术开始进入实用化阶段。40年来离子交换膜生产已具相当规模,聚乙烯异相膜的生产量已超过20万m2/a,主要生产厂家是上海化工厂,产量居全国第一,占全国总产量的90%,其次还有南新纯水设备厂、晨光化工研究院三分厂等。全国研制的膜品种共44种,己商品生产的膜有12类19种(多数系小规模),已具有相当水平。电渗析器的生产也得到迅猛的发展,据不完全统计,到1984年我国已有30多个厂家.历年生产电渗疥器共4000台左右.分布于全国28个省市的994个用户。仅上海市就有近500台,分布在200多个单位使用。北京市有电渗济器约600台.其中本市产450台。目前我国在世界上已成为电渗析的大用户之一。 二、电渗轿拉术的特点 电渗析技术的特点有以下几个方面: (1) 能量消耗低。电渗桥除盐过程中,只是用电能来迁移水中的盐分,而大量的水不发生相的变化,其耗电量大致与水中的台盐量成正比,尤其是对含盐量为数于”8儿的苦咸水,其耗电量更低。 (2) 药刑耗量少.环境污染小。常规的离子交换处理水时,树脂失效后密用酸、碱进行再生,再生后生成大量酸、碱再生废液,水洗时还耍诽放大量酸、碱性废水。而电诊析法处理水时,它不必再生,仅酸洗时需要少量的酸。因此*电渗析法是耗用药刑少,环境污染 小的一种除盐手段。

相关主题
文本预览
相关文档 最新文档